Exploring electrode materials with larger capacity,higher power density and longer cycle life was critical for developing advanced flexible lithium-ion batteries(LIBs).Herein,we used a controlled two-step method inclu...Exploring electrode materials with larger capacity,higher power density and longer cycle life was critical for developing advanced flexible lithium-ion batteries(LIBs).Herein,we used a controlled two-step method including electrospraying followed with calcination treatment by CVD furnace to design novel electrodes of Si/Si_(x)/C and Sn/C microrods array consisting of nanospheres on flexible carbon cloth substrate(denoted as Si/Si_(x)/C@CC,Sn/C@CC).Microrods composed of cumulated nanospheres(the diameter was approximately 120 nm)had a mean diameter of approximately 1.5μm and a length of around 4.0μm,distributing uniformly along the entire woven carbon fibers.Both of Si/Si/Si_(x)/C@CC and Sn/C@CC products were synthesized as binder-free anodes for Li-ion battery with the features of high reversible capacity and excellent cycling.Especially Si/Six/C electrode exhibited high specific capacity of about 1750 mA∙h∙g^(−1)at 0.5 A∙g^(−1)and excellent cycling ability even after 1050 cycles with a capacity of 1388 mA∙h∙g^(−1).Highly flexible Si/Si_(x)/C@CC//LiCoO_(2)batteries based on liquid and solid electrolytes were also fabricated,exhibiting high flexibility,excellent electrical stability and potential applications in flexible wearable electronics.展开更多
In present study, a simultaneous electrospinning and electrospraying(SEE) process was employed to produce microclusters of TiO2 nanoparticles and interlock them in nanofibrous network. The photocatalytic composite m...In present study, a simultaneous electrospinning and electrospraying(SEE) process was employed to produce microclusters of TiO2 nanoparticles and interlock them in nanofibrous network. The photocatalytic composite membranes(PCMs) were fabricated by electrospraying TiO2 nanoparticle suspension into microcluster form that dispersed and entrapped within nylon-6 electrospun fiber membrane. Three PCMs membrane with TiO2 content of 52.0, 83.6,and 91.7 wt.% were successfully fabricated. The membrane consisted of TiO2 microclusters,ranging in sizes from around 0.3 to 10 μm, distributed uniformly within the nylon-6 nanofibrous network. PCMs photocatalytic activity against Methylene Blue(MB) in aqueous solution showed more than 98% MB removal efficiency after 120 min of photocatalytic oxidation(PCO) for all PCMs. For PCM with the highest TiO2 content tested for 5 PCO cycles, it was found that most of their TiO2 content remained incorporated within the nanofibrous structure. The concept of nanoparticles clusters entrapment with SEE fabrication employed here provide a simple and effective method for reducing detachment of nanostructure phase from nanocomposite membrane.展开更多
The high-efficiency fabrication of high-quality microcapsules containing epoxy is crucial to the further development of the potential practical self-healing epoxy systems based on microencapsulated two-part epoxy-amin...The high-efficiency fabrication of high-quality microcapsules containing epoxy is crucial to the further development of the potential practical self-healing epoxy systems based on microencapsulated two-part epoxy-amine chemistry.Herein,a novel microencapsulation technique based on non-equilibrium droplets via integrating electrospraying and interfacial polymerization(ES-IP)was established to efficiently microencapsulate epoxy monomers.The ES-IP technique,consisting of three continuous steps,i.e.electrospraying to massively generate droplets,enwrapping every single droplet through instant interfacial polymerization,and thickening shell at an elevated temperature,has great flexibility to regulate the microencapsulation process and the microcapsule quality.The fabricated core-shell structured epoxy microcapsules(Ep-MCs)were comprehensively characterized for their properties,showing that they have high cleanness with rare impurities,controllable and tunable size,good thermal stability and tightness,and high effective core fraction.The high-quality Ep-MCs were adopted to formulate a self-healing epoxy based on the microencapsulated epoxy-amine chemistry.The highest healing efficiency,in terms of the recovered mode I fracture toughness,of 110±17%was achieved after being healed at room temperature(~25℃)for 48 h.While the developed ES-IP technique facilitates the microencapsulation technique based on non-equilibrium droplets,the fabricated high-quality Ep-MCs greatly promote the further developments of the practical self-healing materials.展开更多
Hypromellose acetate succinate(HPMCAS) microparticles containing the poorly-water soluble drug celecoxib(CEL) were prepared by electrospraying intended for oral drug delivery. Various solvent mixtures with different s...Hypromellose acetate succinate(HPMCAS) microparticles containing the poorly-water soluble drug celecoxib(CEL) were prepared by electrospraying intended for oral drug delivery. Various solvent mixtures with different solubility for CEL and HPMCAS were used to induce changes in the polymer structural conformation of the microparticles. The performance of the prepared microparticles was evaluated by studying the solid state from, particle size and morphology, radial drug distribution and drug release. CEL was amorphous in all electrosprayed HPMCAS microparticles. The particle size and morphology was dependent on the solubility of HPMCAS in the solvent mixture used with poorer solvents resulting in smaller microparticles with rougher appearance. The CEL distribution on the particles surface was relatively homogeneous and similar for all microparticles. Drug release from the microparticles was observed at a higher rate depending on the solubility of HPMCAS in the solvent used for electrospraying, and in all cases an at least 4-fold higher rate was observed compared with the crystalline drug. Drug precipitation from the supersaturated solution was inhibited by HPMCAS for all microparticles based on its parachute effect while crystalline CEL did not reach supersaturation. This study demonstrated that electrospraying can be used to produce microparticles with tailored properties for pharmaceutical application by adjusting solvent selection.展开更多
Electrospraying/electrospinning of poly(γ-stearyl-L-glutamate) (PSLG) was investigated on a series solutions with different concentrations in chloroform.Field emission scanning electron microscopy (FESEM) and attenua...Electrospraying/electrospinning of poly(γ-stearyl-L-glutamate) (PSLG) was investigated on a series solutions with different concentrations in chloroform.Field emission scanning electron microscopy (FESEM) and attenuated Iotal reflectance Fourier transform infrared spectroscopy (FT-IR/ATR) were used to characterize the morphology and structure of the electrosprayed/electrospun polypeptide mats.It was found that electrospraying of PSLG with concentrations lower than 16 wt% afforded beads,while microfibers cou...展开更多
A modified electrospraying process is exploited to enhance the dissolution profiles of a poorly water-soluble drug. With polyvinylpyrrolidone (PVP) as a hydrophilic polymer matrix and ketoprofen (KET) as a model drug,...A modified electrospraying process is exploited to enhance the dissolution profiles of a poorly water-soluble drug. With polyvinylpyrrolidone (PVP) as a hydrophilic polymer matrix and ketoprofen (KET) as a model drug, polymer-drug composites in the form of nanoparticles were prepared and characterized. The surface morphologies, the physical status of the drug, and the drug-polymer interactions were studied using FESEM, DSC, XRD, and ATR-FTIR. FESEM observations demonstrated that the nanoparticles gradually decreased in size from 640 ± 350, to 530 ± 320, 460 ± 200 and 320 ± 160 nm as the KET content increased from 0, to 9.1%, 16.7% and 33.3% w/w, respectively. Results from DSC and XRD suggested that KET was distributed in the PVP matrix in an amorphous manner at the molecular level. This is thought to be due to their compatibility, arising through hydrogen bonding as demonstrated by ATR- FTIR spectra. In vitro dissolution tests showed that the nanoparticles released the incorporated KET within 1 min, evidencing markedly improved dissolution over pure KET and a KET-PVP physical mixture. Electrospraying can hence offer a facile route to develop new polymer composites for biomedical applications, in particular for improving dissolution rate of poorly water-soluble drugs.展开更多
The focus of this work is to control the structure of electrosprayed polymer microspheres and then study the effect of different structures on the microspheres' adsorption properties. Scanning electron microscopy (...The focus of this work is to control the structure of electrosprayed polymer microspheres and then study the effect of different structures on the microspheres' adsorption properties. Scanning electron microscopy (SEM) coupled with image analysis software was employed to evaluate the size distributions and the structure of microspheres. According to the observation and analysis results, two types of polyethersulfone (PES) porous microspheres (perfect sphere-shaped and collapsed) were prepared via electrospraying technology by adjusting the solvent and polymer molecular weight. The porous PES microspheres can remove bisphenol A (BPA) from its aqueous solution effectively. Compared with collapsed microspheres, the rough microspheres had much higher specific surface area and better mobility in the BPA aqueous solution, so it showed a better adsorption capacity than that of collapsed microspheres. The solvent evaporation rate and the occurrence rate of phase separation significantly affect the structure and morphology of microspheres.展开更多
Titanium dioxide(TiO2) films were prepared by cone - jet mode electrospraying a titanium ethoxideprecursor solution onto a silicon substrate.The effects of spraying time,substrate temperature and aging on thesurface m...Titanium dioxide(TiO2) films were prepared by cone - jet mode electrospraying a titanium ethoxideprecursor solution onto a silicon substrate.The effects of spraying time,substrate temperature and aging on thesurface morphology of the films prepared were studied.Thin films obtained after spraying for 600 s were aged atroom temperature to form a porous TiO2 network with pores in the size range of 100 - 500 nm.Thicker filmswere prepared by spraying for 3 000 s,but these cracked on drying although it can be concluded that films pre-pared using a higher substrate temperature were denser.By this method,SiC coating was also prepared on anAl2O3 substrate using polysilane as a precursor.The result implies the potential of an industrial production ofdye sensitized solar cells by electrospraying technique.展开更多
A novel water treatment technique, based on a combination of electrospraying and pulsed corona discharge, has been used for bio-decontamination of wastewater. The electrospraying process has been found to increase the...A novel water treatment technique, based on a combination of electrospraying and pulsed corona discharge, has been used for bio-decontamination of wastewater. The electrospraying process has been found to increase the surface area of the treated wastewater, and hence increases the efficiency of the corona treatment process. The phase diagram of the discharge, which characterizes the discharge regimes, has been identified experimentally. The survival ratio of the microorganisms has been investigated experimentally as a function of the applied voltage and the numbers of treatment runs using air and oxygen as working gases. Microorganism surface has been examined using scanning electron microscope (SEM), which enabled in understanding the decontamination mechanisms of the treated microorganism. A complete decontamination has been achieved after only one run for an applied voltage higher than 16 kV when the discharge system was operated in oxygen gas. Optical emission spectrum of the electrosprayed water confirmed the existence of OH-radicals responsible for decontamination process.展开更多
It is well known that small biomaterial particles can lead to superior properties demanded by advanced applications in tissue engineering. Electrospraying has been considered as a promising approach to prepare fine pa...It is well known that small biomaterial particles can lead to superior properties demanded by advanced applications in tissue engineering. Electrospraying has been considered as a promising approach to prepare fine particles, but reducing the particle size during such jetting process is always challenging. This is because the size of the as-sprayed particles is always limited by the device outlet diameter used. In the study we show that hydroxyapatite (HA) relics of 2 - 3 μm with low standard deviation can be deposited using a large nozzle (diameter of 1100 μm) only by reducing the nozzle tip angle from 90° to 15°. The mechanism of such phenomenon was extensively discussed, and a range of refined HA patterns were successfully prepared using the updated electrspraying configuration. We anticipate our findings to have a significant impact on the research of nanostructured biomaterials with superior properties which are realized by reducing the particle size using a greener electrically-driven processing technique.展开更多
Porous chitosan(CS)/magnetic(Fe304)/ferric hydroxide(Fe(OH)3) microsphere as novel and low-cost adsorbents for the removal of As(Ill) have been synthesized via the electrospraying technology by a simple proc...Porous chitosan(CS)/magnetic(Fe304)/ferric hydroxide(Fe(OH)3) microsphere as novel and low-cost adsorbents for the removal of As(Ill) have been synthesized via the electrospraying technology by a simple process of two steps. Characterization of the obtained adsorbents was studied by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD). The adsorption kinetics and equilibrium isotherms were in- vestigated in batch experiments. The Langmuir, Freundlich isotherm and pseudo-second order kinetic models agree well with the experimental data. The adsorption of As(III) onto CS/Fe3OdFe(OH)3 microspheres occurred rapidly and reached adsorption equilibrium after about 45 min. The maximum adsorption capacity of CS/Fe3OJFe(OH)3 microspheres, calculated by the Langmuir isotherm model, was 8.47 mg g 1, which is higher than that of CS/Fe304/Fe(OH)3 prepared by the conventional method (4.72 mg g-l). The results showed that the microspheres had a high adsorption capacity for As(III) and a high separation efficiency due to their microporous structure and superparamagnetic characteristics. Present research may eventually lead to a simple and low cost method for fabricating microporous materials and application for removal of arsenic from aqueous solution.展开更多
Red-blood-cell-shaped chitosan microparticles with acid-triggered dissolution and auto-fluorescence were successfully fabricated by a simple strategy combining electrospraying with a solvent diffusion process controll...Red-blood-cell-shaped chitosan microparticles with acid-triggered dissolution and auto-fluorescence were successfully fabricated by a simple strategy combining electrospraying with a solvent diffusion process controlled by solvent evaporation. The sizes of the prepared chitosan microparticles were rela- tively uniform. Control of the solvent diffusion process was crucial for the formation of microparticles with concave morphology. A chitosan aqueous solution containing 20vo1% ethanol as the evaporable solvent and 30 vol% dimethyl sulfoxide as the diffusible solvent was optimal for preparation of chitosan microparticles with the desired red-blood-cell-like size and shape. These chitosan microparticles will be highly attractive for many biological and biomedical aoolications.展开更多
Ionic Liquid Electrospray Thrusters(ILETs)are well suited for micro-nano satellite applications due to their small size,low power consumption,and high specific impulse.However,the limited thrust of a single-emitter IL...Ionic Liquid Electrospray Thrusters(ILETs)are well suited for micro-nano satellite applications due to their small size,low power consumption,and high specific impulse.However,the limited thrust of a single-emitter ILET restricts its use in space missions.To optimize the performance of ILETs and make them suitable for a wider range of space missions,we designed a Circular-emitter ILET(CILET)to convert a one-dimensional(point)emission into a twodimensional(line)emission.The CILET can self-organize multiple Taylor cones simultaneously.The cones were photographed and the axial emission currents were measured under different voltage and pressure difference conditions with a CILET experimental system.The emission can be divided into two stable states and one unstable state based on the flow and current characteristics.The current in Stable state Ⅰ increases non-linearly with the voltage,while that in Stable state Ⅱ is nearly linear with respect to the voltage.The number of cones increases with the voltage in stable states,while the cones become short and crowded under high-voltage conditions.The variation law of the number of cones can be explained with the self-organization theory.The variation in the current exhibits a good correlation with the number of cones.This study demonstrates the feasibility of circular emitters and experimentally indicates that the emission current is improved by approximately two orders of magnitude compared to that of a single capillary.展开更多
The investigation of reaction kinetics is the key to understanding the nature of reaction processes.However,monitoring fast photochemical reactions by mass spectrometry remains challenging.Herein,we developed an optic...The investigation of reaction kinetics is the key to understanding the nature of reaction processes.However,monitoring fast photochemical reactions by mass spectrometry remains challenging.Herein,we developed an optical focusing inductive electrospray(OF-iESI)mass spectrometry platform for real-time and in-situ photoreaction monitoring.Coaxial irradiation from back of nanoelectrospray emitter with a taper section was utilized,so the emitter could act as optical lens to help achieving much larger optical power density at emitter tip compared to other sections,which allowed for in-situ reaction monitoring of photoreactions.Through theoretical calculations,the highest optical power density region volume was ca.45 nL.We also integrated a controller for the laser source(450 nm),enabling the modulation of pulse duration(>1 ms).This facilitates the study of photochemical reaction kinetics.The in-situ capability of this device was proved by capturing the short-lived photogenerated intermediates during the dehydrogenation of tetrahydroquinoline.This device was further used to investigate the kinetics of triplet energy transfer based Paternò-Büchi reaction.The reaction order has hitherto remained undetermined while the result of OF-iESI suggested it followed pseudo-second-order reaction kinetics.The short-lived donor-acceptor collision complex intermediate was also successfully identified by tandem mass spectrometry.展开更多
The electrospray thruster supplied by ionic liquid is a promising micro-propulsion thruster with small size and precise thrust, which can emit both cations and anions to achieve self-neutralization. In order to furthe...The electrospray thruster supplied by ionic liquid is a promising micro-propulsion thruster with small size and precise thrust, which can emit both cations and anions to achieve self-neutralization. In order to further investigate the effect of ion solvation energy on the evaporation of cations and anions from ionic liquid under the action of a uniform electric field, this paper establishes a transient Electrohydrodynamic (EHD) model for free ionic liquid droplets undergoing ion evaporation. The dynamic processes of droplet deformation and ion evaporation are simulated. And the study further focuses on the influence of different ion solvation energies for cations on the droplet morphology and the ion evaporation characteristics at the positively charged end and negatively charged end of the droplet. The results indicate that, when the ion solvation energy for cations is higher than that of anions, it will cause the ion evaporation at the positively charged end of the droplet to lag behind the ion evaporation at the negatively charged end. And the higher the ion solvation energy for the cations, the longer the evaporation lag time at the positively charged end of the droplet, which will lead to a higher peak of surface charge density that can be reached, resulting in a larger evaporation current and sharper droplet stretching deformation. Additionally, the peak surface charge density of the positively charged end of the droplet is linearly related to the ion solvation energy for cations, while the peak surface charge density of the negatively charged end remains almost unchanged and is not significantly affected by the ion solvation energy for cations.展开更多
Traditional electrospray ionization tandem mass spectrometry(ESI-MS^(n))has been a powerful tool in diverse research areas,however,it faces great limitations in the study of protein-small molecule interactions.In this...Traditional electrospray ionization tandem mass spectrometry(ESI-MS^(n))has been a powerful tool in diverse research areas,however,it faces great limitations in the study of protein-small molecule interactions.In this article,the state-of-the-art temperature-controlled electrospray ionization tandem mass spectrometry(TC-ESI-MS^(n))is applied to investigate interactions between ubiquitin and two flavonol molecules,respectively.The combination of collision-induced dissociation(CID)and MS solution-melting experiments facilitates the understanding of flavonol-protein interactions in a new dimension across varying temperature ranges.While structural changes of proteins disturbed by small molecules are unseen in ESI-MS^(n),TC-ESI-MS^(n)allows a simultaneous assessment of the stability of the complex in both gas and liquid phases under various temperature conditions,meanwhile investigating the impact on the protein’s structure and tracking changes in thermodynamic data,and the characteristics of structural intermediates.展开更多
Accurate determination of lung cancer margins at the molecular level is of great significance to determine the optimal extent of resection during surgical operation and reduce the risk of postoperative recurrence.In t...Accurate determination of lung cancer margins at the molecular level is of great significance to determine the optimal extent of resection during surgical operation and reduce the risk of postoperative recurrence.In this study,internal extractive electrospray ionization mass spectrometry(i EESI-MS)was used to trace potential molecular tumor margins in lung cancer tissue.Molecular differential model for the determination of lung cancer tumor margin was established via partial least-squares discriminant analysis(PLS-DA)of iEESI-MS data collected from lung tissue pieces within cancer tumor area and iEESI-MS data collected from lung tissue pieces outside cancer tumor area.Proof-of-concept data demonstrate that the developed molecular differential model yields ca.1-2 mm wider potential molecular tumor margin of a lung cancer compared to the conventional histological analysis,showing promising potential of iEESI-MS to increase the accuracy of tumor margins determination and lower risk of lung cancer postoperative recurrence.Furthermore,our results revealed that creatine and taurine showed positive correlations with lung cancer.展开更多
Selenium is one of the important trace elements in the human body.Its deficiency will directly affect human health.With people's attention to health,the content of selenium in food has gradually attracted attentio...Selenium is one of the important trace elements in the human body.Its deficiency will directly affect human health.With people's attention to health,the content of selenium in food has gradually attracted attention.However,detecting selenium compounds in complex samples remains a challenge.In this work,we built an online heating-reaction device.This device combines the electrospray extraction ionization mass spectrometry(EESI-MS)with the heating reaction device,which can simultaneously detect various selenium compounds in complex liquid samples.Under acidic conditions,the sample was heated and catalyzed by a heating reaction device,so that the SeO~(2-)_(3)and O-phenylenediamine(OPD)could generate 1,3-dihydro-2,1,3-benzoselenadiazole.Based on the above reactions,we can detect organic selenium,inorganic selenium and other compounds in liquid samples by organic mass spectrometry.In this experiment,we determined the content of three forms of selenium:selenomethionine(SeMet),l-selenocystine(SeCys(2)),and sodium selenite.The calibration curves for SeMet,SeCys(2),and sodium selenite showed strong linearity within a range of 0.50-50.00μg/L.The limits of detection(LOD)for the three compounds were 0.22,0.27,and 0.41μg/L,respectively.The limits of quantification(LOQ)were 0.68,0.81,and 1.23μg/L,respectively.Spiked recoveries at three levels ranged from 98.8%to 106.1%.In addition,this method can simultaneously detect three selenium compounds and three other specific chemical components in tea infusion samples,providing a rapid and efficient method for identifying tea quality.展开更多
To explore the feasibility of electrospray-based additive manufacturing for thin-film fabrication in zero-or microgravity environments,we conducted numerical simulations of charged droplet behavior under zero-gravity ...To explore the feasibility of electrospray-based additive manufacturing for thin-film fabrication in zero-or microgravity environments,we conducted numerical simulations of charged droplet behavior under zero-gravity conditions,followed by ground-based experimental validation using an anti-gravity electrospray(AG-ES)strategy.First,simulations of charged droplet deposition during the electrospray process showed that the presence or absence of gravity did not significantly affect deposition behavior.Second,simulations of droplet-substrate collisions indicated that the presence of an electric field could reduce the risk of droplet splashing.Third,simulations of droplet coalescence under zero-gravity conditions demonstrated that an electric field could promote the coalescence of charged droplets.An AG-ES experimental platform featuring an inverted nozzle-substrate configuration was constructed on the ground.Comparative experiments using Rhodamine B solution and TiO_(2)nanoparticle dispersions were performed in both AG-ES and conventional electrospray(ES)modes.The results indicated that the spray cone angle,deposition area,and film morphology were comparable between the two modes.Finally,multilayer alternating-current electroluminescent(ACEL)devices were fabricated via AG-ES using ZnS:Cu/poly(vinylidene fluoride-co-hexafluoropropylene)(PVDF-HFP),BaTiO_(3)/polyvinylpyrrolidone(PVP),and silver nanowire(AgNW)inks,achieving a maximum luminance of 66.2 cd/m^(2).This study demonstrates the potential of the electrospray process for functional thin-film fabrication under microgravity conditions.展开更多
The ionic liquid electrospray thruster is a microminiature thruster that can be applied on a micro or nano-satellite,and its highly energy-efficient,compact,modular system can be used for both main propulsion and alti...The ionic liquid electrospray thruster is a microminiature thruster that can be applied on a micro or nano-satellite,and its highly energy-efficient,compact,modular system can be used for both main propulsion and altitude control.In this study,an ionic liquid electrospray thruster with a 100-tip emitter configuration is tested primarily to examine the difference in performance of the thruster at different angles with time-of-flight(TOF)mass spectrometry tests.In the experiment,it was measured that the half-angle of the thruster plume angle emission was in the range of−60 degrees to+65 degrees.Accordingly,the measurement range was set from−50 degrees to+50 degrees,with an interval of 10 degrees.Relative to the results of the 0 degree current curve,the positive mode is relatively homogeneous at all angles of the operating mode.In the negative mode,for n 2 ions,the negative angle region accounts for a larger proportion and the positive angle region accounts for a smaller proportion,which makes a significant difference to the specific impulse of the two regions.The range of the specific impulse at different angles is 3776-4401 s under the typical working condition of+2.5 kV.Under−2.5 kV,the range of the specific impulse at different angles is 3309-4654 s.This research quantifies the angular performance variations of the ionic liquid electrospray thruster,offering valuable data to improve its design and operational reliability for precise propulsion and altitude control in satellite applications.展开更多
基金support from the National Nature Science Foundation of China(Grant No.52273256).
文摘Exploring electrode materials with larger capacity,higher power density and longer cycle life was critical for developing advanced flexible lithium-ion batteries(LIBs).Herein,we used a controlled two-step method including electrospraying followed with calcination treatment by CVD furnace to design novel electrodes of Si/Si_(x)/C and Sn/C microrods array consisting of nanospheres on flexible carbon cloth substrate(denoted as Si/Si_(x)/C@CC,Sn/C@CC).Microrods composed of cumulated nanospheres(the diameter was approximately 120 nm)had a mean diameter of approximately 1.5μm and a length of around 4.0μm,distributing uniformly along the entire woven carbon fibers.Both of Si/Si/Si_(x)/C@CC and Sn/C@CC products were synthesized as binder-free anodes for Li-ion battery with the features of high reversible capacity and excellent cycling.Especially Si/Six/C electrode exhibited high specific capacity of about 1750 mA∙h∙g^(−1)at 0.5 A∙g^(−1)and excellent cycling ability even after 1050 cycles with a capacity of 1388 mA∙h∙g^(−1).Highly flexible Si/Si_(x)/C@CC//LiCoO_(2)batteries based on liquid and solid electrolytes were also fabricated,exhibiting high flexibility,excellent electrical stability and potential applications in flexible wearable electronics.
基金supported by the 90th Anniversary of Chulalongkorn University,Rachadapisek Sompote Fund,Chulalongkorn University,through the Nanotec–CU Center of Excellence on Food and AgricultureInternational Program in Hazardous Substance, and Environmental Management Center of Excellence on Hazardous Substance Management(HSM)Chulalongkorn University
文摘In present study, a simultaneous electrospinning and electrospraying(SEE) process was employed to produce microclusters of TiO2 nanoparticles and interlock them in nanofibrous network. The photocatalytic composite membranes(PCMs) were fabricated by electrospraying TiO2 nanoparticle suspension into microcluster form that dispersed and entrapped within nylon-6 electrospun fiber membrane. Three PCMs membrane with TiO2 content of 52.0, 83.6,and 91.7 wt.% were successfully fabricated. The membrane consisted of TiO2 microclusters,ranging in sizes from around 0.3 to 10 μm, distributed uniformly within the nylon-6 nanofibrous network. PCMs photocatalytic activity against Methylene Blue(MB) in aqueous solution showed more than 98% MB removal efficiency after 120 min of photocatalytic oxidation(PCO) for all PCMs. For PCM with the highest TiO2 content tested for 5 PCO cycles, it was found that most of their TiO2 content remained incorporated within the nanofibrous structure. The concept of nanoparticles clusters entrapment with SEE fabrication employed here provide a simple and effective method for reducing detachment of nanostructure phase from nanocomposite membrane.
基金financially supported by the National Natural Science Foundation of China(No.51903090)the Science and Technology Program of Guangzhou(No.202102020632)Fundamental Research Funds for the Central Universities(No.2020ZYGXZR046)。
文摘The high-efficiency fabrication of high-quality microcapsules containing epoxy is crucial to the further development of the potential practical self-healing epoxy systems based on microencapsulated two-part epoxy-amine chemistry.Herein,a novel microencapsulation technique based on non-equilibrium droplets via integrating electrospraying and interfacial polymerization(ES-IP)was established to efficiently microencapsulate epoxy monomers.The ES-IP technique,consisting of three continuous steps,i.e.electrospraying to massively generate droplets,enwrapping every single droplet through instant interfacial polymerization,and thickening shell at an elevated temperature,has great flexibility to regulate the microencapsulation process and the microcapsule quality.The fabricated core-shell structured epoxy microcapsules(Ep-MCs)were comprehensively characterized for their properties,showing that they have high cleanness with rare impurities,controllable and tunable size,good thermal stability and tightness,and high effective core fraction.The high-quality Ep-MCs were adopted to formulate a self-healing epoxy based on the microencapsulated epoxy-amine chemistry.The highest healing efficiency,in terms of the recovered mode I fracture toughness,of 110±17%was achieved after being healed at room temperature(~25℃)for 48 h.While the developed ES-IP technique facilitates the microencapsulation technique based on non-equilibrium droplets,the fabricated high-quality Ep-MCs greatly promote the further developments of the practical self-healing materials.
基金the Danish Council for Inde-pendent Research(Grant No.DFF-12-131927)for financial sup-port of this project
文摘Hypromellose acetate succinate(HPMCAS) microparticles containing the poorly-water soluble drug celecoxib(CEL) were prepared by electrospraying intended for oral drug delivery. Various solvent mixtures with different solubility for CEL and HPMCAS were used to induce changes in the polymer structural conformation of the microparticles. The performance of the prepared microparticles was evaluated by studying the solid state from, particle size and morphology, radial drug distribution and drug release. CEL was amorphous in all electrosprayed HPMCAS microparticles. The particle size and morphology was dependent on the solubility of HPMCAS in the solvent mixture used with poorer solvents resulting in smaller microparticles with rougher appearance. The CEL distribution on the particles surface was relatively homogeneous and similar for all microparticles. Drug release from the microparticles was observed at a higher rate depending on the solubility of HPMCAS in the solvent used for electrospraying, and in all cases an at least 4-fold higher rate was observed compared with the crystalline drug. Drug precipitation from the supersaturated solution was inhibited by HPMCAS for all microparticles based on its parachute effect while crystalline CEL did not reach supersaturation. This study demonstrated that electrospraying can be used to produce microparticles with tailored properties for pharmaceutical application by adjusting solvent selection.
基金supported by the National Natural Science Foundation of China (No.20434020).
文摘Electrospraying/electrospinning of poly(γ-stearyl-L-glutamate) (PSLG) was investigated on a series solutions with different concentrations in chloroform.Field emission scanning electron microscopy (FESEM) and attenuated Iotal reflectance Fourier transform infrared spectroscopy (FT-IR/ATR) were used to characterize the morphology and structure of the electrosprayed/electrospun polypeptide mats.It was found that electrospraying of PSLG with concentrations lower than 16 wt% afforded beads,while microfibers cou...
文摘A modified electrospraying process is exploited to enhance the dissolution profiles of a poorly water-soluble drug. With polyvinylpyrrolidone (PVP) as a hydrophilic polymer matrix and ketoprofen (KET) as a model drug, polymer-drug composites in the form of nanoparticles were prepared and characterized. The surface morphologies, the physical status of the drug, and the drug-polymer interactions were studied using FESEM, DSC, XRD, and ATR-FTIR. FESEM observations demonstrated that the nanoparticles gradually decreased in size from 640 ± 350, to 530 ± 320, 460 ± 200 and 320 ± 160 nm as the KET content increased from 0, to 9.1%, 16.7% and 33.3% w/w, respectively. Results from DSC and XRD suggested that KET was distributed in the PVP matrix in an amorphous manner at the molecular level. This is thought to be due to their compatibility, arising through hydrogen bonding as demonstrated by ATR- FTIR spectra. In vitro dissolution tests showed that the nanoparticles released the incorporated KET within 1 min, evidencing markedly improved dissolution over pure KET and a KET-PVP physical mixture. Electrospraying can hence offer a facile route to develop new polymer composites for biomedical applications, in particular for improving dissolution rate of poorly water-soluble drugs.
文摘The focus of this work is to control the structure of electrosprayed polymer microspheres and then study the effect of different structures on the microspheres' adsorption properties. Scanning electron microscopy (SEM) coupled with image analysis software was employed to evaluate the size distributions and the structure of microspheres. According to the observation and analysis results, two types of polyethersulfone (PES) porous microspheres (perfect sphere-shaped and collapsed) were prepared via electrospraying technology by adjusting the solvent and polymer molecular weight. The porous PES microspheres can remove bisphenol A (BPA) from its aqueous solution effectively. Compared with collapsed microspheres, the rough microspheres had much higher specific surface area and better mobility in the BPA aqueous solution, so it showed a better adsorption capacity than that of collapsed microspheres. The solvent evaporation rate and the occurrence rate of phase separation significantly affect the structure and morphology of microspheres.
基金supported by the Science Foun-dation of Educational Commission and Provincial Key Laboratory Program of Liaoning Province of China(Grant No.2008593 and CL-200902)~~
文摘Titanium dioxide(TiO2) films were prepared by cone - jet mode electrospraying a titanium ethoxideprecursor solution onto a silicon substrate.The effects of spraying time,substrate temperature and aging on thesurface morphology of the films prepared were studied.Thin films obtained after spraying for 600 s were aged atroom temperature to form a porous TiO2 network with pores in the size range of 100 - 500 nm.Thicker filmswere prepared by spraying for 3 000 s,but these cracked on drying although it can be concluded that films pre-pared using a higher substrate temperature were denser.By this method,SiC coating was also prepared on anAl2O3 substrate using polysilane as a precursor.The result implies the potential of an industrial production ofdye sensitized solar cells by electrospraying technique.
文摘A novel water treatment technique, based on a combination of electrospraying and pulsed corona discharge, has been used for bio-decontamination of wastewater. The electrospraying process has been found to increase the surface area of the treated wastewater, and hence increases the efficiency of the corona treatment process. The phase diagram of the discharge, which characterizes the discharge regimes, has been identified experimentally. The survival ratio of the microorganisms has been investigated experimentally as a function of the applied voltage and the numbers of treatment runs using air and oxygen as working gases. Microorganism surface has been examined using scanning electron microscope (SEM), which enabled in understanding the decontamination mechanisms of the treated microorganism. A complete decontamination has been achieved after only one run for an applied voltage higher than 16 kV when the discharge system was operated in oxygen gas. Optical emission spectrum of the electrosprayed water confirmed the existence of OH-radicals responsible for decontamination process.
文摘It is well known that small biomaterial particles can lead to superior properties demanded by advanced applications in tissue engineering. Electrospraying has been considered as a promising approach to prepare fine particles, but reducing the particle size during such jetting process is always challenging. This is because the size of the as-sprayed particles is always limited by the device outlet diameter used. In the study we show that hydroxyapatite (HA) relics of 2 - 3 μm with low standard deviation can be deposited using a large nozzle (diameter of 1100 μm) only by reducing the nozzle tip angle from 90° to 15°. The mechanism of such phenomenon was extensively discussed, and a range of refined HA patterns were successfully prepared using the updated electrspraying configuration. We anticipate our findings to have a significant impact on the research of nanostructured biomaterials with superior properties which are realized by reducing the particle size using a greener electrically-driven processing technique.
基金supported by the research grants from the National 973 Project (S2009061009)the National Natural Science Foundation of China(50973038)
文摘Porous chitosan(CS)/magnetic(Fe304)/ferric hydroxide(Fe(OH)3) microsphere as novel and low-cost adsorbents for the removal of As(Ill) have been synthesized via the electrospraying technology by a simple process of two steps. Characterization of the obtained adsorbents was studied by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD). The adsorption kinetics and equilibrium isotherms were in- vestigated in batch experiments. The Langmuir, Freundlich isotherm and pseudo-second order kinetic models agree well with the experimental data. The adsorption of As(III) onto CS/Fe3OdFe(OH)3 microspheres occurred rapidly and reached adsorption equilibrium after about 45 min. The maximum adsorption capacity of CS/Fe3OJFe(OH)3 microspheres, calculated by the Langmuir isotherm model, was 8.47 mg g 1, which is higher than that of CS/Fe304/Fe(OH)3 prepared by the conventional method (4.72 mg g-l). The results showed that the microspheres had a high adsorption capacity for As(III) and a high separation efficiency due to their microporous structure and superparamagnetic characteristics. Present research may eventually lead to a simple and low cost method for fabricating microporous materials and application for removal of arsenic from aqueous solution.
文摘Red-blood-cell-shaped chitosan microparticles with acid-triggered dissolution and auto-fluorescence were successfully fabricated by a simple strategy combining electrospraying with a solvent diffusion process controlled by solvent evaporation. The sizes of the prepared chitosan microparticles were rela- tively uniform. Control of the solvent diffusion process was crucial for the formation of microparticles with concave morphology. A chitosan aqueous solution containing 20vo1% ethanol as the evaporable solvent and 30 vol% dimethyl sulfoxide as the diffusible solvent was optimal for preparation of chitosan microparticles with the desired red-blood-cell-like size and shape. These chitosan microparticles will be highly attractive for many biological and biomedical aoolications.
基金co-supported by the National Key R&D Program of China(No.2020YFC2201001)the Shenzhen Science and Technology Program,China(No.20210623091808026)。
文摘Ionic Liquid Electrospray Thrusters(ILETs)are well suited for micro-nano satellite applications due to their small size,low power consumption,and high specific impulse.However,the limited thrust of a single-emitter ILET restricts its use in space missions.To optimize the performance of ILETs and make them suitable for a wider range of space missions,we designed a Circular-emitter ILET(CILET)to convert a one-dimensional(point)emission into a twodimensional(line)emission.The CILET can self-organize multiple Taylor cones simultaneously.The cones were photographed and the axial emission currents were measured under different voltage and pressure difference conditions with a CILET experimental system.The emission can be divided into two stable states and one unstable state based on the flow and current characteristics.The current in Stable state Ⅰ increases non-linearly with the voltage,while that in Stable state Ⅱ is nearly linear with respect to the voltage.The number of cones increases with the voltage in stable states,while the cones become short and crowded under high-voltage conditions.The variation law of the number of cones can be explained with the self-organization theory.The variation in the current exhibits a good correlation with the number of cones.This study demonstrates the feasibility of circular emitters and experimentally indicates that the emission current is improved by approximately two orders of magnitude compared to that of a single capillary.
基金financially supported by the National Natural Science Foundation of China(Nos.22104112 and 22374110)the Fundamental Research Funds for the Central Universities。
文摘The investigation of reaction kinetics is the key to understanding the nature of reaction processes.However,monitoring fast photochemical reactions by mass spectrometry remains challenging.Herein,we developed an optical focusing inductive electrospray(OF-iESI)mass spectrometry platform for real-time and in-situ photoreaction monitoring.Coaxial irradiation from back of nanoelectrospray emitter with a taper section was utilized,so the emitter could act as optical lens to help achieving much larger optical power density at emitter tip compared to other sections,which allowed for in-situ reaction monitoring of photoreactions.Through theoretical calculations,the highest optical power density region volume was ca.45 nL.We also integrated a controller for the laser source(450 nm),enabling the modulation of pulse duration(>1 ms).This facilitates the study of photochemical reaction kinetics.The in-situ capability of this device was proved by capturing the short-lived photogenerated intermediates during the dehydrogenation of tetrahydroquinoline.This device was further used to investigate the kinetics of triplet energy transfer based Paternò-Büchi reaction.The reaction order has hitherto remained undetermined while the result of OF-iESI suggested it followed pseudo-second-order reaction kinetics.The short-lived donor-acceptor collision complex intermediate was also successfully identified by tandem mass spectrometry.
基金supported by the National Key R&D Program of China(No.2020YFC2201100)the National Natural Science Foundation of China(Nos.12175032,12102082,12275044,12402327,12405290 and 12211530449)+4 种基金the Joint Program of the Science and Technology Program of Liaoning,China(No.2023JH2/101700285)the Fundamental Research Funds for the Central Universities of China(Nos.DUT22RC(3)078,DUT23RC(3)040 and DUT24ZD106)the S&T Program of Hebei,China(No.246Z2301G)the S&T Innovation Program of Hebei,China(Nos.SJMYF2022X18 and SJMYF2022X06)the Beijing Engineering Research Center of Efficient and Green Aerospace Propulsion Technology and Advanced Space Propulsion Laboratory of BICE,China(No.LabASP-2023-07).
文摘The electrospray thruster supplied by ionic liquid is a promising micro-propulsion thruster with small size and precise thrust, which can emit both cations and anions to achieve self-neutralization. In order to further investigate the effect of ion solvation energy on the evaporation of cations and anions from ionic liquid under the action of a uniform electric field, this paper establishes a transient Electrohydrodynamic (EHD) model for free ionic liquid droplets undergoing ion evaporation. The dynamic processes of droplet deformation and ion evaporation are simulated. And the study further focuses on the influence of different ion solvation energies for cations on the droplet morphology and the ion evaporation characteristics at the positively charged end and negatively charged end of the droplet. The results indicate that, when the ion solvation energy for cations is higher than that of anions, it will cause the ion evaporation at the positively charged end of the droplet to lag behind the ion evaporation at the negatively charged end. And the higher the ion solvation energy for the cations, the longer the evaporation lag time at the positively charged end of the droplet, which will lead to a higher peak of surface charge density that can be reached, resulting in a larger evaporation current and sharper droplet stretching deformation. Additionally, the peak surface charge density of the positively charged end of the droplet is linearly related to the ion solvation energy for cations, while the peak surface charge density of the negatively charged end remains almost unchanged and is not significantly affected by the ion solvation energy for cations.
基金supports by the National Natural Science Foundation of China(No.22174037)the Joint Funds of the Hunan Provincial Natural Science Foundation of China(No.2023JJ50255)+1 种基金Changsha Science and Technology Project(No.Z202269490128)National Key Research and Development Program of China(No.2023YFF0613400)are appreciated.
文摘Traditional electrospray ionization tandem mass spectrometry(ESI-MS^(n))has been a powerful tool in diverse research areas,however,it faces great limitations in the study of protein-small molecule interactions.In this article,the state-of-the-art temperature-controlled electrospray ionization tandem mass spectrometry(TC-ESI-MS^(n))is applied to investigate interactions between ubiquitin and two flavonol molecules,respectively.The combination of collision-induced dissociation(CID)and MS solution-melting experiments facilitates the understanding of flavonol-protein interactions in a new dimension across varying temperature ranges.While structural changes of proteins disturbed by small molecules are unseen in ESI-MS^(n),TC-ESI-MS^(n)allows a simultaneous assessment of the stability of the complex in both gas and liquid phases under various temperature conditions,meanwhile investigating the impact on the protein’s structure and tracking changes in thermodynamic data,and the characteristics of structural intermediates.
基金supported by Jiangxi Provincial International Science and Technology Cooperation Project(Nos.20203BDH80W010 and 20232BBH80012)the National Natural Science Foundation of China(Nos.82160410 and 81860379)+1 种基金Foundation of Jiangxi Provincial Department of Science and Technology(No.20212ACB206018)Key Research and Development Program of Jiangxi Province(No.20223BBG71009)。
文摘Accurate determination of lung cancer margins at the molecular level is of great significance to determine the optimal extent of resection during surgical operation and reduce the risk of postoperative recurrence.In this study,internal extractive electrospray ionization mass spectrometry(i EESI-MS)was used to trace potential molecular tumor margins in lung cancer tissue.Molecular differential model for the determination of lung cancer tumor margin was established via partial least-squares discriminant analysis(PLS-DA)of iEESI-MS data collected from lung tissue pieces within cancer tumor area and iEESI-MS data collected from lung tissue pieces outside cancer tumor area.Proof-of-concept data demonstrate that the developed molecular differential model yields ca.1-2 mm wider potential molecular tumor margin of a lung cancer compared to the conventional histological analysis,showing promising potential of iEESI-MS to increase the accuracy of tumor margins determination and lower risk of lung cancer postoperative recurrence.Furthermore,our results revealed that creatine and taurine showed positive correlations with lung cancer.
基金financially supported by Jiangxi University of Chinese Medicine School-level Science and Technology Innovation Team Development Program(No.CXTD22005)PhD research startup fund of Jiangxi University of Chinese Medicine(No.2023BSZR005)。
文摘Selenium is one of the important trace elements in the human body.Its deficiency will directly affect human health.With people's attention to health,the content of selenium in food has gradually attracted attention.However,detecting selenium compounds in complex samples remains a challenge.In this work,we built an online heating-reaction device.This device combines the electrospray extraction ionization mass spectrometry(EESI-MS)with the heating reaction device,which can simultaneously detect various selenium compounds in complex liquid samples.Under acidic conditions,the sample was heated and catalyzed by a heating reaction device,so that the SeO~(2-)_(3)and O-phenylenediamine(OPD)could generate 1,3-dihydro-2,1,3-benzoselenadiazole.Based on the above reactions,we can detect organic selenium,inorganic selenium and other compounds in liquid samples by organic mass spectrometry.In this experiment,we determined the content of three forms of selenium:selenomethionine(SeMet),l-selenocystine(SeCys(2)),and sodium selenite.The calibration curves for SeMet,SeCys(2),and sodium selenite showed strong linearity within a range of 0.50-50.00μg/L.The limits of detection(LOD)for the three compounds were 0.22,0.27,and 0.41μg/L,respectively.The limits of quantification(LOQ)were 0.68,0.81,and 1.23μg/L,respectively.Spiked recoveries at three levels ranged from 98.8%to 106.1%.In addition,this method can simultaneously detect three selenium compounds and three other specific chemical components in tea infusion samples,providing a rapid and efficient method for identifying tea quality.
基金supported by Research and Development Program of Shaanxi Province,China(Grant No.2021ZDLGY10-09)the High-End Foreign Expert Recruitment Program,China(Grant No.G2023170009L)the Science and Technology on Electromechanical Dynamic Control Laboratory,China(Grant No.6142601220111)。
文摘To explore the feasibility of electrospray-based additive manufacturing for thin-film fabrication in zero-or microgravity environments,we conducted numerical simulations of charged droplet behavior under zero-gravity conditions,followed by ground-based experimental validation using an anti-gravity electrospray(AG-ES)strategy.First,simulations of charged droplet deposition during the electrospray process showed that the presence or absence of gravity did not significantly affect deposition behavior.Second,simulations of droplet-substrate collisions indicated that the presence of an electric field could reduce the risk of droplet splashing.Third,simulations of droplet coalescence under zero-gravity conditions demonstrated that an electric field could promote the coalescence of charged droplets.An AG-ES experimental platform featuring an inverted nozzle-substrate configuration was constructed on the ground.Comparative experiments using Rhodamine B solution and TiO_(2)nanoparticle dispersions were performed in both AG-ES and conventional electrospray(ES)modes.The results indicated that the spray cone angle,deposition area,and film morphology were comparable between the two modes.Finally,multilayer alternating-current electroluminescent(ACEL)devices were fabricated via AG-ES using ZnS:Cu/poly(vinylidene fluoride-co-hexafluoropropylene)(PVDF-HFP),BaTiO_(3)/polyvinylpyrrolidone(PVP),and silver nanowire(AgNW)inks,achieving a maximum luminance of 66.2 cd/m^(2).This study demonstrates the potential of the electrospray process for functional thin-film fabrication under microgravity conditions.
基金supported by the National Key R&D Program of China(Nos.2020YFC2201103 and 2022YFB4601300)National Natural Science Foundation of China(No.U22B20120)+1 种基金the Program of Beijing Engineering Research Center of Efficient and Green Aerospace Propulsion Technology(No.LabASP-2024-09)the Beijing Institute of Technology Research Fund Program for Young Scholars.
文摘The ionic liquid electrospray thruster is a microminiature thruster that can be applied on a micro or nano-satellite,and its highly energy-efficient,compact,modular system can be used for both main propulsion and altitude control.In this study,an ionic liquid electrospray thruster with a 100-tip emitter configuration is tested primarily to examine the difference in performance of the thruster at different angles with time-of-flight(TOF)mass spectrometry tests.In the experiment,it was measured that the half-angle of the thruster plume angle emission was in the range of−60 degrees to+65 degrees.Accordingly,the measurement range was set from−50 degrees to+50 degrees,with an interval of 10 degrees.Relative to the results of the 0 degree current curve,the positive mode is relatively homogeneous at all angles of the operating mode.In the negative mode,for n 2 ions,the negative angle region accounts for a larger proportion and the positive angle region accounts for a smaller proportion,which makes a significant difference to the specific impulse of the two regions.The range of the specific impulse at different angles is 3776-4401 s under the typical working condition of+2.5 kV.Under−2.5 kV,the range of the specific impulse at different angles is 3309-4654 s.This research quantifies the angular performance variations of the ionic liquid electrospray thruster,offering valuable data to improve its design and operational reliability for precise propulsion and altitude control in satellite applications.