期刊文献+
共找到292篇文章
< 1 2 15 >
每页显示 20 50 100
Sensorless battery expansion estimation using electromechanical coupled models and machine learning 被引量:1
1
作者 Xue Cai Caiping Zhang +4 位作者 Jue Chen Zeping Chen Linjing Zhang Dirk Uwe Sauer Weihan Li 《Journal of Energy Chemistry》 2025年第6期142-157,I0004,共17页
Developing sensorless techniques for estimating battery expansion is essential for effective mechanical state monitoring,improving the accuracy of digital twin simulation and abnormality detection.Therefore,this paper... Developing sensorless techniques for estimating battery expansion is essential for effective mechanical state monitoring,improving the accuracy of digital twin simulation and abnormality detection.Therefore,this paper presents a data-driven approach to expansion estimation using electromechanical coupled models with machine learning.The proposed method integrates reduced-order impedance models with data-driven mechanical models,coupling the electrochemical and mechanical states through the state of charge(SOC)and mechanical pressure within a state estimation framework.The coupling relationship was established through experimental insights into pressure-related impedance parameters and the nonlinear mechanical behavior with SOC and pressure.The data-driven model was interpreted by introducing a novel swelling coefficient defined by component stiffnesses to capture the nonlinear mechanical behavior across various mechanical constraints.Sensitivity analysis of the impedance model shows that updating model parameters with pressure can reduce the mean absolute error of simulated voltage by 20 mV and SOC estimation error by 2%.The results demonstrate the model's estimation capabilities,achieving a root mean square error of less than 1 kPa when the maximum expansion force is from 30 kPa to 120 kPa,outperforming calibrated stiffness models and other machine learning techniques.The model's robustness and generalizability are further supported by its effective handling of SOC estimation and pressure measurement errors.This work highlights the importance of the proposed framework in enhancing state estimation and fault diagnosis for lithium-ion batteries. 展开更多
关键词 Sensorless estimation electromechanical coupling Impedance model Data-driven model Mechanical pressure
在线阅读 下载PDF
Electromechanical coupling vibration characteristics of high-speed train transmission system considering gear eccentricity and running resistance 被引量:1
2
作者 Yeping Yuan Junguo Wang 《Acta Mechanica Sinica》 2025年第5期219-241,共23页
The gear transmission system directly affects the operational performance of high-speed trains(HST).However,current research on gear transmission systems of HST often overlooks the effects of gear eccentricity and run... The gear transmission system directly affects the operational performance of high-speed trains(HST).However,current research on gear transmission systems of HST often overlooks the effects of gear eccentricity and running resistance,and the dynamic models of gear transmission system are not sufficiently comprehensive.This paper aims to establish an electromechanical coupling dynamic model of HST traction transmission system and study its electromechanical coupling vibration characteristics,in which the internal excitation factors such as gear eccentricity,time-varying meshing stiffness,backlash,meshing error,and external excitation factors such as electromagnetic torque and running resistance are stressed.The research results indicate that gear eccentricity and running resistance have a significant impact on the stability of the system,and gear eccentricity leads to intensified system vibration and decreased anti-interference ability.In addition,the characteristic frequency of gear eccentricity can be extracted from mechanical signals and current signals as a preliminary basis for eccentricity detection,and electrical signals can also be used to monitor changes in train running resistance in real time.The results of this study provide some useful insights into designing dynamic performance parameters for HST transmission systems and monitoring train operational states. 展开更多
关键词 Gear eccentricity electromechanical coupling Running resistance System stability Vibration characteristics
原文传递
Achieving ultrahigh electromechanical properties with high TC in PNN-PZT textured ceramics 被引量:2
3
作者 Q.Wang L.Bian +4 位作者 K.Li Y.C.Liu Y.L.Yang B.Yang W.W.Cao 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第8期258-265,共8页
<001>textured Pb(Ni_(1/3)Nb_(2/3))O_(3)-PbZrO_(3)-PbTiO_(3)(PNN-PZT)ceramics were prepared by templated grain growth(TGG)technique using 0.36PNN-x PZ-(0.64-x)PT(x=0.23,0.25 and 0.27)powder matrix.Optimum templat... <001>textured Pb(Ni_(1/3)Nb_(2/3))O_(3)-PbZrO_(3)-PbTiO_(3)(PNN-PZT)ceramics were prepared by templated grain growth(TGG)technique using 0.36PNN-x PZ-(0.64-x)PT(x=0.23,0.25 and 0.27)powder matrix.Optimum template content was derived to achieve the best electromechanical properties of textured ceramics.The piezoelectric coefficient d33=1165 pC/N,Curie temperature T_(C)=197℃,longitudinal mode electrome-chanical coupling factor k33=0.86 and a very large effective piezoelectric strain coefficient d_(33)^(*)=2041 pm/V were simultaneously achieved at the morphotropic phase boundary(MPB)composition(x=0.25)with 3 vol.%BaTiO_(3)(BT)templates.Domain structures of textured ceramics were analyzed in detail to reveal the origin of these high piezoelectric and electromechanical properties. 展开更多
关键词 Pb(Ni_(1/3)Nb_(2/3))O_(3)-PbZrO_(3)-PbTiO_(3)(PNN-PZT) CERAMICS MPB composition Texture engineering electromechanical properties Domain structure
原文传递
Active Fault Tolerant Nonsingular Terminal Sliding Mode Control for Electromechanical System Based on Support Vector Machine 被引量:1
4
作者 Jian Hu Zhengyin Yang Jianyong Yao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第3期189-203,共15页
Effective fault diagnosis and fault-tolerant control method for aeronautics electromechanical actuator is concerned in this paper.By borrowing the advantages of model-driven and data-driven methods,a fault tolerant no... Effective fault diagnosis and fault-tolerant control method for aeronautics electromechanical actuator is concerned in this paper.By borrowing the advantages of model-driven and data-driven methods,a fault tolerant nonsingular terminal sliding mode control method based on support vector machine(SVM)is proposed.A SVM is designed to estimate the fault by off-line learning from small sample data with solving convex quadratic programming method and is introduced into a high-gain observer,so as to improve the state estimation and fault detection accuracy when the fault occurs.The state estimation value of the observer is used for state reconfiguration.A novel nonsingular terminal sliding mode surface is designed,and Lyapunov theorem is used to derive a parameter adaptation law and a control law.It is guaranteed that the proposed controller can achieve asymptotical stability which is superior to many advanced fault-tolerant controllers.In addition,the parameter estimation also can help to diagnose the system faults because the faults can be reflected by the parameters variation.Extensive comparative simulation and experimental results illustrate the effectiveness and advancement of the proposed controller compared with several other main-stream controllers. 展开更多
关键词 Aeronautics electromechanical actuator Fault tolerant control Support vector machine State observer Parametric uncertainty
在线阅读 下载PDF
Torsional vibration suppression and electromechanical coupling characteristics of electric drive system considering misalignment
5
作者 Jinxin DOU Zhenping LI +2 位作者 Hongliang YAO Muchuan DING Guochong WEI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第11期1987-2010,共24页
The torque ripples resulting from external electromagnetic excitation and mechanical internal excitation contribute to significant torsional vibration issues within electromechanical coupling systems.To mitigate these... The torque ripples resulting from external electromagnetic excitation and mechanical internal excitation contribute to significant torsional vibration issues within electromechanical coupling systems.To mitigate these fluctuations,a passive control strategy centered around a multi-stable nonlinear energy sink(MNES)is proposed.First,models for electromagnetic torque,gear nonlinear meshing torque,and misalignment torque are established.Building upon this foundation,an electromechanical coupling dynamic model of the electric drive system is formulated.Sensitivity analysis is conducted to determine the sensitive nodes of each mode and to provide guidance for the installation of the MNES.The structure of the MNES is introduced,and an electromechanical coupling dynamic model with the MNES is established.Based on this model,the influence of the misaligned angle on the electromechanical coupling characteristics is analyzed.In addition,the vibration suppression performance of the MNES is studied under both speed and uniform speed conditions.Finally,experimental testing is conducted to verify the vibration suppression performance of the MNES.The results indicate that misalignment triggers the emergence of its characteristic frequencies and associated sidebands.Meanwhile,the MNES effectively mitigates the torsional vibrations in the coupled system,demonstrating suppression rates of 52.69%in simulations and 63.3%in experiments. 展开更多
关键词 electric drive system electromechanical coupling nonlinear energy sink(NES) MISALIGNMENT
在线阅读 下载PDF
Electromechanical Transient Modeling Analysis of Large-Scale New Energy Grid Connection
6
作者 Shichao Cao Yonggang Dong Xiaoying Liu 《Energy Engineering》 EI 2024年第4期1109-1125,共17页
The synchronous virtual machine uses inverter power to imitate the performance of the conventional synchronous machine.It also has the same inertia,damping,frequency,voltage regulation,and other external performance a... The synchronous virtual machine uses inverter power to imitate the performance of the conventional synchronous machine.It also has the same inertia,damping,frequency,voltage regulation,and other external performance as the generator.It is the key technology to realize new energy grid connections’stable and reliable operation.This project studies a dynamic simulation model of an extensive new energy power system based on the virtual synchronous motor.A new energy storage method is proposed.The mathematical energy storage model is established by combining the fixed rotor model of a synchronous virtual machine with the charge-discharge power,state of charge,operation efficiency,dead zone,and inverter constraint.The rapid conversion of energy storage devices absorbs the excess instantaneous kinetic energy caused by interference.The branch transient of the critical cut set in the system can be confined to a limited area.Thus,the virtual synchronizer’s kinetic and potential energy can be efficiently converted into an instantaneous state.The simulation of power system analysis software package(PSASP)verifies the correctness of the theory and algorithm in this paper.This paper provides a theoretical basis for improving the transient stability of new energy-connected power grids. 展开更多
关键词 New energy grid connection transient electromechanical modeling synchronous virtual machine PSASP software energy storage
在线阅读 下载PDF
Large conversion of energy in dielectric elastomers by electromechanical phase transition 被引量:4
7
作者 Tong-Qing Lu Zhi-Gang Suo 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第4期1106-1114,共9页
When air is pumped in, a tubular balloon initially inflates slightly and homogeneously. A short section of the balloon then forms a bulge, which coexists with the unbulged section of the balloon. As more air is pumped... When air is pumped in, a tubular balloon initially inflates slightly and homogeneously. A short section of the balloon then forms a bulge, which coexists with the unbulged section of the balloon. As more air is pumped in, the bulged section elongates at the expense of the unbulged section, until the entire balloon is bulged. The phenomenon is analogous to the liquid-to-vapor phase transition. Here we study the bulging transition in a dielectric elastomer tube as air is pumped into the balloon and a voltage is applied through the thickness of the membrane. We formulate the condition for coexistent budged and unbulged sections, and identify allowable states set by electrical breakdown and mechanical rupture. We find that the bulging transition dramatically amplifies electromechanical energy conversion. Energy converted in an electromechanical cycle consisting of unbulged and bulged states is thousands of times that in an electromechanical cycle consisting of only unbulged states. 展开更多
关键词 Dielectric elastomer BULGE electromechanical energy conversion. Tubular balloon electromechanical transition
在线阅读 下载PDF
Electromechanical dynamics analysis and simulation on rollforming equipment with both sides variable cross-section 被引量:4
8
作者 闫军 Li Qiang Zhou Zhixia 《High Technology Letters》 EI CAS 2016年第1期75-81,共7页
Electromechanical dynamics analysis and simulation on a rollforming equipment with both sides variable cross-section are discussed in this study.The system includes mechanical parts and electromagnetism parts,and it i... Electromechanical dynamics analysis and simulation on a rollforming equipment with both sides variable cross-section are discussed in this study.The system includes mechanical parts and electromagnetism parts,and it is a strongly coupled electromechanical system.Based on a virtual work principle and given power,generalized forces of this system are obtained.By using Lagrange-Maxwell equations,a model of electromechanical dynamics is established.Differential equations of two-phase winding on d-q axis are obtained by Park transformation,which comes from three-phase winding equations on the A-B-C axis.This system is solved with the 4th order Runge-Kutta's method,and discrete solutions of all variables are obtained.Finally,by using Matlab language,the system is simulated.The results show that the proposed method works very well. 展开更多
关键词 electromechanical dynamics electromechanical coupling system virtual work principle Runge-kutta' s method
在线阅读 下载PDF
Stabilities Analysis of Electromechanical Nonlinear Vibration of Electric Machine
9
作者 贾启芬 邱家俊 于雯 《Transactions of Tianjin University》 EI CAS 2002年第3期170-173,共4页
An electromechanical nonlinear model of rotor system of electric machine is built.Respondance curves in parameter excited nonlinear vibration of this system caused by electromagnetic forces are investigated.Further mo... An electromechanical nonlinear model of rotor system of electric machine is built.Respondance curves in parameter excited nonlinear vibration of this system caused by electromagnetic forces are investigated.Further more,the analysis reveals the effects of various electromagnetic and mechanical parameters on resonances, and some valuable results are obtained.The analytical result of this paper provides electric machine with the condition of 1/2 subharmonic resonance under the electromechanical electromagnetic forces.Electromagnetic forces apparently affect the stability zone, and both linear term and nonlinear term can excite parametric resonance.The revealed dynamic phenomena provide some new theories and active methods for the fault recognition of electric machine and the defination of stability range,and the theoretical bases for qualitatively controlling the stable operating state of rotors. 展开更多
关键词 electromechanical system nonlinear vibration 1/2 subharmonic resonance STABILITY
在线阅读 下载PDF
Signal pre-processing method and application design of edge nodes for distributed electromechanical system
10
作者 LIU Peijin ZHANG Xiangxiang +2 位作者 SUN Yu SHI Mengtao HE Ning 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2021年第3期272-280,共9页
A signal pre-processing method based on optimal variational mode decomposition(OVMD)is proposed to improve the efficiency and accuracy of local data filtering and analysis of edge nodes in distributed electromechanica... A signal pre-processing method based on optimal variational mode decomposition(OVMD)is proposed to improve the efficiency and accuracy of local data filtering and analysis of edge nodes in distributed electromechanical systems.Firstly,the singular points of original signals are eliminated effectively by using the first-order difference method.Then the OVMD method is applied for signal modal decomposition.Furthermore,correlation analysis is conducted to determine the degree of correlation between each mode and the original signal,so as to accurately separate the real operating signal from noise signal.On the basis of theoretical analysis and simulation,an edge node pre-processing system for distributed electromechanical system is designed.Finally,by virtue of the signal-to-noise ratio(SNR)and root-mean-square error(RMSE)indicators,the signal pre-processing effect is evaluated.The experimental results show that the OVMD-based edge node pre-processing system can extract signals with different characteristics and improve the SNR of reconstructed signals.Due to its high fidelity and reliability,this system can also provide data quality assurance for subsequent system health monitoring and fault diagnosis. 展开更多
关键词 distributed electromechanical system electromechanical signal edge node optimal variational mode decomposition(OVMD) signal pre-processing system
在线阅读 下载PDF
Control of microwave signals using bichromatic electromechanically induced transparency in multimode circuit electromechanical systems
11
作者 江成 崔元顺 +2 位作者 边心田 李晓薇 陈贵宾 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第5期198-204,共7页
We theoretically investigate the tunable delay and advancement of microwave signals based on bichromatic electromechanically induced transparency in a three-mode circuit electromechanical system, where two nanomechani... We theoretically investigate the tunable delay and advancement of microwave signals based on bichromatic electromechanically induced transparency in a three-mode circuit electromechanical system, where two nanomechanical resonators with closely spaced frequencies are independently coupled to a common microwave cavity. In the presence of a strong microwave pump field, we obtain two transparency windows accompanied by steep phase dispersion in the transmitted microwave probe field. The width of the transparency window and the group delay of the probe field can be controlled effectively by the power of the pump field. It is shown that the maximum group delay of 0.12 ms and the advancement of0.27 ms can be obtained in the current experiments. 展开更多
关键词 delay and advancement of microwave signals bichromatic electromechanically induced transparency three-mode circuit electromechanical system
原文传递
Study on Fine Management of Safety Production of Coal Mine Electromechanical
12
作者 XIE Jinfu BAI Yuhu ZHAO Jinkai 《外文科技期刊数据库(文摘版)工程技术》 2021年第3期333-337,共5页
In the coal production, due to the variety and the large number of mechanical and electrical equipment, need to strengthen the fine management, in order to better get rid of the traditional management mode, promote it... In the coal production, due to the variety and the large number of mechanical and electrical equipment, need to strengthen the fine management, in order to better get rid of the traditional management mode, promote its safe and effective operation, improving safety production efficiency. Therefore, enterprises must adhere to the modern enterprise management concept of fine management, strengthening the daily management, safety management and organization management of fine planning and management, in order to improve the safety and efficient operation of mechanical and electrical equipment in coal mines. 展开更多
关键词 coal mine electromechanical equipment electromechanical management fine management
原文传递
Modelling and simulation of flight control electromechanical actuators with special focus on model architecting, multidisciplinary effects and power flows 被引量:13
13
作者 Fu Jian Jean-Charles Maré Fu Yongling 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第1期47-65,共19页
In the aerospace field, electromechanical actuators are increasingly being implemented in place of conventional hydraulic actuators. For safety-critical embedded actuation applications like flight controls, the use of... In the aerospace field, electromechanical actuators are increasingly being implemented in place of conventional hydraulic actuators. For safety-critical embedded actuation applications like flight controls, the use of electromechanical actuators introduces specific issues related to thermal balance, reflected inertia, parasitic motion due to compliance and response to failure. Unfortunately, the physical effects governing the actuator behaviour are multidisciplinary, coupled and nonlinear. Although numerous multi-domain and system-level simulation packages are now available on the market, these effects are rarely addressed as a whole because of a lack of scientific approaches for model architecting, multi-purpose incremental modelling and judicious model implementation. In this publication, virtual prototyping of electromechanical actuators is addressed using the Bond-Graph formalism. New approaches are proposed to enable incremental modelling,thermal balance analysis, response to free-run or jamming faults, impact of compliance on parasitic motion, and influence of temperature. A special focus is placed on friction and compliance of the mechanical transmission with fault injection and temperature dependence. Aileron actuation is used to highlight the proposals for control design, energy consumption and thermal analysis, power network pollution analysis and fault response. 展开更多
关键词 Bond Graph Electro-hydrostatic actuator electromechanical actuator More electric aircraft MODELLING Power-by-wire Power loss SIMULATION
原文传递
Multi-level virtual prototyping of electromechanical actuation system for more electric aircraft 被引量:13
14
作者 Jian FU Jean-Charles MARE +1 位作者 Liming YU Yongling FU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2018年第5期892-913,共22页
Electromechanical actuators(EMAs) are becoming increasingly attractive in the field of more electric aircraft because of their outstanding benefits, which include reduced fuel burn and maintenance cost, enhanced sys... Electromechanical actuators(EMAs) are becoming increasingly attractive in the field of more electric aircraft because of their outstanding benefits, which include reduced fuel burn and maintenance cost, enhanced system flexibility, and improved management of fault detection and isolation. However, electromechanical actuation raises specific issues when being used for safetycritical aerospace applications like flight controls: huge reflected inertia to load, jamming-type failure, and increase of backlash with service due to wear and local dissipation of heat losses for thermal balance. This study proposes an incremental approach for virtual prototyping of EMAs. It is driven by a model-based system engineering process in order to enable simulation-aided design.Best practices supported by Bond graph formalism are suggested to develop a model's structure efficiently and to make the model ready for use(or extension) by addressing the above mentioned issues. Physical effects are progressively introduced, and the realism of lumped-parameter models is increased step-by-step. In particular, multi-level component models are architected to ensure continuity between engineering activities. The models are implemented in the AMESim simulation environment, and simulation responses are given to illustrate how they can be used for preliminary sizing, control design, thermal balance verification, and faults to failure analysis. The proposed best practices intend to provide engineers with fast, reusable, and efficient means to assess performance virtually and enhance maturity, performance, and robustness. 展开更多
关键词 Bond graph electromechanical actuator Flight control Model-based system engi-neering More electric aircraft Power-by-wire
原文传递
Characteristic of Torsional Vibration of Mill Main Drive Excited by Electromechanical Coupling 被引量:9
15
作者 ZHANG Yifang YAN Xiaoqiang LIN Qihui 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第1期180-187,共8页
In the study of electromechanical coupling vibration of mill main drive system, the influence of electrical system on the mechanical transmission is considered generally, however the research for the mechanism of elec... In the study of electromechanical coupling vibration of mill main drive system, the influence of electrical system on the mechanical transmission is considered generally, however the research for the mechanism of electromechanical interaction is lacked. In order to research the electromechanical coupling resonance of main drive system on the F3 mill in a plant, the cycloconverter and synchronous motor are modeled and simulated by the MTLAB/SIMUL1NK firstly, simulation result show that the current harmonic of the cycloconverter can lead to the pulsating torque of motor output. Then the natural characteristics of the mechanical drive system are calculated by ANSYS, the result show that the modal frequency contains the component which is close to the coupling vibration frequency of 42Hz. According to the simulation result of the mechanical and electrical system, the closed loop feedback model including the two systems are built, and the mechanism analysis of electromechanical coupling presents that there is the interaction between the current harmonic of electrical system and the speed of the mechanical drive system. At last, by building and computing the equivalent nonlinear dynamics model of the mechanical drive system, the dynamic characteristics of system changing with the stiffness, damping coefficient and the electromagnetic torque are obtained. Such electromechanical interaction process is suggested to consider in research of mill vibration, which can induce strong coupling vibration behavior in the rolling mill drive system. 展开更多
关键词 rolling mill vibration current harmonic speed oscillation electromechanical coupling vibration characteristic
在线阅读 下载PDF
Improved Hybrid Robust Control Method for the Electromechanical Actuator in Aircrafts 被引量:9
16
作者 LU Hao LI Yunhu +1 位作者 TIAN Shengli NIE Zhenjin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第4期443-450,共8页
In the flight process of aircrafts, their electromechanical actuators(EMA) must have the ability of enduring uncertainties caused by factors such as load disturbance, the variation of work temperature and the EMA's... In the flight process of aircrafts, their electromechanical actuators(EMA) must have the ability of enduring uncertainties caused by factors such as load disturbance, the variation of work temperature and the EMA's nonlinearity. At present, in order to increase the EMA's robustness on the uncertainties, the H, control method has been applied in aircrafts. The major problems with standard H∞ control lie in the large overshoot of step response and the high orders of the controller. For the purpose of addressing the two problems, this paper investigates several kinds of robust control strategies of the EMA. A mathematical model of the EMA is first built, and then with MATLAB software a H∞ controller and an improved hybrid robust controller composed of a reduced order H∞controller and a lead compensator are designed. In order to make a scientific comparison of the control effects of H∞ controller, hybrid controller and classic proportion-integral-differential(PID) controller, a simulation research is made in respect of the open loop frequency response and the closed loop step response of the three controllers. For comparing the robustness of the three controllers, the load torque is entered as a disturbance and the disturbance response of error and control input are thus obtained. The experiments with the three controllers are also conducted. Through giving the EMA a command and a disturbance torque successively, the transient response and disturbing process of EMA are recorded. The simulation and experiment results show that with the help of the hybrid controller, the EMA not only guarantees good dynamic characteristics, but also has strong robustness of disturbance rejection. Therefore, the excogitated H∞ hybrid control method effectively solves the problem of large overshoot in dynamic response, and moderately meets the requirement of overcoming the uncertainties in the EMA of aircrafts. 展开更多
关键词 aircrafts electromechanical actuator H∞ control hybrid robust control disturbance rejection
在线阅读 下载PDF
CHARACTERISTICS OF ELECTROMECHANICAL COUPLING SELF-SYNCHRONIZATION OF A MULTI-MOTOR VIBRATION TRANSMISSION SYSTEM 被引量:8
17
作者 Xiong Wanli,Duan Zhishan (School of Mechanical and Electrical Engineering, Xi’ an University of Architecture and Technology) Wen Bangchun (Northeastern University) 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2001年第3期275-278,共4页
Multi-motor vibratory transmission systems have been wide used in large vibratory machines, and four-motor linear vibratory machine is one typical equipment of them. Under non-forcible synchronization condition zero... Multi-motor vibratory transmission systems have been wide used in large vibratory machines, and four-motor linear vibratory machine is one typical equipment of them. Under non-forcible synchronization condition zero-phase synchronization of the machine is non-stationary and it-phase synchronization is stable. Under half-forcible synchronization condition in which only one motor is controlled being synchronous to another, only lag synchronization near zero-phase synchronization can be realized. Both of the characteristics have never been revealed with classical theory quantitatively. The problem is solved by means of establishing an electromechanical coupling mathematical model of the system and numerical analysis of the starting processes. 展开更多
关键词 Vibratory transmission electromechanical coupling SELF-SYNCHRONIZATION
在线阅读 下载PDF
Large nonlinear deflection behavior of IPMC actuators analyzed with an electromechanical model 被引量:4
18
作者 H.G.Liu K.Bian K.Xiong 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2019年第5期992-1000,共9页
This study presents an electromechanical engineering model for the analysis of the large deflection curves of ionic polymer-metal composite(IPMC)cantilever actuators under direct current(DC)voltages.In this paper,the ... This study presents an electromechanical engineering model for the analysis of the large deflection curves of ionic polymer-metal composite(IPMC)cantilever actuators under direct current(DC)voltages.In this paper,the longitudinal normal strain performance of the material was investigated using digital image correlation on a micro-scale.The deflection of the actuator is analytically obtained with the application of an elliptic integration method based on the relationship between strain gradient and excitation voltage,and the minimum excitation voltage is derived based on the assumption that the actuators have small deformations.The validity of the electromechanical model is then justified with the experimental results obtained from Pt-and Ag-IPMC actuators at various excitation voltages.The findings of this study confirm that the introduced electromechanical model can accurately describe the large nonlinear deflection behavior of IPMC actuators. 展开更多
关键词 ACTUATOR IONIC POLYMER metal composite Large DEFLECTION electromechanical model
在线阅读 下载PDF
Electromechanical Fields Near a Circular PN Junction Between Two Piezoelectric Semiconductors 被引量:8
19
作者 Yixun Luo Ruoran Cheng +2 位作者 Chunli Zhang Weiqiu Chen Jiashi Yang 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2018年第2期127-140,共14页
We study electromechanical fields near the interface between a circular piezoelectric semiconductor cylinder and another piezoelectric semiconductor in which it is embedded. The cylinder is p-doped. The surrounding ma... We study electromechanical fields near the interface between a circular piezoelectric semiconductor cylinder and another piezoelectric semiconductor in which it is embedded. The cylinder is p-doped. The surrounding material is n-doped. The phenomenological theory of piezoelectric semiconductors consisting of the equations of piezoelectricity and the conservation of charge for holes and electrons is used. The theory is linearized for small carrier concentration perturbations. An analytical solution is obtained, showing the formation of a PN junction near the interface. Various electromechanical fields associated with the junction are calculated. The effects of a few physical parameters are examined. 展开更多
关键词 Piezoelectric semiconductors CYLINDER Carriers PN junction electromechanical coupling
原文传递
Experimental study and electromechanical model analysis of the nonlinear deformation behavior of IPMC actuators 被引量:5
20
作者 Hongguang Liu Ke Xiong +1 位作者 Kan Bian Kongjun Zhu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2017年第2期382-393,共12页
This paper develops analytical electromechanical formulas to predict the mechanical deformation of ionic polymer-metal composite (IPMC) cantilever actuators under DC excitation voltages. In this research, IPMC samples... This paper develops analytical electromechanical formulas to predict the mechanical deformation of ionic polymer-metal composite (IPMC) cantilever actuators under DC excitation voltages. In this research, IPMC samples with Pt and Ag electrodes were manufactured, and the large nonlinear deformation and the effect of curvature on surface electrode resistance of the IPMC samples were investigated experimentally and theoretically. A distributed electrical model was modified for calculating the distribution of voltage along the bending actuator. Then an irreversible thermodynamic model that could predict the curvature of a unit part of an IPMC actuator is combined with the electrical model so that an analytical electromechanical model is developed. The electromechanical model is then validated against the experimental results obtained from Pt- and Ag-IPMC actuators under various excitation voltages. The good agreement between the electromechanical model and the actuators shows that the analytical electromechanical model can accurately describe the large nonlinear quasi-static deflection behavior of IPMC actuators. 展开更多
关键词 ACTUATOR Ionic polymer metal composite Nonlinear deformation electromechanical model
在线阅读 下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部