A novel method for source effect correction based on integral equation method is proposed.By taking the electrical horizontal field Ex of current source as an example,the correction method is validated using both simu...A novel method for source effect correction based on integral equation method is proposed.By taking the electrical horizontal field Ex of current source as an example,the correction method is validated using both simulated data and field data.The results show that the correction method is feasible and effective for isotropic media.When the field data are processed,the correction method normalizes the sources with different geological structures,which eliminates the geological difference among sources,and retains the geological difference among receivers.The correction results are in line with the expectation in whole.展开更多
This paper summarizes a theoretical design analysis for the implementation of an electromagnetic modeling tool, focusing on the simulation of electromagnetic field propagation inside reverberation chambers. The simula...This paper summarizes a theoretical design analysis for the implementation of an electromagnetic modeling tool, focusing on the simulation of electromagnetic field propagation inside reverberation chambers. The simulation algorithms which have been developed rely on a ray tracing technique, adapted in such a way as to maximize compatibility with the specific requirements and parameters, as applicable for reverberation chambers. The most significant example of a typical parameter is the high rate of wave reflections inside the chambers’ cavity. An implementation of the algorithms was used for simulation of several theoretically predictable cases. Study of the results of these test cases showed that some of the design decisions and algorithms used need to be reviewed in order to optimize the computational aspects of the application, such as resource management (memory, CPU time). Results of typical sample cases are re- viewed in this paper as well, in order to identify possible pitfalls and objectives for future research.展开更多
Based on an analogy among the governing equations among the electrostatic field,static magnetic field and fluid flow,all these equations can be expressed by a general differential equation,and the control volume metho...Based on an analogy among the governing equations among the electrostatic field,static magnetic field and fluid flow,all these equations can be expressed by a general differential equation,and the control volume method,which has been widely used in computational fluid dynamics,was developed to solve all these equations.Numerical results showed that control volume method is a successful numerical in the computational fluid dynamics and the electromagnetics,and the upwind(or downwind)scheme have the clear mathematical meaning and can be applied to calculate the charges' movement in the electrostatic field.展开更多
We investigated how density and quality of mesh around interest domain affect electromagnetic (EM) responses of 3D Earth layered media using finite element method (FEM). Effect of different mesh shapes was also in...We investigated how density and quality of mesh around interest domain affect electromagnetic (EM) responses of 3D Earth layered media using finite element method (FEM). Effect of different mesh shapes was also investigated using a method of mixing structured and unstructured mesh. As a case study, we estimated the effects of meshing on selectivity phenomenon of seismic electric signal (SES). Our results suggest that the relative errors resulting from mesh effects may not be negligible, which may lead to some unconvincing explanation of the SES selectivity based on the numerical modeling results.展开更多
This paper summarizes recent research findings concerning centrioles, centriole duplication, centriole overduplication, supernumerary centrioles, centrosomes, and centrosome amplification. The paper then discusses the...This paper summarizes recent research findings concerning centrioles, centriole duplication, centriole overduplication, supernumerary centrioles, centrosomes, and centrosome amplification. The paper then discusses the status of ongoing research on the use of nanoparticles for cancer treatment. The research findings show that a centriole produces an electromagnetic field apparently due to the longitudinal oscillation of its microtubules (MTs). A cluster of centrioles is therefore presumed to produce an enhanced electromagnetic field. Individual centrioles are immersed in a cloud of electron-dense material (proteins) which together with the centrioles is known as the centrosome. A cluster of centrioles thus produces a cluster of centrosomes—a hallmark of cancer cells. With enhanced electromagnetic fields, centrosome clusters provide an attraction for magnetically charged nanoparticles. These nanoparticles however are not attracted to normal cells which with only two (or at most four) centrioles, have a weaker magnetic field. The idea is simple: Magnetized and therapeutic nanoparticles are directed toward tumors and then attracted to the centrosome clusters of the tumor cells. Once inside the tumor cells, the nanoparticles can release their toxins.展开更多
A class of finite step iterative methods, conjugate gradients, for the solution of an operator equation, is presented on this paper to solve electromagnetic scattering. The method of generalized equivalent circuit is ...A class of finite step iterative methods, conjugate gradients, for the solution of an operator equation, is presented on this paper to solve electromagnetic scattering. The method of generalized equivalent circuit is used to model the problem and then deduce an electromagnetic equation based on the impedance operator. Four versions of the conjugate gradient method are presented and numerical results for an iris structure are given, to illustrate convergence properties of each version. Computational efficiency of these methods has been compared to the moment method.展开更多
This paper research is the first part of the scientific theory that seeks to unify the sciences of physics with the minimal number of mathematical formulas as possible. We will prove that all equations of forces in na...This paper research is the first part of the scientific theory that seeks to unify the sciences of physics with the minimal number of mathematical formulas as possible. We will prove that all equations of forces in nature can be concised in two mathematical formulas, no difference between gravitational or electrical forces or any other type of Types of conventional forces, and through the equivalence of the concepts of matrix and vector, in this theory we will be linking the four-dimensional forces equations with the classical physics as an introduction to connect the rest of the physical sciences.展开更多
Flexible electromagnetics,as an emerging and interdisciplinary field,integrates traditional electromagnetic functions such as the transmission,radiation,receiving,and processing of electromagnetic waves with advanced ...Flexible electromagnetics,as an emerging and interdisciplinary field,integrates traditional electromagnetic functions such as the transmission,radiation,receiving,and processing of electromagnetic waves with advanced flexible electronic technol-ogies.This integration overcomes the inherent limitations of traditional rigid electromagnetic devices,thereby significantly expanding the applicability of electromagnetic technology in complex environments.It provides new research avenues and directions for the application of electromagnetic technology in cutting-edge fields such as smart healthcare,artificial intelligence,and aerospace.This paper provides a comprehensive overview of recent advancements in flexible electromagnetics from four key aspects:materials,de-vices,integration,and applications.Firstly,we provide a succinct introduction to flexible electromagnetic materials including metallic materials,inorganic nonmetallic materials,polymer materials,and composite materials.Then,we explore the development status of flexible electromagnetic devices such as antennas,radio frequency resonators,and electromagnetic shielding devices.Furthermore,we survey the advancements and applications of flexible electromagnetic integrated system in the fields of intelligent medical treat-ment and intelligent information perception.Finally,we summarize the current challenges in the field of flexible electromagnetics and provide a preliminary outlook on future development trends.展开更多
Transformation optics(TO)or transformation acoustics(TA)theory provides an elegant framework for designing intricate wavematerial interaction devices.Combining TO or TA with emerging metamaterial technology,the propag...Transformation optics(TO)or transformation acoustics(TA)theory provides an elegant framework for designing intricate wavematerial interaction devices.Combining TO or TA with emerging metamaterial technology,the propagating waves inside metamaterials can be guided at will by mapping a preset spatial pattern onto a specific constituent parameter distribution,thus achieving desired functionalities.In this review,we mainly focus on recent progress in TO and TA,in terms of basic theory and representative applications.Firstly,we introduce the fundamental principles of TO and TA.Subsequently,we present some related spatial-transformation-based applications in electromagnetics,such as cloaks,beam manipulation devices and applications in nonlinear responses,and some typical applications in acoustics,namely underwater ultrasound invisibility,sound imaging lenses and parity-time symmetry.Furthermore,we discuss transformation-based devices for acoustic-electromagneticjoint control.Finally,we summarize current spatial-transformation-based wave modulations and outline some future opportunities in this research field.展开更多
Subwavelength electromagnetics is a disci- pline that deals with light-matter interaction at subwave- length scale and innovative technologies that control electromagnetic waves with subwavelength structures. Although...Subwavelength electromagnetics is a disci- pline that deals with light-matter interaction at subwave- length scale and innovative technologies that control electromagnetic waves with subwavelength structures. Although the history can be dated back to almost one hundred years ago, the flourish of these researching areas have been no more than 30 years. In this paper, we gave a brief review of the history, current status and future trends of subwavelength electromagnetics. In particular, the milestones related with metamaterials, plasmonics, meta- surfaces and photonic crystals are highlighted.展开更多
The development of materials with excellent microwave absorption(MWA)and electromagnetic interference(EMI)shielding performances has currently received attention.Herein,mesophase pitch-based carbon foam(MPCF)with 3D i...The development of materials with excellent microwave absorption(MWA)and electromagnetic interference(EMI)shielding performances has currently received attention.Herein,mesophase pitch-based carbon foam(MPCF)with 3D interconnected pore structure was prepared through the high pressure pyrolysis of mesophase coal tar pitch.It is found that the 3D interconnected cellular pores of MPCF facilitate multiple reflections of electromagnetic waves,which results in the minimum reflection loss(RLmin)value of MPCF reaches-37.84 dB with the effective absorption bandwidth(EAB)of 5.44 GHz at a thickness of 2.70 mm,and the total average electromagnetic shielding effectiveness(SE_(T))under 3.00 mm thickness achieves 26.52 dB in X-band.Subsequently,MPCF is activated by KOH to obtain activated carbon foam(A-MPCF).The average SE_(T)of A-MPCF achieves 103.00 dB for abundant nanopores on the pore cell walls,which leads to a transition from the multiple reflections of electromagnetic waves on the walls to diffuse reflection.Unfortunately,the reflection coefficient(R)of A-MPCF increases from 0.78 to 0.90.To reduce the R value,Fe_(3)O_(4)/A-MPCF was fabricated via the in situ growth of nano Fe_(3)O_(4)on A-MPCF.Consequently,the R value of Fe_(3)O_(4)/A-MPCF was reduced from 0.90 to 0.74,whereas the MWA performance was only slightly decreased.This work proposes a simple strategy for simultaneously adjusting MWA and EMI shielding performances of materials.展开更多
While many techniques have been developed for the design of different types of antennas,such as wire antenna,patch antenna,lenses,and reflectors,these cannot be said general-purpose strategies for the synthesis and de...While many techniques have been developed for the design of different types of antennas,such as wire antenna,patch antenna,lenses,and reflectors,these cannot be said general-purpose strategies for the synthesis and design of antennas to achieve the performance characteristics specified by users.Recently,there has been an increasing need for the development of antenna design techniques because of the advent of 5 G and a variety of space,defense,biological,and similar applications,for which a robust and general-purpose design tool is not to be developed.The main objective of this study is to take a look at antenna design from the field manipulation point of view,which has the potential to partially fulfill this need.We review the existing field manipulation techniques,including field transformation methods based on Maxwell’s and wave equations,point out some limitations of these techniques,and then present ways to improve the performance of these methods.Next,we introduce an alternative approach for field manipulation based on two-dimensional(2 D)metasurfaces,and present laws of the generalized reflection and refraction that are based on 2 D surface electromagnetics.Then,we explore how to overcome the limitations of conventional reflection and refraction processes that are strictly bounded by the critical angle.Finally,we provide some application examples of field manipulation methods in the antenna design,with a view on developing a general-purpose strategy for antenna design for future communication.展开更多
Biochar and biochar composites are versatile materials that can be used in many applications.In this study,biochar was prepared from sawdust and combined with the yttrium iron garnet(YIG)nanocrystal to investigate the...Biochar and biochar composites are versatile materials that can be used in many applications.In this study,biochar was prepared from sawdust and combined with the yttrium iron garnet(YIG)nanocrystal to investigate the shielding effectiveness of the composite structure.Firstly,the effect of the pyrolysis temperature on the shielding effectiveness of biochar was investigated.Secondly,biochars combined with YIG nanocrystals with different contents and shielding effectiveness of the composites were investigated.The electromagnetic effectiveness of the samples was investigated within the X band(8-12 GHz).The findings indicate that biochar demonstrates enhanced absorption properties with elevated pyrolysis temperatures.Biochars demonstrated an approximate 40 d B shielding effectiveness,while YIG exhibited approximately 7 d B,corresponding to absorption at 8 GHz.However,the combination of biochar and YIG exhibited exceptional absorption,reaching 67.12 d B at 8 GHz.展开更多
The electromagnetic wave absorption of silicon carbide nanowires is improved by their uniform and diverse cross-structures.This study introduces a sustainable and high value-added method for synthesizing silicon carbi...The electromagnetic wave absorption of silicon carbide nanowires is improved by their uniform and diverse cross-structures.This study introduces a sustainable and high value-added method for synthesizing silicon carbide nanowires using lignite and waste silicon powder as raw materials through carbothermal reduction.The staggered structure of nanowires promotes the creation of interfacial polarization,impedance matching,and multiple loss mechanisms,leading to enhanced electromagnetic absorption performance.The silicon carbide nanowires demonstrate outstanding electromagnetic absorption capabilities with the minimum reflection loss of-48.09 d B at10.08 GHz and an effective absorption bandwidth(the reflection loss less than-10 d B)ranging from 8.54 to 16.68 GHz with a thickness of 2.17 mm.This research presents an innovative approach for utilizing solid waste in an environmentally friendly manner to produce broadband silicon carbide composite absorbers.展开更多
Developing effective strategies to regulate graphene’s conduction loss and polarization has become a key to expanding its application in the electromagnetic wave absorption(EMWA)field.Based on the unique energy band ...Developing effective strategies to regulate graphene’s conduction loss and polarization has become a key to expanding its application in the electromagnetic wave absorption(EMWA)field.Based on the unique energy band structure of graphene,regulating its bandgap and electrical properties by introducing heteroatoms is considered a feasible solution.Herein,metal-nitrogen doping reduced graphene oxide(M–N-RGO)was prepared by embedding a series of single metal atoms M–N_(4) sites(M=Mn,Fe,Co,Ni,Cu,Zn,Nb,Cd,and Sn)in RGO using an N-coordination atom-assisted strategy.These composites had adjustable conductivity and polarization to optimize dielectric loss and impedance matching for efficient EMWA performance.The results showed that the minimum reflection loss(RL_(min))of Fe–N-RGO reaches−74.05 dB(2.0 mm)and the maximum effective absorption bandwidth(EAB_(max))is 7.05 GHz(1.89 mm)even with a low filler loading of only 1 wt%.Combined with X-ray absorption spectra(XAFS),atomic force microscopy,and density functional theory calculation analysis,the Fe–N_(4) can be used as the polarization center to increase dipole polarization,interface polarization and defect-induced polarization due to d-p orbital hybridization and structural distortion.Moreover,electron migration within the Fe further leads to conduction loss,thereby synergistically promoting energy attenuation.This study demonstrates the effectiveness of metal-nitrogen doping in regulating the graphene′s dielectric properties,which provides an important basis for further investigation of the loss mechanism.展开更多
Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies,as well as veiled dielectric-responsive character,are instrumental in electromagnetic dissipation.Conventional methods,how...Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies,as well as veiled dielectric-responsive character,are instrumental in electromagnetic dissipation.Conventional methods,however,constrain their delicate constructions.Herein,an innovative alternative is proposed:carrageenan-assistant cations-regulated(CACR)strategy,which induces a series of sulfides nanoparticles rooted in situ on the surface of carbon matrix.This unique configuration originates from strategic vacancy formation energy of sulfides and strong sulfides-carbon support interaction,benefiting the delicate construction of defects-rich heterostructures in M_(x)S_(y)/carbon composites(M-CAs).Impressively,these generated sulfur vacancies are firstly found to strengthen electron accumulation/consumption ability at heterointerfaces and,simultaneously,induct local asymmetry of electronic structure to evoke large dipole moment,ultimately leading to polarization coupling,i.e.,defect-type interfacial polarization.Such“Janus effect”(Janus effect means versatility,as in the Greek two-headed Janus)of interfacial sulfur vacancies is intuitively confirmed by both theoretical and experimental investigations for the first time.Consequently,the sulfur vacancies-rich heterostructured Co/Ni-CAs displays broad absorption bandwidth of 6.76 GHz at only 1.8 mm,compared to sulfur vacancies-free CAs without any dielectric response.Harnessing defects-rich heterostructures,this one-pot CACR strategy may steer the design and development of advanced nanomaterials,boosting functionality across diverse application domains beyond electromagnetic response.展开更多
Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is con...Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is considered an effective means to achieve high-efficiency EMW absorption.However,interface modulation engineering has not been fully discussed and has great potential in the field of EMW absorption.In this study,multi-component tin compound fiber composites based on carbon fiber(CF)substrate were prepared by electrospinning,hydrothermal synthesis,and high-temperature thermal reduction.By utilizing the different properties of different substances,rich heterogeneous interfaces are constructed.This effectively promotes charge transfer and enhances interfacial polarization and conduction loss.The prepared SnS/SnS_(2)/SnO_(2)/CF composites with abundant heterogeneous interfaces have and exhibit excellent EMW absorption properties at a loading of 50 wt%in epoxy resin.The minimum reflection loss(RL)is−46.74 dB and the maximum effective absorption bandwidth is 5.28 GHz.Moreover,SnS/SnS_(2)/SnO_(2)/CF epoxy composite coatings exhibited long-term corrosion resistance on Q235 steel surfaces.Therefore,this study provides an effective strategy for the design of high-efficiency EMW absorbing materials in complex and harsh environments.展开更多
Gradient magnetic heterointerfaces have injected infinite vitality in optimizing impedance matching,adjusting dielectric/magnetic resonance and promoting electromagnetic(EM)wave absorption,but still exist a significan...Gradient magnetic heterointerfaces have injected infinite vitality in optimizing impedance matching,adjusting dielectric/magnetic resonance and promoting electromagnetic(EM)wave absorption,but still exist a significant challenging in regulating local phase evolution.Herein,accordion-shaped Co/Co_(3)O_(4)@N-doped carbon nanosheets(Co/Co_(3)O_(4)@NC)with gradient magnetic heterointerfaces have been fabricated via the cooperative high-temperature carbonization and lowtemperature oxidation process.The results indicate that the surface epitaxial growth of crystal Co_(3)O_(4) domains on local Co nanoparticles realizes the adjustment of magnetic-heteroatomic components,which are beneficial for optimizing impedance matching and interfacial polarization.Moreover,gradient magnetic heterointerfaces simultaneously realize magnetic coupling,and long-range magnetic diffraction.Specifically,the synthesized Co/Co_(3)O_(4)@NC absorbents display the strong electromagnetic wave attenuation capability of−53.5 dB at a thickness of 3.0 mm with an effective absorption bandwidth of 5.36 GHz,both are superior to those of single magnetic domains embedded in carbon matrix.This design concept provides us an inspiration in optimizing interfacial polarization,regulating magnetic coupling and promoting electromagnetic wave absorption.展开更多
With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite h...With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite heterogeneous interface are constructed successfully to optimize the electromagnetic loss capacity.The macro–micro-synergistic graphene aerogel formed by the ice template‑assisted 3D printing strategy is cut by silicon carbide nanowires(SiC_(nws))grown in situ,while boron nitride(BN)interfacial structure is introduced on graphene nanoplates.The unique composite structure forces multiple scattering of incident EMWs,ensuring the combined effects of interfacial polarization,conduction networks,and magnetic-dielectric synergy.Therefore,the as-prepared composites present a minimum reflection loss value of−37.8 dB and a wide effective absorption bandwidth(EAB)of 9.2 GHz(from 8.8 to 18.0 GHz)at 2.5 mm.Besides,relying on the intrinsic high-temperature resistance of SiC_(nws) and BN,the EAB also remains above 5.0 GHz after annealing in air environment at 600℃ for 10 h.展开更多
High-temperature microwave absorbing materials(MAMs)and structures are increasingly appealing due to their critical role in stealth applications under harsh environments.However,the impedance mismatch caused by increa...High-temperature microwave absorbing materials(MAMs)and structures are increasingly appealing due to their critical role in stealth applications under harsh environments.However,the impedance mismatch caused by increased conduction loss often leads to a significant decline in electromagnetic wave absorp-tion(EMWA)performance at elevated temperatures,which severely restricts their practical application.In this study,we propose a novel approach for efficient electromagnetic wave absorption across a wide temperature range using reduced graphene oxide(RGO)/epoxy resin(EP)metacomposites that integrate both electromagnetic parameters and metamaterial design concepts.Due to the discrete distribution of the units,electromagnetic waves can more easily penetrate the interior of materials,thereby exhibiting stable microwave absorption(MA)performance and impedance-matching characteristics suitable across a wide temperature range.Consequently,exceptional MA properties can be achieved within the tem-perature range from 298 to 473 K.Furthermore,by carefully controlling the structural parameters in RGO metacomposites,both the resonant frequency and effective absorption bandwidth(EAB)can be optimized based on precise manipulation of equivalent electromagnetic parameters.This study not only provides an effective approach for the rational design of MA performance but also offers novel insights into achieving super metamaterials with outstanding performance across a wide temperature spectrum.展开更多
基金Project(2018YFC0807802)supported by the National Key R&D Program of ChinaProject(41874081)supported by the National Natural Science Foundation of China。
文摘A novel method for source effect correction based on integral equation method is proposed.By taking the electrical horizontal field Ex of current source as an example,the correction method is validated using both simulated data and field data.The results show that the correction method is feasible and effective for isotropic media.When the field data are processed,the correction method normalizes the sources with different geological structures,which eliminates the geological difference among sources,and retains the geological difference among receivers.The correction results are in line with the expectation in whole.
文摘This paper summarizes a theoretical design analysis for the implementation of an electromagnetic modeling tool, focusing on the simulation of electromagnetic field propagation inside reverberation chambers. The simulation algorithms which have been developed rely on a ray tracing technique, adapted in such a way as to maximize compatibility with the specific requirements and parameters, as applicable for reverberation chambers. The most significant example of a typical parameter is the high rate of wave reflections inside the chambers’ cavity. An implementation of the algorithms was used for simulation of several theoretically predictable cases. Study of the results of these test cases showed that some of the design decisions and algorithms used need to be reviewed in order to optimize the computational aspects of the application, such as resource management (memory, CPU time). Results of typical sample cases are re- viewed in this paper as well, in order to identify possible pitfalls and objectives for future research.
基金Item Sponsored by 111 project (B07015) the National Natural Science Foundation of China and Shanghai Baosteel (No.50834010) +1 种基金the Fundamental Research Funds for the Central Universities (N100409007) the Doctor Startup Foundation of Liaoning Province (20111009)
文摘Based on an analogy among the governing equations among the electrostatic field,static magnetic field and fluid flow,all these equations can be expressed by a general differential equation,and the control volume method,which has been widely used in computational fluid dynamics,was developed to solve all these equations.Numerical results showed that control volume method is a successful numerical in the computational fluid dynamics and the electromagnetics,and the upwind(or downwind)scheme have the clear mathematical meaning and can be applied to calculate the charges' movement in the electrostatic field.
基金partially supported by the National R & D Special Fund of Public Welfare Industry(No.200808069)National Natural Science Foundation of China(Nos.40974038 and 41025014)the Joint Research Collaboration Program by the Ministry of Science and Technology of China(No.2010DFA21570)
文摘We investigated how density and quality of mesh around interest domain affect electromagnetic (EM) responses of 3D Earth layered media using finite element method (FEM). Effect of different mesh shapes was also investigated using a method of mixing structured and unstructured mesh. As a case study, we estimated the effects of meshing on selectivity phenomenon of seismic electric signal (SES). Our results suggest that the relative errors resulting from mesh effects may not be negligible, which may lead to some unconvincing explanation of the SES selectivity based on the numerical modeling results.
文摘This paper summarizes recent research findings concerning centrioles, centriole duplication, centriole overduplication, supernumerary centrioles, centrosomes, and centrosome amplification. The paper then discusses the status of ongoing research on the use of nanoparticles for cancer treatment. The research findings show that a centriole produces an electromagnetic field apparently due to the longitudinal oscillation of its microtubules (MTs). A cluster of centrioles is therefore presumed to produce an enhanced electromagnetic field. Individual centrioles are immersed in a cloud of electron-dense material (proteins) which together with the centrioles is known as the centrosome. A cluster of centrioles thus produces a cluster of centrosomes—a hallmark of cancer cells. With enhanced electromagnetic fields, centrosome clusters provide an attraction for magnetically charged nanoparticles. These nanoparticles however are not attracted to normal cells which with only two (or at most four) centrioles, have a weaker magnetic field. The idea is simple: Magnetized and therapeutic nanoparticles are directed toward tumors and then attracted to the centrosome clusters of the tumor cells. Once inside the tumor cells, the nanoparticles can release their toxins.
文摘A class of finite step iterative methods, conjugate gradients, for the solution of an operator equation, is presented on this paper to solve electromagnetic scattering. The method of generalized equivalent circuit is used to model the problem and then deduce an electromagnetic equation based on the impedance operator. Four versions of the conjugate gradient method are presented and numerical results for an iris structure are given, to illustrate convergence properties of each version. Computational efficiency of these methods has been compared to the moment method.
文摘This paper research is the first part of the scientific theory that seeks to unify the sciences of physics with the minimal number of mathematical formulas as possible. We will prove that all equations of forces in nature can be concised in two mathematical formulas, no difference between gravitational or electrical forces or any other type of Types of conventional forces, and through the equivalence of the concepts of matrix and vector, in this theory we will be linking the four-dimensional forces equations with the classical physics as an introduction to connect the rest of the physical sciences.
基金supported by the National Natural Science Foundation of China(Grant Nos.62174086,62474096,62371255,and 62288102)the Outstanding Youth Foundation of Jiangsu Province(Grant No.BK20240139)the Basic Research Program of Jiangsu(Grant No.BK20243057),and the Qinglan Project of Jiangsu Province of China.
文摘Flexible electromagnetics,as an emerging and interdisciplinary field,integrates traditional electromagnetic functions such as the transmission,radiation,receiving,and processing of electromagnetic waves with advanced flexible electronic technol-ogies.This integration overcomes the inherent limitations of traditional rigid electromagnetic devices,thereby significantly expanding the applicability of electromagnetic technology in complex environments.It provides new research avenues and directions for the application of electromagnetic technology in cutting-edge fields such as smart healthcare,artificial intelligence,and aerospace.This paper provides a comprehensive overview of recent advancements in flexible electromagnetics from four key aspects:materials,de-vices,integration,and applications.Firstly,we provide a succinct introduction to flexible electromagnetic materials including metallic materials,inorganic nonmetallic materials,polymer materials,and composite materials.Then,we explore the development status of flexible electromagnetic devices such as antennas,radio frequency resonators,and electromagnetic shielding devices.Furthermore,we survey the advancements and applications of flexible electromagnetic integrated system in the fields of intelligent medical treat-ment and intelligent information perception.Finally,we summarize the current challenges in the field of flexible electromagnetics and provide a preliminary outlook on future development trends.
基金supported by the National Natural Science Foundation of China(Grant Nos.U23B2015 and 62288101)the Fundamental Research Funds for the Central Universities(Grant No.2242023K5002)the 111 Project(Grant No.111-2-05)。
文摘Transformation optics(TO)or transformation acoustics(TA)theory provides an elegant framework for designing intricate wavematerial interaction devices.Combining TO or TA with emerging metamaterial technology,the propagating waves inside metamaterials can be guided at will by mapping a preset spatial pattern onto a specific constituent parameter distribution,thus achieving desired functionalities.In this review,we mainly focus on recent progress in TO and TA,in terms of basic theory and representative applications.Firstly,we introduce the fundamental principles of TO and TA.Subsequently,we present some related spatial-transformation-based applications in electromagnetics,such as cloaks,beam manipulation devices and applications in nonlinear responses,and some typical applications in acoustics,namely underwater ultrasound invisibility,sound imaging lenses and parity-time symmetry.Furthermore,we discuss transformation-based devices for acoustic-electromagneticjoint control.Finally,we summarize current spatial-transformation-based wave modulations and outline some future opportunities in this research field.
基金This work was supported by the National Basic Research Program of China (973 Program) (No. 2013CBA01700) and the National Natural Science Foundation of China (Grant No. 61138002).
文摘Subwavelength electromagnetics is a disci- pline that deals with light-matter interaction at subwave- length scale and innovative technologies that control electromagnetic waves with subwavelength structures. Although the history can be dated back to almost one hundred years ago, the flourish of these researching areas have been no more than 30 years. In this paper, we gave a brief review of the history, current status and future trends of subwavelength electromagnetics. In particular, the milestones related with metamaterials, plasmonics, meta- surfaces and photonic crystals are highlighted.
基金Supported by the National Natural Science Foundation of China(22378181).
文摘The development of materials with excellent microwave absorption(MWA)and electromagnetic interference(EMI)shielding performances has currently received attention.Herein,mesophase pitch-based carbon foam(MPCF)with 3D interconnected pore structure was prepared through the high pressure pyrolysis of mesophase coal tar pitch.It is found that the 3D interconnected cellular pores of MPCF facilitate multiple reflections of electromagnetic waves,which results in the minimum reflection loss(RLmin)value of MPCF reaches-37.84 dB with the effective absorption bandwidth(EAB)of 5.44 GHz at a thickness of 2.70 mm,and the total average electromagnetic shielding effectiveness(SE_(T))under 3.00 mm thickness achieves 26.52 dB in X-band.Subsequently,MPCF is activated by KOH to obtain activated carbon foam(A-MPCF).The average SE_(T)of A-MPCF achieves 103.00 dB for abundant nanopores on the pore cell walls,which leads to a transition from the multiple reflections of electromagnetic waves on the walls to diffuse reflection.Unfortunately,the reflection coefficient(R)of A-MPCF increases from 0.78 to 0.90.To reduce the R value,Fe_(3)O_(4)/A-MPCF was fabricated via the in situ growth of nano Fe_(3)O_(4)on A-MPCF.Consequently,the R value of Fe_(3)O_(4)/A-MPCF was reduced from 0.90 to 0.74,whereas the MWA performance was only slightly decreased.This work proposes a simple strategy for simultaneously adjusting MWA and EMI shielding performances of materials.
基金Project supported by the National Natural Science Foundation of China(No.61971335).
文摘While many techniques have been developed for the design of different types of antennas,such as wire antenna,patch antenna,lenses,and reflectors,these cannot be said general-purpose strategies for the synthesis and design of antennas to achieve the performance characteristics specified by users.Recently,there has been an increasing need for the development of antenna design techniques because of the advent of 5 G and a variety of space,defense,biological,and similar applications,for which a robust and general-purpose design tool is not to be developed.The main objective of this study is to take a look at antenna design from the field manipulation point of view,which has the potential to partially fulfill this need.We review the existing field manipulation techniques,including field transformation methods based on Maxwell’s and wave equations,point out some limitations of these techniques,and then present ways to improve the performance of these methods.Next,we introduce an alternative approach for field manipulation based on two-dimensional(2 D)metasurfaces,and present laws of the generalized reflection and refraction that are based on 2 D surface electromagnetics.Then,we explore how to overcome the limitations of conventional reflection and refraction processes that are strictly bounded by the critical angle.Finally,we provide some application examples of field manipulation methods in the antenna design,with a view on developing a general-purpose strategy for antenna design for future communication.
基金support provided by the Center for Fabrication and Application of Electronic Materials at Dokuz Eylül University,Türkiye。
文摘Biochar and biochar composites are versatile materials that can be used in many applications.In this study,biochar was prepared from sawdust and combined with the yttrium iron garnet(YIG)nanocrystal to investigate the shielding effectiveness of the composite structure.Firstly,the effect of the pyrolysis temperature on the shielding effectiveness of biochar was investigated.Secondly,biochars combined with YIG nanocrystals with different contents and shielding effectiveness of the composites were investigated.The electromagnetic effectiveness of the samples was investigated within the X band(8-12 GHz).The findings indicate that biochar demonstrates enhanced absorption properties with elevated pyrolysis temperatures.Biochars demonstrated an approximate 40 d B shielding effectiveness,while YIG exhibited approximately 7 d B,corresponding to absorption at 8 GHz.However,the combination of biochar and YIG exhibited exceptional absorption,reaching 67.12 d B at 8 GHz.
基金supported by the National Natural Science Foundation of China(No.52436008)the Inner Mongolia Science and Technology Projects,China(Nos.JMRHZX20210003 and 2023YFCY0009)+3 种基金the Huaneng Group Co Ltd.,China(No.HNKJ23-H50)the National Natural Science Foundation of China(No.22408044)the China Postdoctoral Science Foundation(No.2024M761877)the National Key R&D Program of China(No.SQ2024YFD2200039)。
文摘The electromagnetic wave absorption of silicon carbide nanowires is improved by their uniform and diverse cross-structures.This study introduces a sustainable and high value-added method for synthesizing silicon carbide nanowires using lignite and waste silicon powder as raw materials through carbothermal reduction.The staggered structure of nanowires promotes the creation of interfacial polarization,impedance matching,and multiple loss mechanisms,leading to enhanced electromagnetic absorption performance.The silicon carbide nanowires demonstrate outstanding electromagnetic absorption capabilities with the minimum reflection loss of-48.09 d B at10.08 GHz and an effective absorption bandwidth(the reflection loss less than-10 d B)ranging from 8.54 to 16.68 GHz with a thickness of 2.17 mm.This research presents an innovative approach for utilizing solid waste in an environmentally friendly manner to produce broadband silicon carbide composite absorbers.
基金supported by National Natural Science Foundation of China(NSFC 52432002,52372041,52302087)Heilongjiang Touyan Team Program,the Fundamental Research Funds for the Central Universities(Grant No.HIT.OCEF.2021003)the Shanghai Aerospace Science and Technology Innovation Fund(SAST2022-60).
文摘Developing effective strategies to regulate graphene’s conduction loss and polarization has become a key to expanding its application in the electromagnetic wave absorption(EMWA)field.Based on the unique energy band structure of graphene,regulating its bandgap and electrical properties by introducing heteroatoms is considered a feasible solution.Herein,metal-nitrogen doping reduced graphene oxide(M–N-RGO)was prepared by embedding a series of single metal atoms M–N_(4) sites(M=Mn,Fe,Co,Ni,Cu,Zn,Nb,Cd,and Sn)in RGO using an N-coordination atom-assisted strategy.These composites had adjustable conductivity and polarization to optimize dielectric loss and impedance matching for efficient EMWA performance.The results showed that the minimum reflection loss(RL_(min))of Fe–N-RGO reaches−74.05 dB(2.0 mm)and the maximum effective absorption bandwidth(EAB_(max))is 7.05 GHz(1.89 mm)even with a low filler loading of only 1 wt%.Combined with X-ray absorption spectra(XAFS),atomic force microscopy,and density functional theory calculation analysis,the Fe–N_(4) can be used as the polarization center to increase dipole polarization,interface polarization and defect-induced polarization due to d-p orbital hybridization and structural distortion.Moreover,electron migration within the Fe further leads to conduction loss,thereby synergistically promoting energy attenuation.This study demonstrates the effectiveness of metal-nitrogen doping in regulating the graphene′s dielectric properties,which provides an important basis for further investigation of the loss mechanism.
基金financially supported by the National Natural Science Foundation of China(Grants nos.62201411,62371378,22205168,52302150 and 62304171)the China Postdoctoral Science Foundation(2022M722500)+1 种基金the Fundamental Research Funds for the Central Universities(Grants nos.ZYTS2308 and 20103237929)Startup Foundation of Xidian University(10251220001).
文摘Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies,as well as veiled dielectric-responsive character,are instrumental in electromagnetic dissipation.Conventional methods,however,constrain their delicate constructions.Herein,an innovative alternative is proposed:carrageenan-assistant cations-regulated(CACR)strategy,which induces a series of sulfides nanoparticles rooted in situ on the surface of carbon matrix.This unique configuration originates from strategic vacancy formation energy of sulfides and strong sulfides-carbon support interaction,benefiting the delicate construction of defects-rich heterostructures in M_(x)S_(y)/carbon composites(M-CAs).Impressively,these generated sulfur vacancies are firstly found to strengthen electron accumulation/consumption ability at heterointerfaces and,simultaneously,induct local asymmetry of electronic structure to evoke large dipole moment,ultimately leading to polarization coupling,i.e.,defect-type interfacial polarization.Such“Janus effect”(Janus effect means versatility,as in the Greek two-headed Janus)of interfacial sulfur vacancies is intuitively confirmed by both theoretical and experimental investigations for the first time.Consequently,the sulfur vacancies-rich heterostructured Co/Ni-CAs displays broad absorption bandwidth of 6.76 GHz at only 1.8 mm,compared to sulfur vacancies-free CAs without any dielectric response.Harnessing defects-rich heterostructures,this one-pot CACR strategy may steer the design and development of advanced nanomaterials,boosting functionality across diverse application domains beyond electromagnetic response.
基金financially supported by the National Natural Science Foundation of China(No.52377026 and No.52301192)Taishan Scholars and Young Experts Program of Shandong Province(No.tsqn202103057)+4 种基金Postdoctoral Fellowship Program of CPSF under Grant Number(No.GZB20240327)Shandong Postdoctoral Science Foundation(No.SDCXZG-202400275)Qingdao Postdoctoral Application Research Project(No.QDBSH20240102023)China Postdoctoral Science Foundation(No.2024M751563)the Qingchuang Talents Induction Program of Shandong Higher Education Institution(Research and Innovation Team of Structural-Functional Polymer Composites).
文摘Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is considered an effective means to achieve high-efficiency EMW absorption.However,interface modulation engineering has not been fully discussed and has great potential in the field of EMW absorption.In this study,multi-component tin compound fiber composites based on carbon fiber(CF)substrate were prepared by electrospinning,hydrothermal synthesis,and high-temperature thermal reduction.By utilizing the different properties of different substances,rich heterogeneous interfaces are constructed.This effectively promotes charge transfer and enhances interfacial polarization and conduction loss.The prepared SnS/SnS_(2)/SnO_(2)/CF composites with abundant heterogeneous interfaces have and exhibit excellent EMW absorption properties at a loading of 50 wt%in epoxy resin.The minimum reflection loss(RL)is−46.74 dB and the maximum effective absorption bandwidth is 5.28 GHz.Moreover,SnS/SnS_(2)/SnO_(2)/CF epoxy composite coatings exhibited long-term corrosion resistance on Q235 steel surfaces.Therefore,this study provides an effective strategy for the design of high-efficiency EMW absorbing materials in complex and harsh environments.
基金financially supported by the National Natural Science Foundation of China(52373271)Science,Technology and Innovation Commission of Shenzhen Municipality under Grant(KCXFZ20201221173004012)+1 种基金National Key Research and Development Program of Shaanxi Province(No.2023-YBNY-271)Open Testing Foundation of the Analytical&Testing Center of Northwestern Polytechnical University(2023T019).
文摘Gradient magnetic heterointerfaces have injected infinite vitality in optimizing impedance matching,adjusting dielectric/magnetic resonance and promoting electromagnetic(EM)wave absorption,but still exist a significant challenging in regulating local phase evolution.Herein,accordion-shaped Co/Co_(3)O_(4)@N-doped carbon nanosheets(Co/Co_(3)O_(4)@NC)with gradient magnetic heterointerfaces have been fabricated via the cooperative high-temperature carbonization and lowtemperature oxidation process.The results indicate that the surface epitaxial growth of crystal Co_(3)O_(4) domains on local Co nanoparticles realizes the adjustment of magnetic-heteroatomic components,which are beneficial for optimizing impedance matching and interfacial polarization.Moreover,gradient magnetic heterointerfaces simultaneously realize magnetic coupling,and long-range magnetic diffraction.Specifically,the synthesized Co/Co_(3)O_(4)@NC absorbents display the strong electromagnetic wave attenuation capability of−53.5 dB at a thickness of 3.0 mm with an effective absorption bandwidth of 5.36 GHz,both are superior to those of single magnetic domains embedded in carbon matrix.This design concept provides us an inspiration in optimizing interfacial polarization,regulating magnetic coupling and promoting electromagnetic wave absorption.
基金sponsored by National Natural Science Foundation of China(No.52302121,No.52203386)Shanghai Sailing Program(No.23YF1454700)+1 种基金Shanghai Natural Science Foundation(No.23ZR1472700)Shanghai Post-doctoral Excellent Program(No.2022664).
文摘With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite heterogeneous interface are constructed successfully to optimize the electromagnetic loss capacity.The macro–micro-synergistic graphene aerogel formed by the ice template‑assisted 3D printing strategy is cut by silicon carbide nanowires(SiC_(nws))grown in situ,while boron nitride(BN)interfacial structure is introduced on graphene nanoplates.The unique composite structure forces multiple scattering of incident EMWs,ensuring the combined effects of interfacial polarization,conduction networks,and magnetic-dielectric synergy.Therefore,the as-prepared composites present a minimum reflection loss value of−37.8 dB and a wide effective absorption bandwidth(EAB)of 9.2 GHz(from 8.8 to 18.0 GHz)at 2.5 mm.Besides,relying on the intrinsic high-temperature resistance of SiC_(nws) and BN,the EAB also remains above 5.0 GHz after annealing in air environment at 600℃ for 10 h.
基金supported by the National Nature Science Foundation of China(Nos.22305066 and 52372041).
文摘High-temperature microwave absorbing materials(MAMs)and structures are increasingly appealing due to their critical role in stealth applications under harsh environments.However,the impedance mismatch caused by increased conduction loss often leads to a significant decline in electromagnetic wave absorp-tion(EMWA)performance at elevated temperatures,which severely restricts their practical application.In this study,we propose a novel approach for efficient electromagnetic wave absorption across a wide temperature range using reduced graphene oxide(RGO)/epoxy resin(EP)metacomposites that integrate both electromagnetic parameters and metamaterial design concepts.Due to the discrete distribution of the units,electromagnetic waves can more easily penetrate the interior of materials,thereby exhibiting stable microwave absorption(MA)performance and impedance-matching characteristics suitable across a wide temperature range.Consequently,exceptional MA properties can be achieved within the tem-perature range from 298 to 473 K.Furthermore,by carefully controlling the structural parameters in RGO metacomposites,both the resonant frequency and effective absorption bandwidth(EAB)can be optimized based on precise manipulation of equivalent electromagnetic parameters.This study not only provides an effective approach for the rational design of MA performance but also offers novel insights into achieving super metamaterials with outstanding performance across a wide temperature spectrum.