期刊文献+
共找到3,367篇文章
< 1 2 169 >
每页显示 20 50 100
The ρ-Meson Electromagnetic Form Factors within the Light-Front Quark Model
1
作者 Shuai Xu Xiao-Nan Li Xing-Gang Wu 《Chinese Physics Letters》 2025年第8期31-37,共7页
In this paper,we study the ρ-meson electromagnetic form factors(EMFFs)within the framework of the light-front quark model.The physical form factors G_(C,M,Q)(Q^(2))of the ρ-meson,as well as the charged square radius... In this paper,we study the ρ-meson electromagnetic form factors(EMFFs)within the framework of the light-front quark model.The physical form factors G_(C,M,Q)(Q^(2))of the ρ-meson,as well as the charged square radius<r^(2)>,the magnetic moment μ,and the quadrupole moment Q,are calculated,which describe the behaviors of EMFFs at zero momentum transfer.Using the type-Ⅱ replacement,we find that the zero-mode does contribute zero to the matrix element S_(00)^(+).It is found that the“M→M_(0)”replacement improves the angular condition remarkably,which permits different prescriptions of ρ-meson EMFFs to give the consistent results.The residual tiny violation of angular condition needs other explanations beyond the zero-mode contributions.Our results indicate that the relativistic effects or interaction internal structure are weaken in the zero-binding limit.This work is also applicable to other spin-1 particles. 展开更多
关键词 light front quark model zero mode contribution electromagnetic form factors emffs within relativistic effects rho meson magnetic moment electromagnetic form factors angular condition
原文传递
Modulating Electromagnetic Genes Through Bi‑Phase High‑Entropy Engineering Toward Temperature‑Stable Ultra‑Broadband Megahertz Electromagnetic Wave Absorption
2
作者 Xiaoji Liu Yuping Duan +14 位作者 Nan Wu Guangming Li Yuan Guo Jiangyong Liu Ning Zhu Qiang Wang Lin Wang Zichen Xu Hao Wei Guojun Wang Zhijia Zhang Songsong Zhang Wenjun Zhou Teng Ma Tongmin Wang 《Nano-Micro Letters》 2025年第7期254-269,共16页
Magnetic absorbers with high permeability have significant advantages in lowfrequency and broadband electromagnetic wave(EMW)absorption.However,the insufficient magnetic loss and inherent high conductivity of existing... Magnetic absorbers with high permeability have significant advantages in lowfrequency and broadband electromagnetic wave(EMW)absorption.However,the insufficient magnetic loss and inherent high conductivity of existing magnetic absorbers limit the further expansion of EMW absorption bandwidth.Herein,the spinel(FeCoNiCrCu)_(3)O_(4) high-entropy oxides(HEO)are successfully constructed on the surface of FeCoNiCr_(0.4)Cu_(0.2) high-entropy alloys(HEA)through low-temperature oxygen bath treatment.On the one hand,HEO and HEA have different magnetocrystalline anisotropies,which is conducive to achieving continuous natural resonance to improve magnetic loss.On the other hand,HEO with low conductivity can serve as an impedance matching layer,achieving magneto-electric co-modulation.When the thickness is 5 mm,the minimum reflection loss(RL)value and absorption bandwidth(RL<−5 dB)of bi-phase high-entropy composites(BPHEC)can reach−12.8 dB and 633 MHz,respectively.The RCS reduction value of multilayer sample with impedance gradient characteristic can reach 18.34 dB m^(2).In addition,the BPHEC also exhibits temperaturestable EMW absorption performance,high Curie temperature,and oxidation resistance.The absorption bandwidth maintains between 593 and 691 MHz from−50 to 150℃.This work offers a new and tunable strategy toward modulating the electromagnetic genes for temperature-stable ultra-broadband megahertz EMW absorption. 展开更多
关键词 Bi-phase high-entropy composites electromagnetic genes electromagnetic wave absorption Continuous natural resonance ULTRA-BROADBAND
在线阅读 下载PDF
Flow field control within slab mold under different casting speeds by electromagnetic swirling flow in nozzle
3
作者 Xian-cun Liu Xiao-wei Zhu +4 位作者 Yan-wen Sun Mei-jia Sun Li-jia Zhao Xiao-ming Liu Qiang Wang 《Journal of Iron and Steel Research International》 2025年第10期3342-3354,共13页
Controlling molten steel flow in the mold and stabilizing the meniscus are critical challenges during the continuous casting,directly impacting the surface quality and internal quality of the final steel slab product.... Controlling molten steel flow in the mold and stabilizing the meniscus are critical challenges during the continuous casting,directly impacting the surface quality and internal quality of the final steel slab product.The effects of electromagnetic swirling flow in nozzle(EMSFN)technology on molten steel flow in the mold during slab continuous casting under various casting speeds were investigated.A real-time adjustable EMSFN was developed,and a three-dimensional unsteady Reynolds-averaged Navier–Stokes turbulence mathematical model was established to simulate the flow field within the mold.The results demonstrate that the EMSFN effectively stabilizes the outflow from nozzle,reduces the impact depth and surface velocity of the molten steel,mitigates meniscus fluctuations,and promotes stable flow within the mold.However,a certain matching relationship exists between the casting speed and the current intensity.For the experimental medium-thick slab specifications,the optimal current intensities were found to be 100,130,and 200 A at casting speeds of 1.0,1.5,and 2.0 m/min,respectively.EMSFN can optimize the mold flow field under different casting speeds,providing theoretical support for improving the quality of continuously cast slab products. 展开更多
关键词 Slab continuous casting electromagnetic metallurgy electromagnetic swirling flow in nozzle Mold flow field STEELMAKING
原文传递
Analysis on Electromagnetic Vibration of Synchronous Reluctance Motors under Different Drive Methods
4
作者 Tiansa Chen Xiuhe Wang +3 位作者 Lingling Sun Jinyang Xu Jihao Wang Jinjun Huang 《CES Transactions on Electrical Machines and Systems》 2025年第3期300-312,共13页
Sine-wave drive and square-wave drive are two common motor control strategies.This study constructs a mathematical model capable of predicting the distribution of electromagnetic force waves in synchronous reluctance ... Sine-wave drive and square-wave drive are two common motor control strategies.This study constructs a mathematical model capable of predicting the distribution of electromagnetic force waves in synchronous reluctance motors(SynRMs)under these two drive methods,and comparatively analyzes the vibration phenomena induced by electromagnetic forces under different drive methods.It aims to provide an effective tool for predicting the distribution of electromagnetic force waves in SynRMs,while exploring the influence of drive modes on their vibration characteristics.The study focuses on a 4-pole,36-slot 5.5 kW SynRM.Based on the magnetomotive force(MMF)-permeance method,incorporating the special rotor structure and the characteristics of current harmonics under square-wave drive,an air-gap flux distribution function is established.Meanwhile,Maxwell’s stress tensor method is adopted to analyze how the air-gap flux density relates to electromagnetic excitation force waves.Subsequently,this analysis is applied to forecast the spatiotemporal distribution features of radial electromagnetic force waves.Finite element simulations are conducted to compute the modal and vibration responses of the SynRM,followed by a comparative analysis of the vibration characteristics under the two drive methods.Additionally,a 6-pole,36-slot SynRM is used for additional comparative verification.Ultimately,the effectiveness of the simulation results is verified through experiments. 展开更多
关键词 Sine-wave drive Square-wave drive Synchronous reluctance motor(SynRM) electromagnetic excitation force electromagnetic vibration characteristics
在线阅读 下载PDF
Melt flow, heat transfer and solidification in bloom continuous casting with combined vertical linear electromagnetic stirring and rotary electromagnetic stirring
5
作者 Ze-peng Wang En-gang Wang Zhong-xin Zhai 《Journal of Iron and Steel Research International》 2025年第4期950-960,共11页
An opposite combined vertical linear electromagnetic stirring(CV-LEMS)was proposed,which is applied in the final solidification zone of bloom continuous casting.The melt flow,heat transfer,and solidification under CV-... An opposite combined vertical linear electromagnetic stirring(CV-LEMS)was proposed,which is applied in the final solidification zone of bloom continuous casting.The melt flow,heat transfer,and solidification under CV-LEMS were investigated by establishing a three-dimensional numerical simulation model and a pilot continuous casting simulation experiment and compared with the conventional rotary electromagnetic stirring(REMS).The results show that a longitudinally symmetric linear magnetic field is formed in the liquid core of the bloom by applying CV-LEMS,which induces a strong longitudinal circulation flow both on the inner arc side and the outer arc side in the liquid core of the bloom.The height of the melt longitudinal effective mixing range under CV-LEMS reaches 0.9 m,which is greater than that of the REMS and makes up for the deficiency of REMS sensitivity to the position of the final solidification zone.CV-LEMS strongly promotes the mixing of upper melt with high temperature and the lower part melt with low temperature in the liquid core,improves the uniformity of melt temperature distribution and significantly increases the melt temperature near the solidification front,and the width of the liquid core increases by 4.2 mm at maximum.This shows that the appliction of CV-LEMS is more helpful to strengthen the feeding effect of the upper melt to the solidification shrinkage of the lower melt than the conventional REMS and inhibits the formation of porosity,shrinkage cavity and crack defects in the center of the bloom. 展开更多
关键词 Combined vertical linear electromagnetic stirring Final rotary electromagnetic stirring Longitudinal circulation flow Feeding ability Bloom continuous casting
原文传递
Fast and Accurate Prediction of Electromagnetic and Temperature Fields for SPMSM Equipped with Unequally Thick Magnetic Poles
6
作者 Feng Liu Xiuhe Wang +1 位作者 Lingling Sun Hongye Wei 《CES Transactions on Electrical Machines and Systems》 2025年第2期199-211,共13页
With the continuous upgrading of traditional manufacturing industries and the rapid rise of emerging technology fields,the performance requirements for the permanent magnet synchronous motors(PMSMs)have become higher ... With the continuous upgrading of traditional manufacturing industries and the rapid rise of emerging technology fields,the performance requirements for the permanent magnet synchronous motors(PMSMs)have become higher and higher.The importance of fast and accurate electromagnetic thermal coupling analysis of such motors becomes more and more prominent.In view of this,the surfacemounted PMSM(SPMSM)equipped with unequally thick magnetic poles is taken as the main object and its electromagnetic thermal coupling analytical model(ETc AM)is investigated.First,the electromagnetic analytical model(EAM)is studied based on the modified subdomain method.It realizes the fast calculation of key electromagnetic characteristics.Subsequently,the 3D thermal analytical model(TAM)is developed by combining the EAM,the lumped parameter thermal network method(LPTNM),and the partial differential equation of heat flux.It realizes the fast calculation of key thermal characteristics in 3D space.Further,the information transfer channel between EAM and TAM is built with reference to the intrinsic connection between electromagnetic field and temperature field.Thereby,the novel ETcAM is proposed to realize the fast and accurate prediction of electromagnetic and temperature fields.Besides,ETcAM has a lot to commend it.One is that it well accounts for the complex structure,saturation,and heat exchange behavior.Second,it saves a lot of computer resources.It offers boundless possibilities for initial design,scheme evaluation,and optimization of motors.Finally,the validity,accuracy,and practicality of this study are verified by simulation and experiment. 展开更多
关键词 electromagnetic field and temperature field electromagnetic thermal coupling analytical model(ETcAM) Fast and accurate prediction SPMSM Unequally thick magnetic poles
在线阅读 下载PDF
Enhancing electromagnetic properties in nickel hydroxide modified graphene composites via secondary reactions for improving multi-polarization electromagnetic absorption efficiency
7
作者 Gaixuan Zhou Lieji Yang +5 位作者 Yao Lu Zhimin Ye Congshu Huang Jingjing Wang Hualiang Lv Haiyan Zhuang 《Journal of Materials Science & Technology》 2025年第2期221-231,共11页
Carbon-based materials exhibit excellent dielectric absorption properties,among which graphene has received particular attention in research of electromagnetic wave absorbing materials because of its high electrical c... Carbon-based materials exhibit excellent dielectric absorption properties,among which graphene has received particular attention in research of electromagnetic wave absorbing materials because of its high electrical conductivity and unique large-area,thin-layer two-dimensional structural features.However,the electromagnetic absorption performance of the material is hindered from further improvement due to its single component composition.It is influenced by the conductive network of graphene,making it challenging to achieve a balance in impedance matching and electromagnetic loss,thereby restricting its broader application.To address these challenges,we developed a series of nickel hydroxide-modified graphene composites.Through a structural composite design,we optimized overall impedance matching,introduced diverse loss mechanisms to enhance electromagnetic loss performance,and utilized a secondary reaction control method to precisely regulate the deposition of nickel hydroxide on the graphene surface,thereby achieving regulate of the composite material's electromagnetic parameters within a defined range.Under low sample filling ratios and a thin sample thickness of 1.8 mm,the effective absorption bandwidth reaches 6.5 GHz,demonstrating excellent electromagnetic absorption performance.This study provides a controllable design approach for modulating material electromagnetic parameters by influencing the reaction process.It also offers a design method for composites with an outstanding electromagnetic loss mechanism. 展开更多
关键词 Nickel hydroxide Multi-polarization electromagnetic loss electromagnetic wave absorption
原文传递
Multiple Tin Compounds Modified Carbon Fibers to Construct Heterogeneous Interfaces for Corrosion Prevention and Electromagnetic Wave Absorption 被引量:1
8
作者 Zhiqiang Guo Di Lan +6 位作者 Zirui Jia Zhenguo Gao Xuetao Shi Mukun He Hua Guo Guanglei Wu Pengfei Yin 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期507-527,共21页
Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is con... Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is considered an effective means to achieve high-efficiency EMW absorption.However,interface modulation engineering has not been fully discussed and has great potential in the field of EMW absorption.In this study,multi-component tin compound fiber composites based on carbon fiber(CF)substrate were prepared by electrospinning,hydrothermal synthesis,and high-temperature thermal reduction.By utilizing the different properties of different substances,rich heterogeneous interfaces are constructed.This effectively promotes charge transfer and enhances interfacial polarization and conduction loss.The prepared SnS/SnS_(2)/SnO_(2)/CF composites with abundant heterogeneous interfaces have and exhibit excellent EMW absorption properties at a loading of 50 wt%in epoxy resin.The minimum reflection loss(RL)is−46.74 dB and the maximum effective absorption bandwidth is 5.28 GHz.Moreover,SnS/SnS_(2)/SnO_(2)/CF epoxy composite coatings exhibited long-term corrosion resistance on Q235 steel surfaces.Therefore,this study provides an effective strategy for the design of high-efficiency EMW absorbing materials in complex and harsh environments. 展开更多
关键词 Electrostatic spinning Component regulation Heterogeneous interfaces electromagnetic wave absorption Corrosion protection
在线阅读 下载PDF
Low‑Temperature Oxidation Induced Phase Evolution with Gradient Magnetic Heterointerfaces for Superior Electromagnetic Wave Absorption 被引量:1
9
作者 Zizhuang He Lingzi Shi +6 位作者 Ran Sun Lianfei Ding Mukun He Jiaming Li Hua Guo Tiande Gao Panbo Liu 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期191-204,共14页
Gradient magnetic heterointerfaces have injected infinite vitality in optimizing impedance matching,adjusting dielectric/magnetic resonance and promoting electromagnetic(EM)wave absorption,but still exist a significan... Gradient magnetic heterointerfaces have injected infinite vitality in optimizing impedance matching,adjusting dielectric/magnetic resonance and promoting electromagnetic(EM)wave absorption,but still exist a significant challenging in regulating local phase evolution.Herein,accordion-shaped Co/Co_(3)O_(4)@N-doped carbon nanosheets(Co/Co_(3)O_(4)@NC)with gradient magnetic heterointerfaces have been fabricated via the cooperative high-temperature carbonization and lowtemperature oxidation process.The results indicate that the surface epitaxial growth of crystal Co_(3)O_(4) domains on local Co nanoparticles realizes the adjustment of magnetic-heteroatomic components,which are beneficial for optimizing impedance matching and interfacial polarization.Moreover,gradient magnetic heterointerfaces simultaneously realize magnetic coupling,and long-range magnetic diffraction.Specifically,the synthesized Co/Co_(3)O_(4)@NC absorbents display the strong electromagnetic wave attenuation capability of−53.5 dB at a thickness of 3.0 mm with an effective absorption bandwidth of 5.36 GHz,both are superior to those of single magnetic domains embedded in carbon matrix.This design concept provides us an inspiration in optimizing interfacial polarization,regulating magnetic coupling and promoting electromagnetic wave absorption. 展开更多
关键词 Magnetic heterointerfaces Phase evolution Interfacial polarization Magnetic coupling electromagnetic wave absorption
在线阅读 下载PDF
Graphene Aerogel Composites with Self‑Organized Nanowires‑Packed Honeycomb Structure for Highly Efficient Electromagnetic Wave Absorption 被引量:1
10
作者 Xiao You Huiying Ouyang +6 位作者 Ruixiang Deng Qiuqi Zhang Zhenzhong Xing Xiaowu Chen Qingliang Shan Jinshan Yang Shaoming Dong 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期533-547,共15页
With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite h... With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite heterogeneous interface are constructed successfully to optimize the electromagnetic loss capacity.The macro–micro-synergistic graphene aerogel formed by the ice template‑assisted 3D printing strategy is cut by silicon carbide nanowires(SiC_(nws))grown in situ,while boron nitride(BN)interfacial structure is introduced on graphene nanoplates.The unique composite structure forces multiple scattering of incident EMWs,ensuring the combined effects of interfacial polarization,conduction networks,and magnetic-dielectric synergy.Therefore,the as-prepared composites present a minimum reflection loss value of−37.8 dB and a wide effective absorption bandwidth(EAB)of 9.2 GHz(from 8.8 to 18.0 GHz)at 2.5 mm.Besides,relying on the intrinsic high-temperature resistance of SiC_(nws) and BN,the EAB also remains above 5.0 GHz after annealing in air environment at 600℃ for 10 h. 展开更多
关键词 Hierarchical porous structure Interface High-temperature resistance Graphene aerogel composites electromagnetic wave absorption
在线阅读 下载PDF
Defects‑Rich Heterostructures Trigger Strong Polarization Coupling in Sulfides/Carbon Composites with Robust Electromagnetic Wave Absorption 被引量:1
11
作者 Jiaolong Liu Siyu Zhang +14 位作者 Dan Qu Xuejiao Zhou Moxuan Yin Chenxuan Wang Xuelin Zhang Sichen Li Peijun Zhang Yuqi Zhou Kai Tao Mengyang Li Bing Wei Hongjing Wu Mengyang Li Bing Wei Hongjing Wu 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期528-547,共20页
Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies,as well as veiled dielectric-responsive character,are instrumental in electromagnetic dissipation.Conventional methods,how... Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies,as well as veiled dielectric-responsive character,are instrumental in electromagnetic dissipation.Conventional methods,however,constrain their delicate constructions.Herein,an innovative alternative is proposed:carrageenan-assistant cations-regulated(CACR)strategy,which induces a series of sulfides nanoparticles rooted in situ on the surface of carbon matrix.This unique configuration originates from strategic vacancy formation energy of sulfides and strong sulfides-carbon support interaction,benefiting the delicate construction of defects-rich heterostructures in M_(x)S_(y)/carbon composites(M-CAs).Impressively,these generated sulfur vacancies are firstly found to strengthen electron accumulation/consumption ability at heterointerfaces and,simultaneously,induct local asymmetry of electronic structure to evoke large dipole moment,ultimately leading to polarization coupling,i.e.,defect-type interfacial polarization.Such“Janus effect”(Janus effect means versatility,as in the Greek two-headed Janus)of interfacial sulfur vacancies is intuitively confirmed by both theoretical and experimental investigations for the first time.Consequently,the sulfur vacancies-rich heterostructured Co/Ni-CAs displays broad absorption bandwidth of 6.76 GHz at only 1.8 mm,compared to sulfur vacancies-free CAs without any dielectric response.Harnessing defects-rich heterostructures,this one-pot CACR strategy may steer the design and development of advanced nanomaterials,boosting functionality across diverse application domains beyond electromagnetic response. 展开更多
关键词 Defects-rich heterointerfaces Sulfides Polarization coupling electromagnetic wave absorption
在线阅读 下载PDF
Multistage microcellular waterborne polyurethane composite with optionally low-reflection behavior for ultra-efficient electromagnetic interference shielding 被引量:3
12
作者 Jianming Yang Hu Wang +4 位作者 Hexin Zhang Peng Lin Hong Gao Youyi Xia Xia Liao 《Journal of Materials Science & Technology》 2025年第5期132-140,共9页
Electromagnetic interference(EMI)shielding materials with superior shielding efficiency and low-reflection properties hold promising potential for utilization across electronic components,precision instruments,and fif... Electromagnetic interference(EMI)shielding materials with superior shielding efficiency and low-reflection properties hold promising potential for utilization across electronic components,precision instruments,and fifth-generation communication equipment.In this study,multistage microcellular waterborne polyurethane(WPU)composites were constructed via gradient induction,layer-by-layer casting,and supercritical carbon dioxide foaming.The gradient-structured WPU/ironcobalt loaded reduced graphene oxide(FeCo@rGO)foam serves as an impedance-matched absorption layer,while the highly conductive WPU/silver loaded glass microspheres(Ag@GM)layer is employed as a reflection layer.Thanks to the incorporation of an asymmetric structure,as well as the introduction of gradient and porous configurations,the composite foam demonstrates excellent conductivity,outstanding EMI SE(74.9 dB),and minimal reflection characteristics(35.28%)in 8.2-12.4 GHz,implying that more than 99.99999%of electromagnetic(EM)waves were blocked and only 35.28%were reflected to the external environment.Interestingly,the reflectivity of the composite foam is reduced to 0.41%at 10.88 GHz due to the resonance for incident and reflected EM waves.Beyond that,the composite foam is characterized by low density(0.47 g/cm^(3))and great stability of EMI shielding properties.This work offers a viable approach for craft-ing lightweight,highly shielding,and minimally reflective EMI shielding composites. 展开更多
关键词 electromagnetic interference shielding Supercritical carbon dioxide(ScCO_(2))foaming Low reflectivity Multilayered structure MICROCELLULAR
原文传递
Phase changes and electromagnetic wave absorption performance of XZnC(X=Fe/Co/Cu)loaded on melamine sponge hollow carbon composites 被引量:3
13
作者 Xiubo Xie Ruilin Liu +4 位作者 Chen Chen Di Lan Zhelin Chen Wei Du Guanglei Wu 《International Journal of Minerals,Metallurgy and Materials》 2025年第3期566-577,共12页
Non-stoichiometric carbides have been proven to be effective electromagnetic wave(EMW)absorbing materials.In this study,phase and morphology of XZnC(X=Fe/Co/Cu)loaded on a three dimensional(3D)network structure melami... Non-stoichiometric carbides have been proven to be effective electromagnetic wave(EMW)absorbing materials.In this study,phase and morphology of XZnC(X=Fe/Co/Cu)loaded on a three dimensional(3D)network structure melamine sponge(MS)carbon composites were investigated through vacuum filtration followed by calcination.The FeZnC/CoZnC/CuZnC with carbon nanotubes(CNTs)were uniformly dispersed on the surface of melamine sponge carbon skeleton and Co-containing sample exhibits the highest CNTs concentration.The minimum reflection loss(RL_(min))of the CoZnC/MS composite(m_(composite):m_(paraffin)=1:1,m represents mass)reached-33.60 dB,and the effective absorption bandwidth(EAB)reached 9.60 GHz.The outstanding electromagnetic wave absorption(EMWA)properties of the CoZnC/MS composite can be attributed to its unique hollow structure,which leads to multiple reflections and scattering.The formed conductive network improves dielectric and conductive loss.The incorporation of Co enhances the magnetic loss capability and optimizes interfacial polarization and dipole polarization.By simultaneously improving dielectric and magnetic losses,ex-cellent impedance matching performance is achieved.The clarification of element replacement in XZnC/MS composites provides an effi-cient design perspective for high-performance non-stoichiometric carbide EMW absorbers. 展开更多
关键词 electromagnetic wave absorption three dimensional network structure melamine sponge derived carbon non-stoichiometric carbide
在线阅读 下载PDF
Construction of iron manganese metal-organic framework-derived manganese ferrite/carbon-modified graphene composites toward broadband and efficient electromagnetic dissipation 被引量:2
14
作者 Baohua Liu Shuai Liu +1 位作者 Zaigang Luo Ruiwen Shu 《International Journal of Minerals,Metallurgy and Materials》 2025年第3期546-555,共10页
The preparation of carbon-based electromagnetic wave(EMW)absorbers possessing thin matching thickness,wide absorption bandwidth,strong absorption intensity,and low filling ratio remains a huge challenge.Metal-organic ... The preparation of carbon-based electromagnetic wave(EMW)absorbers possessing thin matching thickness,wide absorption bandwidth,strong absorption intensity,and low filling ratio remains a huge challenge.Metal-organic frameworks(MOFs)are ideal self-sacrificing templates for the construction of carbon-based EMW absorbers.In this work,bimetallic FeMn-MOF-derived MnFe_(2)O_(4)/C/graphene composites were fabricated via a two-step route of solvothermal reaction and the following pyrolysis treatment.The results re-veal the evolution of the microscopic morphology of carbon skeletons from loofah-like to octahedral and then to polyhedron and pomegran-ate after the adjustment of the Fe^(3+)to Mn^(2+)molar ratio.Furthermore,at the Fe^(3+)to Mn^(2+)molar ratio of 2:1,the obtained MnFe_(2)O_(4)/C/graphene composite exhibited the highest EMW absorption capacity.Specifically,a minimum reflection loss of-72.7 dB and a max-imum effective absorption bandwidth of 5.1 GHz were achieved at a low filling ratio of 10wt%.In addition,the possible EMW absorp-tion mechanism of MnFe_(2)O_(4)/C/graphene composites was proposed.Therefore,the results of this work will contribute to the construction of broadband and efficient carbon-based EMW absorbers derived from MOFs. 展开更多
关键词 metal-organic frameworks GRAPHENE magnetic composites morphology regulation electromagnetic dissipation
在线阅读 下载PDF
Multi-interface structure design of bamboo-based carbon/Co/CoO composite electromagnetic wave absorber based on biomimetic honeycomb-shaped superstructure 被引量:2
15
作者 Yanting Wang He Han +2 位作者 Huiyang Bian Yanjun Li Zhichao Lou 《International Journal of Minerals,Metallurgy and Materials》 2025年第3期631-644,共14页
The rapid development of 5G communication technology and smart electronic and electrical equipment will inevitably lead to electromagnetic radiation pollution.Enriching heterointerface polarization relaxation through ... The rapid development of 5G communication technology and smart electronic and electrical equipment will inevitably lead to electromagnetic radiation pollution.Enriching heterointerface polarization relaxation through nanostructure design and interface modifica-tion has proven to be an effective strategy to obtain efficient electromagnetic wave absorption.Here,this work implements an innovative method that combines biomimetic honeycomb superstructure to constrain hierarchical porous heterostructure composed of Co/CoO nano-particles to improve the interfacial polarization intensity.The method effectively controlled the absorption efficiency of Co^(2+)through de-lignification modification of bamboo,and combined with the bionic carbon-based natural hierarchical porous structure to achieve uniform dispersion of nanoparticles,which is conducive to the in-depth construction of heterogeneous interfaces.In addition,the multiphase struc-ture brought about by high-temperature pyrolysis provides the best dielectric loss and impedance matching for the material.Therefore,the obtained bamboo-based Co/CoO multiphase composite showed excellent electromagnetic wave absorption performance,achieving excel-lent reflection loss(RL)of-79 dB and effective absorption band width of 4.12 GHz(6.84-10.96 GHz)at low load of 15wt%.Among them,the material’s optimal radar cross-section(RCS)reduction value can reach 31.9 dB·m^(2).This work provides a new approach to the micro-control and comprehensive optimization of macro-design of microwave absorbers,and offers new ideas for the high-value utiliza-tion of biomass materials. 展开更多
关键词 biomass honeycomb porous heterojunction structure interfacial polarization electromagnetic wave absorption
在线阅读 下载PDF
Synergistic improvement of mechanical and electromagnetic shielding properties of a Mg-Li-Y-Zn alloy following heat treatment 被引量:2
16
作者 Jinsheng Li Liping Zhong +3 位作者 Junli Wang Zhongxue Feng Yan Qu Ruidong Xu 《Journal of Magnesium and Alloys》 2025年第3期1243-1257,共15页
The performances of magnesium alloys remain insufficient to further enhance the application potential of ultralight magnesium alloys.In this work,a Mg-8Li-3Y-2Zn alloy was prepared through vacuum melting and subsequent... The performances of magnesium alloys remain insufficient to further enhance the application potential of ultralight magnesium alloys.In this work,a Mg-8Li-3Y-2Zn alloy was prepared through vacuum melting and subsequent heat treatment at 300,450,and 500°C.The material properties of the resulting samples were assessed through microstructural observation,tensile testing,electrical conductivity measurements,and electromagnetic shielding effectiveness(EMI-SE)testing.The influence of the Mg-8Li-3Y-2Zn alloy microstructure on its mechanical and electromagnetic shielding properties in different states was investigated.It was found that the as-cast alloy containsα-Mg,β-Li,Mg_(3)Zn_(3)Y_(2),and Mg_(12)ZnY phases.Following heat treatment at 500℃(HT500),the blockα-Mg phase transformedfine needle-shapes,its tensile strength increased to 263.7 MPa,and its elongation reached 45.3%.The mechanical properties of the alloy were significantly improved by the synergistic effects imparted by the needle-shapedα-Mg phase,solid solution strengthening,and precipitation strengthening.The addition of Y and Zn improved the EMI-SE of Mg-8Li-1Zn alloy,wherein the HT500 sample exhibits the highest SE,maintaining a value of 106.7–76.9 dB in the frequency range of 30–4500 MHz;this performance has rarely been reported for electromagnetically shielded alloys.This effect was mainly attributed to the multiple reflections of electromagnetic waves caused by the severe impedance mismatch of the abundant phase boundaries,which were in turn provided by the dual-phase(α/β)and secondary phases.Furthermore,the presence of nano-precipitation was also believed to enhance the absorption of electromagnetic waves. 展开更多
关键词 Mg-Li alloy Microstructure Heat treatment Mechanical properties electromagnetic shielding
在线阅读 下载PDF
A special core-shell material(Mxene@Ag@Phytate)to improve EVA composite fire safety,radiation cross-linking effect,and electromagnetic shielding 被引量:2
17
作者 Si-Yi Xu Dan-Yi Li +4 位作者 Wen-Rui Wang Lin Lin Ying Sun Ji-Hao Li Lin-Fan Li 《Nuclear Science and Techniques》 2025年第2期27-39,共13页
High-performance MXene-based polymer nanocomposites are well-suited for various industrial applications owing to their excellent mechanical,thermal,and other properties.However,the fabrication of flame-retardant polym... High-performance MXene-based polymer nanocomposites are well-suited for various industrial applications owing to their excellent mechanical,thermal,and other properties.However,the fabrication of flame-retardant polymer/MXene nanocom-posites remains challenging owing to the limited flame-retardant properties of MXene itself.This study prepared a novel MXene@Ag@PA hybrid material via radiation modification and complexation reaction.This material was used to further enhance the key properties of ethylene-vinyl acetate(EVA),such as its mechanical properties,thermal conductivity,flame retardancy,and electromagnetic shielding.The addition of two parts of this hybrid material increased the thermal conduc-tivity of EVA by 44.2%and reduced its peak exothermic rate during combustion by 30.1%compared with pure EVA.The material also significantly reduced smoke production and increased the residue content.In the X-band,the electromagnetic shielding effectiveness of the EVA composites reached 20 dB.Moreover,the MXene@Ag@PA hybrid material could be used to further enhance the mechanical properties of EVA composites under electron-beam irradiation.Thus,this study contributes to the development of MXene-based EVA advanced materials that are fire-safe,have high strength,and exhibit good electromagnetic shielding performance for various applications. 展开更多
关键词 MXene@Ag@PA Ethylene-vinyl acetate(EVA) Flame retardancy electromagnetic shielding performance
在线阅读 下载PDF
Micro-sized hexapod-like CuS/Cu_(9)S_(5) hybrid with broadband electromagnetic wave absorption 被引量:2
18
作者 Mengjun Han Di Lan +5 位作者 Zhiming Zhang Yizhi Zhao Jiaxiao Zou Zhenguo Gao Guanglei Wu Zirui Jia 《Journal of Materials Science & Technology》 2025年第11期302-312,共11页
Reasonable manipulation of component and microstructure is considered as a potential route to realize high-performance microwave absorber.In this paper,micro-sized hexapod-like CuS/Cu_(9)S_(5) composites were synthesi... Reasonable manipulation of component and microstructure is considered as a potential route to realize high-performance microwave absorber.In this paper,micro-sized hexapod-like CuS/Cu_(9)S_(5) composites were synthesized via a facile approach involving the solvothermal method and subsequent sulfuration treatment.The resultant CuS/Cu_(9)S_(5) exhibited superb microwave absorbing capacity with a minimum reflection loss(RLmin)of-59.38 dB at 2.7 mm.The maximum effective absorption bandwidth(EABmax)was 7.44 GHz(10.56-18 GHz)when the thickness was reduced to 2.3 mm.The outstanding microwave absorbing ability of CuS/Cu_(9)S_(5) composites is mainly related to its unique hexapod shape and the formation of heterogeneous interfaces.The unique hexapod shape significantly promotes the multi-reflection of the incident electromagnetic wave(EMW)increasing the attenuation path of EMWs in the material.Hetero-geneous interfaces between CuS/Cu_(9)S_(5) enable powerful interface polarization,contributing to the atten-uation of EMWs propagating in the medium.In addition,the EMW absorption performance of CuS/Cu_(9)S_(5) composites is also inseparable from the conduction loss.This study provides a strong reference for the research of EMW absorbent materials based on transition metal sulfides. 展开更多
关键词 Heterogeneous interface Hexapod shape Transition metal sulfide electromagnetic wave absorption
原文传递
Absorption-Reflection-Transmission Power Coefficient Guiding Gradient Distribution of Magnetic MXene in Layered Composites for Electromagnetic Wave Absorption 被引量:2
19
作者 Yang Zhou Wen Zhang +7 位作者 Dong Pan Zhaoyang Li Bing Zhou Ming Huang Liwei Mi Chuntai Liu Yuezhan Feng Changyu Shen 《Nano-Micro Letters》 2025年第6期466-481,共16页
The morphological distribution of absorbent in composites is equally important with absorbents for the overall electromagnetic properties,but it is often ignored.Herein,a comprehensive consideration including electrom... The morphological distribution of absorbent in composites is equally important with absorbents for the overall electromagnetic properties,but it is often ignored.Herein,a comprehensive consideration including electromagnetic component regulation,layered arrangement structure,and gradient concentration distribution was used to optimize impedance matching and enhance electromagnetic loss.On the microscale,the incorporation of magnetic Ni nanoparticles into MXene nanosheets(Ni@MXene)endows suitable intrinsic permittivity and permeability.On the macroscale,the layered arrangement of Ni@MXene increases the effective interaction area with electromagnetic waves,inducing multiple reflection/scattering effects.On this basis,according to the analysis of absorption,reflection,and transmission(A-R-T)power coefficients of layered composites,the gradient concentration distribution was constructed to realize the impedance matching at low-concentration surface layer,electromagnetic loss at middle concentration interlayer and microwave reflection at high-concentration bottom layer.Consequently,the layered gradient composite(LG5-10-15)achieves complete absorption coverage of X-band at thickness of 2.00-2.20 mm with RL_(min) of-68.67 dB at 9.85 GHz in 2.05 mm,which is 199.0%,12.6%,and 50.6%higher than non-layered,layered and layered descending gradient composites,respectively.Therefore,this work confirms the importance of layered gradient structure in improving absorption performance and broadens the design of high-performance microwave absorption materials. 展开更多
关键词 Magnetic MXene Layered and gradient structure Power coefficient electromagnetic wave absorption
在线阅读 下载PDF
High toughness and strong electromagnetic shielding properties of PAM/PEG dual network hydrogels 被引量:1
20
作者 Kunlan Diao Yuhuan Xu +5 位作者 Jingyu Du Teng Zhou Xiao Zhan Daohai Zhang Xiaosi Qi Shuhao Qin 《International Journal of Minerals,Metallurgy and Materials》 2025年第3期747-755,共9页
With the wide application of electromagnetic wave,a high performance electromagnetic shielding material is urgently needed to solve the harm caused by electromagnetic wave.Complete cross-linking strategy is adopted in... With the wide application of electromagnetic wave,a high performance electromagnetic shielding material is urgently needed to solve the harm caused by electromagnetic wave.Complete cross-linking strategy is adopted in this paper.Polyacrylamide(PAM)was synthesized by in-situ polymerization of acrylamide(AM)monomer.The obtained PAM was blended with polyethylene glycol(PEG)to prepare PAM/PEG hydrogels and form rigid support structures.Subsequently,the modified carbon nanotubes(S-CNTs)were incorpor-ated into sodium alginate(SA)and PAM/PEG.Finally,Na+was used to trigger SA self-assembly,which significantly improved the mechanical properties and electrical conductivity of the hydrogels,and prepared PAM/PEG/SA/S-CNTs-Na hydrogels with high tough-ness and strong electromagnetic interference(EMI)shielding efficiency(SE).The results showed that the compressive strength of PAM/PEG/SA/S-CNTs-Na hydrogel was 19.05 MPa,which was 7.69%higher than that of PAM/PEG hydrogel(17.69 MPa).More en-couraging,the average EMI SE of PAM/PEG/SA/S-CNTs-Na hydrogels at a thickness of only 3 mm and a CNTs content of 16.53wt%was 32.92 dB,which is 113.21%higher than that of PAM/PEG hydrogels(15.44 dB). 展开更多
关键词 POLYACRYLAMIDE polyethylene glycol sodium alginate carbon nanotubes electromagnetic shielding
在线阅读 下载PDF
上一页 1 2 169 下一页 到第
使用帮助 返回顶部