We present a 3+1 formulation of the light modes in nonlinear electrodynamics described by Plebanski-type Lagrangians,which include post-Maxwellian,Born-Infeld,ModMax,and Heisenberg-Euler-Schwinger QED Lagrangians.In n...We present a 3+1 formulation of the light modes in nonlinear electrodynamics described by Plebanski-type Lagrangians,which include post-Maxwellian,Born-Infeld,ModMax,and Heisenberg-Euler-Schwinger QED Lagrangians.In nonlinear electrodynamics,strong electromagnetic fields modify the vacuum such that it acquires optical properties.Such a field-modified vacuum can possess electric permittivity,magnetic permeability,and a magneto-electric response,inducing novel phenomena such as vacuum birefringence.By exploiting the mathematical structures of Plebanski-type Lagrangians,we establish a streamlined procedure and explicit formulas to determine light modes,i.e.,refractive indices and polarization vectors for a given propagation direction.We also work out the light modes of the various Lagrangians for an arbitrarily strong magnetic field.The 3+1 formulation advanced in this paper has direct applications to the current vacuum birefringence research:terrestrial experiments using permanent magnets/ultra-intense lasers for the subcritical regime and astrophysical observation of X-rays from highly magnetized neutron stars for the near-critical and supercritical regimes.展开更多
Collective quantum states, such as subradiant and superradiant states, are useful for controlling optical responses in many-body quantum systems. In this work, we study novel collective quantum phenomena in waveguide-...Collective quantum states, such as subradiant and superradiant states, are useful for controlling optical responses in many-body quantum systems. In this work, we study novel collective quantum phenomena in waveguide-coupled Bragg atom arrays with inhomogeneous frequencies.For atoms without free-space dissipation, collectively induced transparency is produced by destructive quantum interference between subradiant and superradiant states. In a large Bragg atom array, multi-frequency photon transparency can be obtained by considering atoms with different frequencies. Interestingly, we find collectively induced absorption(CIA) by studying the influence of free-space dissipation on photon transport. Tunable atomic frequencies nontrivially modify decay rates of subradiant states. When the decay rate of a subradiant state equals to the free-space dissipation, photon absorption can reach a limit at a certain frequency. In other words, photon absorption is enhanced with low free-space dissipation, distinct from previous photon detection schemes. We also show multi-frequency CIA by properly adjusting atomic frequencies. Our work presents a way to manipulate collective quantum states and exotic optical properties in waveguide quantum electrodynamics(QED) systems.展开更多
This work identifies the branch point, which was never explicit in EM treatises, from which came the choice of abandoning the Galilean transformations in favor of the Lorentz covariance, a path that originated the var...This work identifies the branch point, which was never explicit in EM treatises, from which came the choice of abandoning the Galilean transformations in favor of the Lorentz covariance, a path that originated the various relativistic theories. The need arising from the expanding Earth for a hydrodynamic mechanism for Newtonian and Coulomb fields is discussed. This hydrodynamic material mechanism is shown to constitute a completion of the Newton and Maxwell concepts of the fields, which were only a phenomenological description of physical reality. It is shown that the analogy between Maxwell’s equations and hydrodynamics cannot become a perfect correspondence. The lack of coupling of the electromagnetic field to the underlying material “causing field”—which induces hydrodynamical forces and accelerations observed only phenomenologically—gives rise to inaccuracies in the formulation of its equations, which are incorrect for Galilean covariance. But the most serious flaw in the original formulation of electromagnetism is the erroneous identification of the flow velocity of the field (variable as 1/r2) with the speed of light c, with which it was demonstrated that the fields of charges in motion contract in the direction of motion (the Heaviside ellipsoid, 1888, 1889). From this error, historically due to the incomplete development of many hydrodynamics sectors (a situation that persists today), came Fitz Gerald’s contractions and finally, the relativistic theories. Some future research lines are proposed for a return to realistic physics and a possible but still weak form of Galilean covariance.展开更多
An expression of the generalized principle of virtual work for the boundary value problem of the linear and anisotropic electromagnetic field is given. Using Chien's method, a pair of generalized variational principl...An expression of the generalized principle of virtual work for the boundary value problem of the linear and anisotropic electromagnetic field is given. Using Chien's method, a pair of generalized variational principles (GVPs) are established, which directly leads to all four Maxwell's equations, two intensity-potential equations, two constitutive equations, and eight boundary conditions. A family of constrained variational principles is derived sequentially. As additional verifications, two degenerated forms are obtained, equivalent to two known variational principles. Two modified GVPs are given to provide the hybrid finite element models for the present problem.展开更多
In this paper we investigate the scalar field evolution in the dyadosphere spacetime by using the third-order WKB approximation. We find that the coupling term between the gravitation and the nonlinear electrodynamics...In this paper we investigate the scalar field evolution in the dyadosphere spacetime by using the third-order WKB approximation. We find that the coupling term between the gravitation and the nonlinear electrodynamics makes the scalar field decay more quickly and it also makes the scalar field oscillate more slowly. On the o'ther words, this coupling term takes effect on the scalar field evolution as a damping factor. At the same time these effects become more obvious for the scalar field with higher angle quantum number.展开更多
We theoretically study the collective decay of two atoms trapped in a single mode cavity and we describe the evolution of the population of Dicke states. We show that the collective decay property is strongly dependen...We theoretically study the collective decay of two atoms trapped in a single mode cavity and we describe the evolution of the population of Dicke states. We show that the collective decay property is strongly dependent on the phase of atomic radiation and the speeding up of collective decay can only be observed in a bad cavity regime. For in-or out-phase case,this occurs due to the quantum interference enhancement, no matter which atom is excited initially. For π/2 phase, the speeding up of collective decay takes place if the first atom is excited at the beginning. However, it disappears due to the quantum interference cancellation if the second atom is excited. Compared with the in-phase and out-phase cases,we also show that the speeding up of collective decay can be significantly enhanced in strong coupling regime for π/2 phase, although one atom is decoupled to the cavity in this condition. The study presented here is helpful to understand the physical mechanism of collective decay in cavity quantum electrodynamics and it provides a useful method to control the collective decay phenomenon via quantum interference effect.展开更多
In this theoretical work,we describe a mechanism for the coupling between a plane structure consisting of four quantum dots and a resonator.We systematically study the dependence of the quadruple coupling strength and...In this theoretical work,we describe a mechanism for the coupling between a plane structure consisting of four quantum dots and a resonator.We systematically study the dependence of the quadruple coupling strength and the qubit decoherence rate and point out the optimized operating position of the hybrid system.According to the transmission given by the input-output theory,the signatures in the resonator spectrum are predicted.Furthermore,based on the parameters already achieved in previous works,we prove that the device described in this paper can achieve the strong coupling limit,i.e.,this approach can be used for system extension under the existing technical conditions.Our results show an effective and promotable approach to couple quantum dot structures in plane with the resonator and propose a meaningful extension method.展开更多
We theoretically study the system of a superconducting transmission line resonator coupled to two interacting super- conducting flux qubits. It is shown that under certain conditions the resonator mode can be tuned to...We theoretically study the system of a superconducting transmission line resonator coupled to two interacting super- conducting flux qubits. It is shown that under certain conditions the resonator mode can be tuned to two-photon resonance between the ground state and the highest excited state while the middle excited states are far-off resonance. Furthermore, we study the steady-state properties of the flux qubits and resonator, such as the photon statistics, the spectrum and squeezing of the resonator, and demonstrate that two-photon laser can be implemented with current experimental technology.展开更多
Quantum electrodynamics in a laser is formulated, in which the electron–laser interaction is exactly considered, while the interaction of an electron and a single photon is considered by perturbation. The formulation...Quantum electrodynamics in a laser is formulated, in which the electron–laser interaction is exactly considered, while the interaction of an electron and a single photon is considered by perturbation. The formulation is applied to the electron– laser collisions. The effect of coherence between photons in the laser is therefore fully considered in these collisions. The possibility of γ-ray laser generation by use of this kind of collision is discussed.展开更多
This paper presents a scheme for implementing a Fredkin gate on three modes of a cavity. The scheme is based on the dispersive atom-cavity interaction. By modulating the cavity frequency and the atomic transition freq...This paper presents a scheme for implementing a Fredkin gate on three modes of a cavity. The scheme is based on the dispersive atom-cavity interaction. By modulating the cavity frequency and the atomic transition frequency appropriately, it obtains the effective form of nonlinear interaction between photons in the three-mode cavity. This availability is testified via numerical analysis. It also considers both the situations with and without dissipation.展开更多
In this paper,we study the thermodynamics and the weak cosmic censorship conjecture of the nonlinear electrodynamics black hole under the scattering of a charged complex scalar field.According to the energy and charge...In this paper,we study the thermodynamics and the weak cosmic censorship conjecture of the nonlinear electrodynamics black hole under the scattering of a charged complex scalar field.According to the energy and charge fluxes of the scalar field,the variations of this black hole’s energy and charge can be calculated during an infinitesimal time interval.With scalar field scattering,the variation of the black hole is calculated in the extended and normal phase spaces.In the normal phase space,the cosmological constant and the normalization parameter are fixed,and the first and second laws of thermodynamics can also be satisfied.In the extended phase space,the cosmological constant and the normalization parameter are considered as thermodynamic variables,and the first law of thermodynamics is valid,but the second law of thermodynamics is not valid.Furthermore,the weak cosmic censorship conjecture is both valid in the extended and normal phase spaces.展开更多
We calculate the scattering cross section of an electron with respect to the spontaneously produced laser radiation in the first free-electron laser (FEL) with quantum-wiggler electrodynamics (QWD). The cross sect...We calculate the scattering cross section of an electron with respect to the spontaneously produced laser radiation in the first free-electron laser (FEL) with quantum-wiggler electrodynamics (QWD). The cross section is 1016 times the Thomson cross section, confirming the result obtained by a previous analysis of the experimental data. A QWD calculation show that spontaneous emission in an FEL using only an electric wiggler can be very strong while amplification through net stimulated emission is practically negligible.展开更多
This theory aims beyond the possibilities being available from the Standard Model. Examples are given by the directly obtained rest masses of the elementary particles, the deduced values of the elementary charge and o...This theory aims beyond the possibilities being available from the Standard Model. Examples are given by the directly obtained rest masses of the elementary particles, the deduced values of the elementary charge and of the mass of the boson detected by CERN which are close to their experimental data, and by an incorporated spin of the photon.展开更多
We investigate the dynamics of a charged particle being kicked off from its circular orbit around a regular black hole by an incoming massive particle in the presence of magnetic field. The resulting escape velocity, ...We investigate the dynamics of a charged particle being kicked off from its circular orbit around a regular black hole by an incoming massive particle in the presence of magnetic field. The resulting escape velocity, escape energy and the effective potential are analyzed. It is shown that the presence of even a very weak magnetic field helps the charged particles in escaping the gravitational field of the black hole. Moreover the effective force acting on the particle visibly reduces with distance. Thus particle near the black hole will experience higher effective force as compared to when it is far away.展开更多
Using nonlinear electrodynamics coupled to teleparallel theory of gravity, regular charged spherically symmetric solutions are obtained. The nonlinear theory is reduced to the Maxwell one in the weak limit and the sol...Using nonlinear electrodynamics coupled to teleparallel theory of gravity, regular charged spherically symmetric solutions are obtained. The nonlinear theory is reduced to the Maxwell one in the weak limit and the solutions correspond to charged spacetimes. One of the obtained solutions contains an arbitrary function which we call general solution since we can generate from it the other solutions. The metric associated with these spacetimes is the same, i.e., regular charged static spherically symmetric black hole. In calculating the energy content of the general solution using the gravitational energy momentum within the framework of the teleparallel geometry, we find that the resulting form depends on the arbitrary function. Using the regularized expression of the gravitational energy-momentum we obtain the value of energy.展开更多
We investigate theoretically two photon entanglement processes in a photonic-crystal cavity embedding a quantum dot in tile strong-coupling regime. The model proposed by Johne et al. (Johne R, Gippius N A, Pavlovic G...We investigate theoretically two photon entanglement processes in a photonic-crystal cavity embedding a quantum dot in tile strong-coupling regime. The model proposed by Johne et al. (Johne R, Gippius N A, Pavlovic G, Solnyshkov D D, Shelykh I A and Malpuech G 2008 Phys. Rev. Lett. 100 240404), and by Robert et al. (Robert J, Gippius N A and Malpuech G 2009 Phys. Rev. B 79 155317) is modified by considering irreversible dissipation and incoherent continuous pumping for the quantum dot, which is necessary to connect the realistic experiment. The dynamics of tile system is analysed by employing the Born Markov master equation, through which the spectra for the system are computed as a fnnction of various parameters. By means of this analysis the photon-reabsorption process in the strong- coupling regime is first observed and analysed from the perspective of radiation spectrum and the optimal parameters for observing energy-entangled photon pairs are identified.展开更多
Recently, Peng et al. [2010 Eur. Phys. J. D 58 403] proposed to teleport an arbitrary two-qubit state with a family of four-qubit entangled states, which simultaneously include the tensor product of two Bell states, l...Recently, Peng et al. [2010 Eur. Phys. J. D 58 403] proposed to teleport an arbitrary two-qubit state with a family of four-qubit entangled states, which simultaneously include the tensor product of two Bell states, linear cluster state and Dicke-class state. This paper proposes to implement their scheme in cavity quantum electrodynamics and then presents a new family of four-qubit entangled state |Ω/1234. It simultaneously includes all the well-known four-qubit entangled states which can be used to teleport an arbitrary two-qubit state. The distinct advantage of the scheme is that it only needs a single setup to prepare the whole family of four-qubit entangled states, which will be very convenient for experimental realization. After discussing the experimental condition in detail, we show the scheme may be feasible based on present technology in cavity quantum electrodynamics.展开更多
The Galilei covariant generalizations of the EM field equations (1984) (including moving media), Schroedinger, and Dirac (1985, 1993) equations for inertial frames S(w) with substratum velocity w are re- viewed. By G...The Galilei covariant generalizations of the EM field equations (1984) (including moving media), Schroedinger, and Dirac (1985, 1993) equations for inertial frames S(w) with substratum velocity w are re- viewed. By G-covariant electrodynamics, physical variables, e.g., rod length, clock rate, particle mass, momentum, and energy are G-invariants, determined by the object velocity v-w= vo=G-inv relative to the substratum frame, So(w=0) [v=object velocity relative to observer in S(w)] Galilean measurements using standard (i) contracted rods and (ii) retarded clocks, anisotropic light propagation, and conservation of EM energy and momentum in IFs S(w) are discussed. Fundamental experiments are formulated which permit measurement of substratum (w) induced EM and charge fields, the substratum velocity w, and verification of the G-invariance of the magnetic field, B= Bo=G-inv. The G-invariant Lagrangian and Hamiltonian of a charged particle in EM fields, and the momentum and energy conservation equations in Particle collisions are given for velocities |v-w|<co. The EM Doppler effects for moving source or moving observer are shown to exhibit measurable substratum effects. The spectral lines from a recoiling atom exhibit superimposed Doppler and substratum (w) shifts. The measurable substratum effects in the (i) aberration of light and (ii) reflection of light from a moving mirror are evaluated. The EM fields of accelerated charges in the substratum flow w are given, and applied to the anisotropic emission of x-rays in IFs S(w). G-covariant electrodynamics is examined for subluminal and superluminal electron velocities. Both the Cerenkov effect in (i) dielectrics for Iv--wl> c(ro) and (ii) vacuum for |v-w| > co are relative to the substratum So, and demonstrate the anisotropy of the vacuum in IFs S(w). G-covariant electrodynamics (relative to substratum) contains Lorentz covariant electrodynamics (relative to observer) in the special case w = 0 (So).展开更多
On the basis of a charged BTZ black hole,we add an extra term in the metric function to describe the contribution from nonlinear electrodynamics.In this way we artificially construct a(2+1)-dimensional black hole in g...On the basis of a charged BTZ black hole,we add an extra term in the metric function to describe the contribution from nonlinear electrodynamics.In this way we artificially construct a(2+1)-dimensional black hole in general relativity coupled with a nonlinear electrodynamics source.The thermodynamic quantities and Smarr formula are derived.It is found that this black hole has T-S criticality like that of an RN-Ad S black hole.Further modifying the metric function,we obtain a(2+1)-dimensional black hole possessing P-V critical behaviors similar to that of van der Waals fluid.To our knowledge,this is the first example of(2+1)-dimensional black holes having this kind of critical behavior.展开更多
Gauge potential plays an important role in exploring exotic phenomena in the single- and many-body quantum systems.In this paper,we propose a scheme to create both new Abelian and non-Abelian gauge potentials by adiab...Gauge potential plays an important role in exploring exotic phenomena in the single- and many-body quantum systems.In this paper,we propose a scheme to create both new Abelian and non-Abelian gauge potentials by adiabatically controlling the degenerate Dicke model in cavity quantum electrodynamics.It is shown that a non-Abelian gauge potential is achieved only for a single atom,whereas an Abelianizen diagonal gauge potential is realized for the atomic ensemble.More importantly,two interesting quantum phenomena such as the geometric phase and the magnetic monopole induced by our created gauge potentials are also predicted.The possible physical realization is presented in the macroscopic circuit quantum electrodynamics with the Cooper pair boxes,which act as the artificial two-level atoms controlled by the gate voltage and the external magnetic flux.展开更多
基金supported by the Ultrashort Quantum Beam Facility operation program(Grant No.140011)through APRI,GISTalso by the Institute of Basic Science(Grant No.IBSR038-D1).
文摘We present a 3+1 formulation of the light modes in nonlinear electrodynamics described by Plebanski-type Lagrangians,which include post-Maxwellian,Born-Infeld,ModMax,and Heisenberg-Euler-Schwinger QED Lagrangians.In nonlinear electrodynamics,strong electromagnetic fields modify the vacuum such that it acquires optical properties.Such a field-modified vacuum can possess electric permittivity,magnetic permeability,and a magneto-electric response,inducing novel phenomena such as vacuum birefringence.By exploiting the mathematical structures of Plebanski-type Lagrangians,we establish a streamlined procedure and explicit formulas to determine light modes,i.e.,refractive indices and polarization vectors for a given propagation direction.We also work out the light modes of the various Lagrangians for an arbitrarily strong magnetic field.The 3+1 formulation advanced in this paper has direct applications to the current vacuum birefringence research:terrestrial experiments using permanent magnets/ultra-intense lasers for the subcritical regime and astrophysical observation of X-rays from highly magnetized neutron stars for the near-critical and supercritical regimes.
基金supported by the National Natural Science Foundation of China (Grant No. 12105025)。
文摘Collective quantum states, such as subradiant and superradiant states, are useful for controlling optical responses in many-body quantum systems. In this work, we study novel collective quantum phenomena in waveguide-coupled Bragg atom arrays with inhomogeneous frequencies.For atoms without free-space dissipation, collectively induced transparency is produced by destructive quantum interference between subradiant and superradiant states. In a large Bragg atom array, multi-frequency photon transparency can be obtained by considering atoms with different frequencies. Interestingly, we find collectively induced absorption(CIA) by studying the influence of free-space dissipation on photon transport. Tunable atomic frequencies nontrivially modify decay rates of subradiant states. When the decay rate of a subradiant state equals to the free-space dissipation, photon absorption can reach a limit at a certain frequency. In other words, photon absorption is enhanced with low free-space dissipation, distinct from previous photon detection schemes. We also show multi-frequency CIA by properly adjusting atomic frequencies. Our work presents a way to manipulate collective quantum states and exotic optical properties in waveguide quantum electrodynamics(QED) systems.
文摘This work identifies the branch point, which was never explicit in EM treatises, from which came the choice of abandoning the Galilean transformations in favor of the Lorentz covariance, a path that originated the various relativistic theories. The need arising from the expanding Earth for a hydrodynamic mechanism for Newtonian and Coulomb fields is discussed. This hydrodynamic material mechanism is shown to constitute a completion of the Newton and Maxwell concepts of the fields, which were only a phenomenological description of physical reality. It is shown that the analogy between Maxwell’s equations and hydrodynamics cannot become a perfect correspondence. The lack of coupling of the electromagnetic field to the underlying material “causing field”—which induces hydrodynamical forces and accelerations observed only phenomenologically—gives rise to inaccuracies in the formulation of its equations, which are incorrect for Galilean covariance. But the most serious flaw in the original formulation of electromagnetism is the erroneous identification of the flow velocity of the field (variable as 1/r2) with the speed of light c, with which it was demonstrated that the fields of charges in motion contract in the direction of motion (the Heaviside ellipsoid, 1888, 1889). From this error, historically due to the incomplete development of many hydrodynamics sectors (a situation that persists today), came Fitz Gerald’s contractions and finally, the relativistic theories. Some future research lines are proposed for a return to realistic physics and a possible but still weak form of Galilean covariance.
基金Project supported by the National Natural Science Foundation of China (No. 60304009) and the Natural Science Foundation of Hebei Province of China (No. F2005000385)
文摘An expression of the generalized principle of virtual work for the boundary value problem of the linear and anisotropic electromagnetic field is given. Using Chien's method, a pair of generalized variational principles (GVPs) are established, which directly leads to all four Maxwell's equations, two intensity-potential equations, two constitutive equations, and eight boundary conditions. A family of constrained variational principles is derived sequentially. As additional verifications, two degenerated forms are obtained, equivalent to two known variational principles. Two modified GVPs are given to provide the hybrid finite element models for the present problem.
基金Supported by the National Natural Science Foundation of China under Grant No.10873004the Program for Excellent Talents in Hunan Normal University,the State Key Development Program for Basic Research Program of China under Grant No.2010CB832803+1 种基金the Key project of the National Natural Science Foundation of China under Grant No.10935013Construct Program of the National Key Discipline and the Program for Changjiang Scholars and Innovative Research Team in University under Grant No.IRT0964
文摘In this paper we investigate the scalar field evolution in the dyadosphere spacetime by using the third-order WKB approximation. We find that the coupling term between the gravitation and the nonlinear electrodynamics makes the scalar field decay more quickly and it also makes the scalar field oscillate more slowly. On the o'ther words, this coupling term takes effect on the scalar field evolution as a damping factor. At the same time these effects become more obvious for the scalar field with higher angle quantum number.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11504272,11774262,11474003,and 11504003)the National Key Basic Research Special Foundation(Grant No.2016YFA0302800)+2 种基金the Joint Fund of the National Natural Science Foundation of China(Grant No.U1330203)the Fund from the Shanghai Science and Technology Committee(STCSM)(Grant No.18JC1410900)the Natural Science Foundation of Anhui Province,China(Grant Nos.1408085MA19 and 1608085ME102)
文摘We theoretically study the collective decay of two atoms trapped in a single mode cavity and we describe the evolution of the population of Dicke states. We show that the collective decay property is strongly dependent on the phase of atomic radiation and the speeding up of collective decay can only be observed in a bad cavity regime. For in-or out-phase case,this occurs due to the quantum interference enhancement, no matter which atom is excited initially. For π/2 phase, the speeding up of collective decay takes place if the first atom is excited at the beginning. However, it disappears due to the quantum interference cancellation if the second atom is excited. Compared with the in-phase and out-phase cases,we also show that the speeding up of collective decay can be significantly enhanced in strong coupling regime for π/2 phase, although one atom is decoupled to the cavity in this condition. The study presented here is helpful to understand the physical mechanism of collective decay in cavity quantum electrodynamics and it provides a useful method to control the collective decay phenomenon via quantum interference effect.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.92265113,12074368,and 12034018).
文摘In this theoretical work,we describe a mechanism for the coupling between a plane structure consisting of four quantum dots and a resonator.We systematically study the dependence of the quadruple coupling strength and the qubit decoherence rate and point out the optimized operating position of the hybrid system.According to the transmission given by the input-output theory,the signatures in the resonator spectrum are predicted.Furthermore,based on the parameters already achieved in previous works,we prove that the device described in this paper can achieve the strong coupling limit,i.e.,this approach can be used for system extension under the existing technical conditions.Our results show an effective and promotable approach to couple quantum dot structures in plane with the resonator and propose a meaningful extension method.
基金Project supported by the National Fundamental Research Program of China(Grant No.2011cba00200)the National Natural Science Foundation of China(Grant No.11274295)the Doctor Foundation of Education Ministry of China(Grant No.20113402110059)
文摘We theoretically study the system of a superconducting transmission line resonator coupled to two interacting super- conducting flux qubits. It is shown that under certain conditions the resonator mode can be tuned to two-photon resonance between the ground state and the highest excited state while the middle excited states are far-off resonance. Furthermore, we study the steady-state properties of the flux qubits and resonator, such as the photon statistics, the spectrum and squeezing of the resonator, and demonstrate that two-photon laser can be implemented with current experimental technology.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10875003).
文摘Quantum electrodynamics in a laser is formulated, in which the electron–laser interaction is exactly considered, while the interaction of an electron and a single photon is considered by perturbation. The formulation is applied to the electron– laser collisions. The effect of coherence between photons in the laser is therefore fully considered in these collisions. The possibility of γ-ray laser generation by use of this kind of collision is discussed.
基金supported by the National Natural Science Foundation of China (Grant No 60667001)
文摘This paper presents a scheme for implementing a Fredkin gate on three modes of a cavity. The scheme is based on the dispersive atom-cavity interaction. By modulating the cavity frequency and the atomic transition frequency appropriately, it obtains the effective form of nonlinear interaction between photons in the three-mode cavity. This availability is testified via numerical analysis. It also considers both the situations with and without dissipation.
基金supported in part by NSFC(Grant No.11375121,11747171,11747302 and 11847305)Natural Science Foundation of Chengdu University of TCM(Grants No.ZRYY1729 and ZRQN1656)+2 种基金Discipline Talent Promotion Program of Xinglin Scholars(Grant No.QNXZ2018050)The Key Fund Project for Education Department of Sichuan(Grant No.18ZA0173)Sichuan University Students Platform for Innovation and Entrepreneurship Training Program(Grant No.C2019104639).
文摘In this paper,we study the thermodynamics and the weak cosmic censorship conjecture of the nonlinear electrodynamics black hole under the scattering of a charged complex scalar field.According to the energy and charge fluxes of the scalar field,the variations of this black hole’s energy and charge can be calculated during an infinitesimal time interval.With scalar field scattering,the variation of the black hole is calculated in the extended and normal phase spaces.In the normal phase space,the cosmological constant and the normalization parameter are fixed,and the first and second laws of thermodynamics can also be satisfied.In the extended phase space,the cosmological constant and the normalization parameter are considered as thermodynamic variables,and the first law of thermodynamics is valid,but the second law of thermodynamics is not valid.Furthermore,the weak cosmic censorship conjecture is both valid in the extended and normal phase spaces.
文摘We calculate the scattering cross section of an electron with respect to the spontaneously produced laser radiation in the first free-electron laser (FEL) with quantum-wiggler electrodynamics (QWD). The cross section is 1016 times the Thomson cross section, confirming the result obtained by a previous analysis of the experimental data. A QWD calculation show that spontaneous emission in an FEL using only an electric wiggler can be very strong while amplification through net stimulated emission is practically negligible.
文摘This theory aims beyond the possibilities being available from the Standard Model. Examples are given by the directly obtained rest masses of the elementary particles, the deduced values of the elementary charge and of the mass of the boson detected by CERN which are close to their experimental data, and by an incorporated spin of the photon.
文摘We investigate the dynamics of a charged particle being kicked off from its circular orbit around a regular black hole by an incoming massive particle in the presence of magnetic field. The resulting escape velocity, escape energy and the effective potential are analyzed. It is shown that the presence of even a very weak magnetic field helps the charged particles in escaping the gravitational field of the black hole. Moreover the effective force acting on the particle visibly reduces with distance. Thus particle near the black hole will experience higher effective force as compared to when it is far away.
文摘Using nonlinear electrodynamics coupled to teleparallel theory of gravity, regular charged spherically symmetric solutions are obtained. The nonlinear theory is reduced to the Maxwell one in the weak limit and the solutions correspond to charged spacetimes. One of the obtained solutions contains an arbitrary function which we call general solution since we can generate from it the other solutions. The metric associated with these spacetimes is the same, i.e., regular charged static spherically symmetric black hole. In calculating the energy content of the general solution using the gravitational energy momentum within the framework of the teleparallel geometry, we find that the resulting form depends on the arbitrary function. Using the regularized expression of the gravitational energy-momentum we obtain the value of energy.
基金supported by the National High Technology Research and Development Program of China (Grant No. 2009AA03Z405)the National Natural Science Foundation of China (Grant Nos. 60908028, 60971068, and 10979065)+1 种基金the Program for New Century Excellent Talents in University (Grant No. NTCE-10-0261)the Chinese Universities Scientific Fund (Grant No. 2011RC0402)
文摘We investigate theoretically two photon entanglement processes in a photonic-crystal cavity embedding a quantum dot in tile strong-coupling regime. The model proposed by Johne et al. (Johne R, Gippius N A, Pavlovic G, Solnyshkov D D, Shelykh I A and Malpuech G 2008 Phys. Rev. Lett. 100 240404), and by Robert et al. (Robert J, Gippius N A and Malpuech G 2009 Phys. Rev. B 79 155317) is modified by considering irreversible dissipation and incoherent continuous pumping for the quantum dot, which is necessary to connect the realistic experiment. The dynamics of tile system is analysed by employing the Born Markov master equation, through which the spectra for the system are computed as a fnnction of various parameters. By means of this analysis the photon-reabsorption process in the strong- coupling regime is first observed and analysed from the perspective of radiation spectrum and the optimal parameters for observing energy-entangled photon pairs are identified.
文摘Recently, Peng et al. [2010 Eur. Phys. J. D 58 403] proposed to teleport an arbitrary two-qubit state with a family of four-qubit entangled states, which simultaneously include the tensor product of two Bell states, linear cluster state and Dicke-class state. This paper proposes to implement their scheme in cavity quantum electrodynamics and then presents a new family of four-qubit entangled state |Ω/1234. It simultaneously includes all the well-known four-qubit entangled states which can be used to teleport an arbitrary two-qubit state. The distinct advantage of the scheme is that it only needs a single setup to prepare the whole family of four-qubit entangled states, which will be very convenient for experimental realization. After discussing the experimental condition in detail, we show the scheme may be feasible based on present technology in cavity quantum electrodynamics.
文摘The Galilei covariant generalizations of the EM field equations (1984) (including moving media), Schroedinger, and Dirac (1985, 1993) equations for inertial frames S(w) with substratum velocity w are re- viewed. By G-covariant electrodynamics, physical variables, e.g., rod length, clock rate, particle mass, momentum, and energy are G-invariants, determined by the object velocity v-w= vo=G-inv relative to the substratum frame, So(w=0) [v=object velocity relative to observer in S(w)] Galilean measurements using standard (i) contracted rods and (ii) retarded clocks, anisotropic light propagation, and conservation of EM energy and momentum in IFs S(w) are discussed. Fundamental experiments are formulated which permit measurement of substratum (w) induced EM and charge fields, the substratum velocity w, and verification of the G-invariance of the magnetic field, B= Bo=G-inv. The G-invariant Lagrangian and Hamiltonian of a charged particle in EM fields, and the momentum and energy conservation equations in Particle collisions are given for velocities |v-w|<co. The EM Doppler effects for moving source or moving observer are shown to exhibit measurable substratum effects. The spectral lines from a recoiling atom exhibit superimposed Doppler and substratum (w) shifts. The measurable substratum effects in the (i) aberration of light and (ii) reflection of light from a moving mirror are evaluated. The EM fields of accelerated charges in the substratum flow w are given, and applied to the anisotropic emission of x-rays in IFs S(w). G-covariant electrodynamics is examined for subluminal and superluminal electron velocities. Both the Cerenkov effect in (i) dielectrics for Iv--wl> c(ro) and (ii) vacuum for |v-w| > co are relative to the substratum So, and demonstrate the anisotropy of the vacuum in IFs S(w). G-covariant electrodynamics (relative to substratum) contains Lorentz covariant electrodynamics (relative to observer) in the special case w = 0 (So).
基金supported in part by the National Natural Science Foundation of China(Grant No.11605107)the Natural Science Foundation of Shanxi Province of China(Grant No.201701D121002)Datong City Key Project of Research and Development of Industry of China(Grant No.2018021)。
文摘On the basis of a charged BTZ black hole,we add an extra term in the metric function to describe the contribution from nonlinear electrodynamics.In this way we artificially construct a(2+1)-dimensional black hole in general relativity coupled with a nonlinear electrodynamics source.The thermodynamic quantities and Smarr formula are derived.It is found that this black hole has T-S criticality like that of an RN-Ad S black hole.Further modifying the metric function,we obtain a(2+1)-dimensional black hole possessing P-V critical behaviors similar to that of van der Waals fluid.To our knowledge,this is the first example of(2+1)-dimensional black holes having this kind of critical behavior.
基金Supported by the National Natural Science Foundation of China under Grant Nos.10904092,10934004,60978018,11074184,and 11074154the Zhejiang Provincial Natural Science Foundation under Grant No.Y6090001
文摘Gauge potential plays an important role in exploring exotic phenomena in the single- and many-body quantum systems.In this paper,we propose a scheme to create both new Abelian and non-Abelian gauge potentials by adiabatically controlling the degenerate Dicke model in cavity quantum electrodynamics.It is shown that a non-Abelian gauge potential is achieved only for a single atom,whereas an Abelianizen diagonal gauge potential is realized for the atomic ensemble.More importantly,two interesting quantum phenomena such as the geometric phase and the magnetic monopole induced by our created gauge potentials are also predicted.The possible physical realization is presented in the macroscopic circuit quantum electrodynamics with the Cooper pair boxes,which act as the artificial two-level atoms controlled by the gate voltage and the external magnetic flux.