现有的学生行为识别方法存在识别准确率低等问题,研究提出了基于改进You Only Look Once version 5模型的学生行为识别方法。该方法引入增强交并比和Varifocal Loss函数,半自动标注优化数据集,构建行为识别预测系统。实验表明,改进模型...现有的学生行为识别方法存在识别准确率低等问题,研究提出了基于改进You Only Look Once version 5模型的学生行为识别方法。该方法引入增强交并比和Varifocal Loss函数,半自动标注优化数据集,构建行为识别预测系统。实验表明,改进模型收敛速度最快,最小损失值比其他模型平均低0.018,看黑板行为识别准确率提升4.7%。看手机行为置信度提升3.3%。由此可得,改进模型能够提升行为识别准确率,为教学工作提供帮助。展开更多
无人机由于其成本低廉、敏捷、灵活并且可以搭载高分辨率摄像头和传感器,正在成为各个行业不可或缺的工具。在检测环境中,无人机可以适应复杂地形以及恶劣气候,收集到大气、土壤等各项珍贵数据。在工业探索领域,无人机可以代替人工对于...无人机由于其成本低廉、敏捷、灵活并且可以搭载高分辨率摄像头和传感器,正在成为各个行业不可或缺的工具。在检测环境中,无人机可以适应复杂地形以及恶劣气候,收集到大气、土壤等各项珍贵数据。在工业探索领域,无人机可以代替人工对于危险地域的探查,降低事故的发生率。在海上救援方面,无人机可以快速定位到遇险的船舶,提升救援人员的救援效率。然而,无人机在此情况下的目标检测任务仍然面临不小挑战,如目标被障碍物遮挡、太阳光照的变化等。为了提高无人机在海上救援中的船舶检测性能,本文提出了一种基于改进YOLOv10(You Only Look Once,YOLO)的目标检测算法,加入了CA注意力机制,并采取EIoU损失函数。实验结果表明,相对于原始的YOLOv10模型,实验数据集在ACE-YOLOv10模型中获得了更好的结果。展开更多
针对YOLO v5l(you only look once version 5 large)算法对于小目标、少样本且背景复杂的排水管道缺陷图像检测的精度低、误检和漏检率较高等问题,提出了一种基于YOLO v5l-Im算法的排水管道缺陷检测改进方法。做了三点改进:首先提出了Fo...针对YOLO v5l(you only look once version 5 large)算法对于小目标、少样本且背景复杂的排水管道缺陷图像检测的精度低、误检和漏检率较高等问题,提出了一种基于YOLO v5l-Im算法的排水管道缺陷检测改进方法。做了三点改进:首先提出了Focal-EIoU(focal embedding intersection over union)损失函数,有效提升了检测模型的性能;其次为增强检测模型对小目标缺陷的检测效果,减少缺陷误检和漏检的概率,将骨干网络中浅层特征图融合到双向特征金字塔网络(bidirectional feature pyramid network,BiFPN)中,增加针对小目标的预测层;最后在YOLO v5l中引入坐标注意力机制(coordinate attention,CA),提高模型对图像中感兴趣区域的敏感程度,减少冗余背景信息的干扰。3种改进对平均检测准确率(mean average precision,mAP)的提升分别为2.0、2.9、5.9个百分点。将三种有效改进融合到一起,检测结果表明:本文提出的YOLO v5l-Im模型的mAP达到了92.1%,较原模型的85.5%提升了6.5个百分点。由此可见,所做的改进有效增强了YOLO v5l对排水管道缺陷的检测能力。展开更多
针对在自动驾驶领域中,由于道路场景复杂,目前已有的检测方法存在检测准确率不高,且检测目标单一的问题,提出了一种基于改进YOLOv5s(You Only Look Once version 5)的面向自动驾驶的道路目标检测算法,能够实现车辆、行人、信号灯、交通...针对在自动驾驶领域中,由于道路场景复杂,目前已有的检测方法存在检测准确率不高,且检测目标单一的问题,提出了一种基于改进YOLOv5s(You Only Look Once version 5)的面向自动驾驶的道路目标检测算法,能够实现车辆、行人、信号灯、交通标志等多个目标的同时检测。首先,在原有模型的基础上,引入EIoU损失函数实现YOLOv5输出端预测框的优化,使收敛速度更快;用YOLOv8的C2f模块替换原模型的C3模块,提高小目标精度;改进YOLOv5的目标检测框架为OTA,在保证检测精度的同时,提升检测速度,降低对设备的要求。然后,在保证以上三者可行的情况下加入单目相机测距,实现目标距离的实时精确跟踪并对危险作出预警。最后,建立数据集并进行数据增强,训练数据集。通过消融试验发现,改进后模型比原模型整体精度提高了2%,各目标训练精度与召回率的概率均达到99%以上,在目标跟踪实验中能够实时地显示距离并对危险作出预警,证明了该方法是可行和有效的。展开更多
文摘现有的学生行为识别方法存在识别准确率低等问题,研究提出了基于改进You Only Look Once version 5模型的学生行为识别方法。该方法引入增强交并比和Varifocal Loss函数,半自动标注优化数据集,构建行为识别预测系统。实验表明,改进模型收敛速度最快,最小损失值比其他模型平均低0.018,看黑板行为识别准确率提升4.7%。看手机行为置信度提升3.3%。由此可得,改进模型能够提升行为识别准确率,为教学工作提供帮助。
文摘无人机由于其成本低廉、敏捷、灵活并且可以搭载高分辨率摄像头和传感器,正在成为各个行业不可或缺的工具。在检测环境中,无人机可以适应复杂地形以及恶劣气候,收集到大气、土壤等各项珍贵数据。在工业探索领域,无人机可以代替人工对于危险地域的探查,降低事故的发生率。在海上救援方面,无人机可以快速定位到遇险的船舶,提升救援人员的救援效率。然而,无人机在此情况下的目标检测任务仍然面临不小挑战,如目标被障碍物遮挡、太阳光照的变化等。为了提高无人机在海上救援中的船舶检测性能,本文提出了一种基于改进YOLOv10(You Only Look Once,YOLO)的目标检测算法,加入了CA注意力机制,并采取EIoU损失函数。实验结果表明,相对于原始的YOLOv10模型,实验数据集在ACE-YOLOv10模型中获得了更好的结果。
文摘针对YOLO v5l(you only look once version 5 large)算法对于小目标、少样本且背景复杂的排水管道缺陷图像检测的精度低、误检和漏检率较高等问题,提出了一种基于YOLO v5l-Im算法的排水管道缺陷检测改进方法。做了三点改进:首先提出了Focal-EIoU(focal embedding intersection over union)损失函数,有效提升了检测模型的性能;其次为增强检测模型对小目标缺陷的检测效果,减少缺陷误检和漏检的概率,将骨干网络中浅层特征图融合到双向特征金字塔网络(bidirectional feature pyramid network,BiFPN)中,增加针对小目标的预测层;最后在YOLO v5l中引入坐标注意力机制(coordinate attention,CA),提高模型对图像中感兴趣区域的敏感程度,减少冗余背景信息的干扰。3种改进对平均检测准确率(mean average precision,mAP)的提升分别为2.0、2.9、5.9个百分点。将三种有效改进融合到一起,检测结果表明:本文提出的YOLO v5l-Im模型的mAP达到了92.1%,较原模型的85.5%提升了6.5个百分点。由此可见,所做的改进有效增强了YOLO v5l对排水管道缺陷的检测能力。
文摘针对在自动驾驶领域中,由于道路场景复杂,目前已有的检测方法存在检测准确率不高,且检测目标单一的问题,提出了一种基于改进YOLOv5s(You Only Look Once version 5)的面向自动驾驶的道路目标检测算法,能够实现车辆、行人、信号灯、交通标志等多个目标的同时检测。首先,在原有模型的基础上,引入EIoU损失函数实现YOLOv5输出端预测框的优化,使收敛速度更快;用YOLOv8的C2f模块替换原模型的C3模块,提高小目标精度;改进YOLOv5的目标检测框架为OTA,在保证检测精度的同时,提升检测速度,降低对设备的要求。然后,在保证以上三者可行的情况下加入单目相机测距,实现目标距离的实时精确跟踪并对危险作出预警。最后,建立数据集并进行数据增强,训练数据集。通过消融试验发现,改进后模型比原模型整体精度提高了2%,各目标训练精度与召回率的概率均达到99%以上,在目标跟踪实验中能够实时地显示距离并对危险作出预警,证明了该方法是可行和有效的。