A detailed knowledge of the thickness of the lithosphere in the North China craton(NCC) is important for understanding the significant tectonic reactivation of the craton in Mesozoic and Ce-nozoic.We achieve this go...A detailed knowledge of the thickness of the lithosphere in the North China craton(NCC) is important for understanding the significant tectonic reactivation of the craton in Mesozoic and Ce-nozoic.We achieve this goal by applying the newly proposed continuous wavelet transform theory to the Gravity Field Model(EGM 2008) data in the region.Distinct structural variations are identified in the scalogram image of profile Alxa-Datong(大同)-Qingdao(青岛)-Yellow Sea(profile ABC),trans-versing the main units of NCC,which we interpret as mainly representing the Moho and lithosphere-asthenosphere boundary(LAB) undulations.The imaged LAB is as shallow as 60-70 km in the south-east basin and coastal areas and deepens to no more than 140 km in the northwest mountain ranges and continental interior.A rapid change of about 30 km in the LAB depth was detected at around the boundary between the Bohai(渤海) Bay basin(BBB) and the Taihang(太行) Mountains(TM),roughly coincident with the distinct gravity decrease of more than 100 mGal that marks the North-South Grav-ity Lineament(NSGL) in the region.At last we present the gravity modeling work based on the spectral analysis results,incorporating with the observations on high-resolution seismic images and surface to-pography.The observed structural differences between the eastern and western NCC are likely associ-ated with different lithospheric tectonics across the NSGL.Combined with seismic tomography results and geochemical and petrological data,this sug-gests that complex modification of the litho-sphere probably accompanied significant litho-spheric thinning during the tectonic reactivation of the old craton.展开更多
The basic principle of spectral combination method is discussed,and the general expressions of the spectral weight and spectral combination of the united-processing of various types of gravimetric data are shown.What...The basic principle of spectral combination method is discussed,and the general expressions of the spectral weight and spectral combination of the united-processing of various types of gravimetric data are shown.What's more,based on degree error RMS of potential coefficients,the detailed expressions of spectral combination formulae and the corresponding spectral weights in the Earth's gravitational field model(EGM) determination using GOCE + GRACE and CHAMP + GRACE + GOCE are derived.The fundamental situation that ulux-champ2013 s,tongji-GRACE01,go-cons-gcf-2-tim-r5 constructed respectively by CHAMP,GRACE,GOCE data and go-cons-gcf-2-dir-r5 constructed by syncretic processing of GRACE,GOCE and LAGEOS data are explained briefly,the degree error RMS,cumulative geoid height error and cumulative gravity anomaly error of these models are calculated.A syncretic model constructed from CHAMP,GRACE and GOCE data,which is expressed by champ + grace + goce,is obtained based on spectral combination method.Experimentation results show that the precision of CHAMP data model is the lowest in satellite-only models,so it is not needed in the determination of syncretic models.The GRACE data model can improve the GOCE data model in medium-long wavelength,so the overall precision of syncretic model can be improved.Consequently,as many types of gravimetric data as possible should be combined together in the data processing in order to strengthen the quality and reliability with widening scope and improve the precision and spatial resolution of the computational results.展开更多
Knowing Moho discontinuity undulation is fundamental to understanding mechanisms of lithosphereasthenosphere interaction, extensional tectonism and crustal deformation in volcanic passive margins such as the study are...Knowing Moho discontinuity undulation is fundamental to understanding mechanisms of lithosphereasthenosphere interaction, extensional tectonism and crustal deformation in volcanic passive margins such as the study area, which is located in the southwestern corner of the Arabian Peninsula bounded by the Red Sea and the Gulf of Aden. In this work, a 3D Moho depth model of the study area is constructed for the first time by inverting gravity data from the Earth Gravitational Model(EGM2008) using the ParkerOldenburg algorithm. This model indicates the shallow zone is situated at depths of 20 km to 24 km beneath coastal plains, whereas the deep zone is located below the plateau at depths of 30 km to 35 km and its deepest part coincides mainly with the Dhamar-Rada ’a Quaternary volcanic field. The results also indicate two channels of hot magmatic materials joining both the Sana’a-Amran Quaternary volcanic field and the Late Miocene Jabal An Nar volcanic area with the Dhamar-Rada’a volcanic field. This conclusion is supported by the widespread geothermal activity(of mantle origin) distributed along these channels,isotopic data, and the upper mantle low velocity zones indicated by earlier studies.展开更多
基金supported by the National Natural ScienceFoundation of China (Nos. 91014002,40821061)the SpecialFund for Basic Scientific Research of Central Colleges,China University of Geosciences (Wuhan) (No. CUGL100205)+1 种基金the Ph.D. Program Foundation of Ministry of Education of Chinafor Distinguished Young Scholars (No. 200804911523)the Ministry of Education of China (No. B07039)
文摘A detailed knowledge of the thickness of the lithosphere in the North China craton(NCC) is important for understanding the significant tectonic reactivation of the craton in Mesozoic and Ce-nozoic.We achieve this goal by applying the newly proposed continuous wavelet transform theory to the Gravity Field Model(EGM 2008) data in the region.Distinct structural variations are identified in the scalogram image of profile Alxa-Datong(大同)-Qingdao(青岛)-Yellow Sea(profile ABC),trans-versing the main units of NCC,which we interpret as mainly representing the Moho and lithosphere-asthenosphere boundary(LAB) undulations.The imaged LAB is as shallow as 60-70 km in the south-east basin and coastal areas and deepens to no more than 140 km in the northwest mountain ranges and continental interior.A rapid change of about 30 km in the LAB depth was detected at around the boundary between the Bohai(渤海) Bay basin(BBB) and the Taihang(太行) Mountains(TM),roughly coincident with the distinct gravity decrease of more than 100 mGal that marks the North-South Grav-ity Lineament(NSGL) in the region.At last we present the gravity modeling work based on the spectral analysis results,incorporating with the observations on high-resolution seismic images and surface to-pography.The observed structural differences between the eastern and western NCC are likely associ-ated with different lithospheric tectonics across the NSGL.Combined with seismic tomography results and geochemical and petrological data,this sug-gests that complex modification of the litho-sphere probably accompanied significant litho-spheric thinning during the tectonic reactivation of the old craton.
基金supported by the National Natural Science Foundation of China(41304022)the National 973 Foundation(61322201,2013CB733303)the Youth Innovation Foundation of High Resolution Earth Observation(GFZX04060103-5-12)
文摘The basic principle of spectral combination method is discussed,and the general expressions of the spectral weight and spectral combination of the united-processing of various types of gravimetric data are shown.What's more,based on degree error RMS of potential coefficients,the detailed expressions of spectral combination formulae and the corresponding spectral weights in the Earth's gravitational field model(EGM) determination using GOCE + GRACE and CHAMP + GRACE + GOCE are derived.The fundamental situation that ulux-champ2013 s,tongji-GRACE01,go-cons-gcf-2-tim-r5 constructed respectively by CHAMP,GRACE,GOCE data and go-cons-gcf-2-dir-r5 constructed by syncretic processing of GRACE,GOCE and LAGEOS data are explained briefly,the degree error RMS,cumulative geoid height error and cumulative gravity anomaly error of these models are calculated.A syncretic model constructed from CHAMP,GRACE and GOCE data,which is expressed by champ + grace + goce,is obtained based on spectral combination method.Experimentation results show that the precision of CHAMP data model is the lowest in satellite-only models,so it is not needed in the determination of syncretic models.The GRACE data model can improve the GOCE data model in medium-long wavelength,so the overall precision of syncretic model can be improved.Consequently,as many types of gravimetric data as possible should be combined together in the data processing in order to strengthen the quality and reliability with widening scope and improve the precision and spatial resolution of the computational results.
文摘Knowing Moho discontinuity undulation is fundamental to understanding mechanisms of lithosphereasthenosphere interaction, extensional tectonism and crustal deformation in volcanic passive margins such as the study area, which is located in the southwestern corner of the Arabian Peninsula bounded by the Red Sea and the Gulf of Aden. In this work, a 3D Moho depth model of the study area is constructed for the first time by inverting gravity data from the Earth Gravitational Model(EGM2008) using the ParkerOldenburg algorithm. This model indicates the shallow zone is situated at depths of 20 km to 24 km beneath coastal plains, whereas the deep zone is located below the plateau at depths of 30 km to 35 km and its deepest part coincides mainly with the Dhamar-Rada ’a Quaternary volcanic field. The results also indicate two channels of hot magmatic materials joining both the Sana’a-Amran Quaternary volcanic field and the Late Miocene Jabal An Nar volcanic area with the Dhamar-Rada’a volcanic field. This conclusion is supported by the widespread geothermal activity(of mantle origin) distributed along these channels,isotopic data, and the upper mantle low velocity zones indicated by earlier studies.