电场积分方程(electric field integral equation,EFIE)“低频崩溃”现象是指当电磁波波长远大于离散单元的尺寸时,分析结果不准确的现象。它的发生与计算机浮点数的字长有关,高精度浮点数的普及有助于缓解低频崩溃现象的发生,但目前还...电场积分方程(electric field integral equation,EFIE)“低频崩溃”现象是指当电磁波波长远大于离散单元的尺寸时,分析结果不准确的现象。它的发生与计算机浮点数的字长有关,高精度浮点数的普及有助于缓解低频崩溃现象的发生,但目前还没有关于不同精度的浮点数的低频崩溃临界阈值的研究报道。本文定量研究了不同字长浮点数的EFIE不发生低频崩溃的适用范围,以便在该适用范围内,研究人员仅须简单地修改现有EFIE代码的浮点数字长就可以进行电磁特性的准确分析而不发生低频崩溃,避免现有低频问题都需要修改基函数或积分方程等分析技术,为低频电磁分析增加了一种可选择的简便解决办法。经过数值算例的验证,高精度浮点数的EFIE可以将低频崩溃现象发生的离散网格的电尺寸降低到2.5×10^(−13),这已经能够处理我们常见的低频崩溃问题。展开更多
A computer-based simulation and test system is developed. This system has the following functions: producing the initial control MAP with good accuracy, calibrating the electronic control unit (ECU) on-line, (identify...A computer-based simulation and test system is developed. This system has the following functions: producing the initial control MAP with good accuracy, calibrating the electronic control unit (ECU) on-line, (identifying) the dynamic transfer functions for air/fuel ratio, idle speed and ignition timing control. So the experiment work is reduced and the calibration is accelerated. In order to increase the simulation accuracy of the initial control MAP, the mathematical models are not only based on theoretical equations, but also on the control data of reference working points, which is obtained by the on-line calibration of special engines. The application of this system on a mini-car shows that the simulated control MAP has good accuracy, the interface of the system is friendly, the integrated simulation and test system is a powerful aid for EFI engine calibration and the development speed is accelerated.展开更多
文摘电场积分方程(electric field integral equation,EFIE)“低频崩溃”现象是指当电磁波波长远大于离散单元的尺寸时,分析结果不准确的现象。它的发生与计算机浮点数的字长有关,高精度浮点数的普及有助于缓解低频崩溃现象的发生,但目前还没有关于不同精度的浮点数的低频崩溃临界阈值的研究报道。本文定量研究了不同字长浮点数的EFIE不发生低频崩溃的适用范围,以便在该适用范围内,研究人员仅须简单地修改现有EFIE代码的浮点数字长就可以进行电磁特性的准确分析而不发生低频崩溃,避免现有低频问题都需要修改基函数或积分方程等分析技术,为低频电磁分析增加了一种可选择的简便解决办法。经过数值算例的验证,高精度浮点数的EFIE可以将低频崩溃现象发生的离散网格的电尺寸降低到2.5×10^(−13),这已经能够处理我们常见的低频崩溃问题。
文摘A computer-based simulation and test system is developed. This system has the following functions: producing the initial control MAP with good accuracy, calibrating the electronic control unit (ECU) on-line, (identifying) the dynamic transfer functions for air/fuel ratio, idle speed and ignition timing control. So the experiment work is reduced and the calibration is accelerated. In order to increase the simulation accuracy of the initial control MAP, the mathematical models are not only based on theoretical equations, but also on the control data of reference working points, which is obtained by the on-line calibration of special engines. The application of this system on a mini-car shows that the simulated control MAP has good accuracy, the interface of the system is friendly, the integrated simulation and test system is a powerful aid for EFI engine calibration and the development speed is accelerated.