期刊文献+
共找到6,247篇文章
< 1 2 250 >
每页显示 20 50 100
A Novel Real‑time Phase Prediction Network in EEG Rhythm
1
作者 Hao Liu Zihui Qi +4 位作者 Yihang Wang Zhengyi Yang Lingzhong Fan Nianming Zuo Tianzi Jiang 《Neuroscience Bulletin》 2025年第3期391-405,共15页
Closed-loop neuromodulation,especially using the phase of the electroencephalography(EEG)rhythm to assess the real-time brain state and optimize the brain stimulation process,is becoming a hot research topic.Because t... Closed-loop neuromodulation,especially using the phase of the electroencephalography(EEG)rhythm to assess the real-time brain state and optimize the brain stimulation process,is becoming a hot research topic.Because the EEG signal is non-stationary,the commonly used EEG phase-based prediction methods have large variances,which may reduce the accuracy of the phase prediction.In this study,we proposed a machine learning-based EEG phase prediction network,which we call EEG phase prediction network(EPN),to capture the overall rhythm distribution pattern of subjects and map the instantaneous phase directly from the narrow-band EEG data.We verified the performance of EPN on pre-recorded data,simulated EEG data,and a real-time experiment.Compared with widely used state-of-the-art models(optimized multi-layer filter architecture,auto-regress,and educated temporal prediction),EPN achieved the lowest variance and the greatest accuracy.Thus,the EPN model will provide broader applications for EEG phase-based closed-loop neuromodulation. 展开更多
关键词 Real-time eeg phase prediction Closedloop neuromodulation eeg phase-triggered regulation eeg rhythm TMS-eeg co-registration
原文传递
基于EEG分析的高校室内学习空间芳香植物对大学生注意力恢复效益研究 被引量:1
2
作者 李同予 羿可 +2 位作者 安欣 薛滨夏 赖锦玉 《西部人居环境学刊》 北大核心 2025年第4期51-58,共8页
为改善高校学生群体的身心健康状况,提升校园室内学习空间的注意力恢复效益,选取茉莉、柠檬和香薄荷三种植物作为芳香疗法的应用材料,以脑电波信号数据评估被试的注意力集中水平反映其恢复性效益,以简易心理状况评定量表获取被试初始心... 为改善高校学生群体的身心健康状况,提升校园室内学习空间的注意力恢复效益,选取茉莉、柠檬和香薄荷三种植物作为芳香疗法的应用材料,以脑电波信号数据评估被试的注意力集中水平反映其恢复性效益,以简易心理状况评定量表获取被试初始心理状态,采用生理指标与心理指标相结合的方法对不同种类、不同气味强度的活体芳香植物对不同心理状态下高校学生群体的注意力恢复作用展开探究。结果表明,在高校室内学习空间中应用芳香疗法对处于学习状态下的学生群体具有一定的注意力恢复作用,并且活体芳香植物的种类、气味强度不同程度地影响了其注意力恢复水平,而被试本身的心理状态对恢复作用影响不大。芳香疗法的应用是提升高校室内学习空间注意力恢复效益的可靠途径,需合理配置适当气味强度下的活体芳香植物以达到最佳的注意力恢复效果。 展开更多
关键词 大学校园恢复性环境 芳香疗法 注意力恢复 室内学习空间 eeg分析
在线阅读 下载PDF
高密度静息态EEG数据的开放获取:现状、挑战与展望
3
作者 郭亚彤 胡静怡 雷旭 《心理科学进展》 北大核心 2025年第9期1575-1591,共17页
本研究系统分析了高密度静息态脑电(resting-state EEG)开放获取的基本现状、典型应用和未来前景。静息态脑电因其实验简便、成本低廉、无创和高时间分辨率而被广泛使用。目前,国际共享数据集主要来自欧美,以中青年健康人群为主,这些数... 本研究系统分析了高密度静息态脑电(resting-state EEG)开放获取的基本现状、典型应用和未来前景。静息态脑电因其实验简便、成本低廉、无创和高时间分辨率而被广泛使用。目前,国际共享数据集主要来自欧美,以中青年健康人群为主,这些数据集在神经发育、精神疾病识别等基础研究和临床应用领域发挥了重要作用,并在精神疾病的生物标志物研究中取得显著成果。然而,现有数据库在地域、人群、采集范式和队列建设上存在局限。未来,需扩大样本范围,开展多时间点、多生理心理指标的队列研究,发展多中心大样本数据处理工具,充分结合人工智能技术,并注重数据共享的可查找、可访问、可互操作和可重用原则。高密度静息态EEG的开放获取将为脑功能精准评估提供强有力的数据支持。 展开更多
关键词 静息态eeg 开放获取 高密度eeg 数据库 FAIR原则
在线阅读 下载PDF
“鸣安方”治疗心脾两虚型特发性耳鸣的短期疗效观察及EEG脑电机制研究 被引量:1
4
作者 霍岩 陈泽勋 +5 位作者 刘广宇 郑伟 陈斯 纪万里 李明 张剑宁 《中国中西医结合耳鼻咽喉科杂志》 2025年第1期11-17,5,共8页
目的 观察“鸣安方”治疗心脾两虚型特发性耳鸣的短期疗效,运用生物反馈仪采集分析患者EEG,探讨其脑电中枢机制。方法 选取于上海中医药大学附属岳阳中西医结合医院耳鼻咽喉科耳鸣专病门诊2022年7月~2023年10月期间就诊的心脾两虚型特... 目的 观察“鸣安方”治疗心脾两虚型特发性耳鸣的短期疗效,运用生物反馈仪采集分析患者EEG,探讨其脑电中枢机制。方法 选取于上海中医药大学附属岳阳中西医结合医院耳鼻咽喉科耳鸣专病门诊2022年7月~2023年10月期间就诊的心脾两虚型特发性耳鸣患者304例,随机分为基础治疗组(耳鸣交流解惑+声治疗,例=152)和“鸣安方”组(基础治疗+鸣安方治疗,例=152)。治疗2周后对两组患者治疗前后进行耳鸣残疾量表(THI)、阿森斯失眠量表(AIS)、视觉模拟评分(VAS)、焦虑自评量表(SAS)、抑郁自评量表(SDS)及纯音听阈(PTA)评估,比较两组的临床疗效。同时运用生物反馈仪采集分析鸣安方组患者治疗前后EEG,分析治疗前后δ波、θ波、α波、β波能量值及SMR节律变化,比较心脾两虚型主观特发性耳鸣患者在“鸣安方”治疗前后的脑电波变化趋势。结果 (1)两组治疗后THI评分较治疗前均明显降低(P<0.001),鸣安方组THI评分较基础治疗组低(P<0.05);(2)两组治疗后VAS评分较治疗前均明显降低(P<0.05),治疗结束后,鸣安方组VAS评分较基础治疗组明显降低(P<0.05);(3)鸣安方组治疗后AIS、SDS评分较治疗前均明显降低(P<0.001),治疗后鸣安方组AIS、SDS评分较基础治疗组明显降低(P<0.001,P<0.05);(4)鸣安方组治疗后SAS评分较治疗前降低(P<0.05),治疗结束后两组SAS评分无差异(P>0.05);(5)鸣安方组患者δ波、β波能量值较治疗前明显降低(P<0.01,P<0.001),α波能量值显著升高(P<0.05),基础治疗组δ波、β波能量值较治疗前明显降低(P<0.001,P<0.01)。治疗后两组间比较,鸣安方组α波能量值高于基础治疗组(P<0.05),β波能量值显著低于基础治疗组(P<0.05)。结论 鸣安方可改善心脾两虚型耳鸣患者主观感受,尤其对缓解焦虑、抑郁及睡眠障碍等不良伴随症状疗效显著,可能与提高患者α波、降低β波能量值有关。 展开更多
关键词 鸣安方 特发性耳鸣 心脾两虚 eeg
暂未订购
基于脑电图(EEG)技术探究大脑对柑橘风味的感知反应 被引量:1
5
作者 程焕 赵前 +1 位作者 刘东红 叶兴乾 《中国食品学报》 北大核心 2025年第3期1-11,共11页
柑橘风味是食品饮料市场中长期占据统御地位的风味之一,而相关研究多采用主观性调查形式,对其神经感知机制的探索有限。本研究在感官评价的基础上,采用脑电图(EEG)技术探究大脑对4种柑橘精油【甜橙精油(S-EO)、柠檬精油(L-EO)、佛手柑精... 柑橘风味是食品饮料市场中长期占据统御地位的风味之一,而相关研究多采用主观性调查形式,对其神经感知机制的探索有限。本研究在感官评价的基础上,采用脑电图(EEG)技术探究大脑对4种柑橘精油【甜橙精油(S-EO)、柠檬精油(L-EO)、佛手柑精油(B-EO)和葡萄柚精油(G-EO)】以及柑橘精油主要组分D-柠檬烯的电生理反应。结果表明,大脑对不同柑橘风味展现出独特的感知反应模式。与D-柠檬烯相比,嗅闻柑橘精油引发了更强的脑电活动,特别是在1 Hz和10 Hz两个频段表现出显著活跃。柑橘精油普遍显著增强了α节律的能量,而L-EO同时引起δ节律能量显著增强(P<0.05)。此外,嗅闻柑橘精油主要引起大脑额叶区和中央区更强的脑电活动,特别是前额叶区(P<0.05),表明大脑对柑橘精油的感知过程涉及高级认知加工区域,柑橘精油可能具有潜在的情绪调节和认知提升作用。本研究揭示了柑橘精油在嗅觉感知中的脑电活动特征,为探究柑橘风味的神经感知机制提供了科学依据,同时为食品设计和消费者偏好预测开辟了新方向。 展开更多
关键词 柑橘风味 精油 脑电图 感知 神经成像 感官评价
在线阅读 下载PDF
基于EEG-TCNet的运动想象脑电识别方法 被引量:1
6
作者 李卫校 凌六一 《重庆工商大学学报(自然科学版)》 2025年第1期123-128,共6页
目的针对以深度学习为解码的方法在运动想象脑电信号识别过程中仅对原始的运动想象脑电信号进行特征提取而不进行样本扩充和往往采用单一尺度的卷积对多频段的运动想象脑电信号进行特征提取,无法充分发掘各频段之间相关性的问题,在主流E... 目的针对以深度学习为解码的方法在运动想象脑电信号识别过程中仅对原始的运动想象脑电信号进行特征提取而不进行样本扩充和往往采用单一尺度的卷积对多频段的运动想象脑电信号进行特征提取,无法充分发掘各频段之间相关性的问题,在主流EEG-TCNet解码方法的基础上提出了一种样本扩充和多尺度的解码方法。方法首先,对运动想象脑电信号进行分割,以增加数据集样本数,将运动想象脑电信号等间隔下采样成3个不同的子序列,每个子序列都含有与原始运动想象脑电信号相同的数据特征;其次,使用EEGNet对每个子序列进行特征提取,对不同的子序列使用不同尺度的EEGNet以便提取不同频段的特征;之后,对每个经过EEGNet提取后的子序列采用一种基于卷积滑动的方法再进分割,充分挖掘每个子序列潜在的信息;再次,将每个处理后的子序列传入到时间卷积网络进行特征提取和降维;最后,对所有处理后的子序列进行拼接、平均操作,并传入到全连接层进行识别。结果在公开的BCI竞赛数据集Ⅳ-2a上进行验证,所做出改进的网络相对于EEG-TCNet、EEGNet的解码准确度分别有5.19%和7.7%的提升。结论证明所做出改进的网络在运动想象脑电信号识别任务中具有更理想的解码性能。 展开更多
关键词 eeg-TCNet 运动想象脑电信号 卷积神经网络 时间卷积网络
在线阅读 下载PDF
基于EEG的室内光热辐射下的碳排放-热舒适关联机制研究
7
作者 侯可明 李云豪 +3 位作者 高培平 李林峰 于川峰 王海宁 《西安建筑科技大学学报(自然科学版)》 北大核心 2025年第2期271-279,共9页
室内光热辐射是人体获得能量的有效方式,然而不同光热辐射下的人体舒适度与碳排放的关联机制缺少相关研究.本研究以年轻人和老年人为研究对象,借助EEG(Electroencephalogram)脑电设备,研究不同光热辐射工况下人体舒适度与设备碳排放的关... 室内光热辐射是人体获得能量的有效方式,然而不同光热辐射下的人体舒适度与碳排放的关联机制缺少相关研究.本研究以年轻人和老年人为研究对象,借助EEG(Electroencephalogram)脑电设备,研究不同光热辐射工况下人体舒适度与设备碳排放的关系.研究发现,额叶区平均功率、α和θ波段的平均功率均与TCV显著相关.在低碳排放工况下,老年人在照射下身+上身+头部时更舒适,而年轻人在照射下身+上身时更舒适.此外,在选择辐射取暖方式时,低功率+多照射区域的组合方式相比高功率+少照射区域的组合方式在满足老年人热舒适的同时也能有效减少碳排放.本研究借助EEG揭示了不同人群舒适度与碳排放的关联机制,为室内健康光热环境营造提供了新思路. 展开更多
关键词 光热辐射 eeg 碳排放 人体舒适度 关联机制
在线阅读 下载PDF
静息态EEG/MEG的非周期性成分:分析流程、应用进展和未来前景 被引量:1
8
作者 胡静怡 白朵 雷旭 《心理科学进展》 北大核心 2025年第8期1321-1339,I0001,共20页
功率谱分析是EEG/MEG数据处理中的常用方法,近年来越来越多的研究者认识到功率谱的非周期性成分具有独特的生理意义与应用价值。随着国际上以频谱参数拟合算法(SpecParam)为代表的工具包的推广使用,静息态EEG/MEG的非周期分析受到广泛... 功率谱分析是EEG/MEG数据处理中的常用方法,近年来越来越多的研究者认识到功率谱的非周期性成分具有独特的生理意义与应用价值。随着国际上以频谱参数拟合算法(SpecParam)为代表的工具包的推广使用,静息态EEG/MEG的非周期分析受到广泛关注。本文首先介绍了在高密度EEG/MEG中进行非周期分析的常规流程。之后总结应用上的两个主要进展:在发展神经科学方面,老年人的频谱平坦化与认知表现下降、睡眠质量变差高度相关。在临床应用方面,非周期性参数可以作为多种神经精神疾病的电生理标志物。目前,非周期分析还缺少对全脑空间分布的关注,其神经生理生成机制尚处于探索期,未来需要结合多模态脑成像技术、实验设计等创新方向进一步筑牢理论基础,拓展应用范围。 展开更多
关键词 非周期性成分 eeg/MEG 功率谱 无标度性 静息态
在线阅读 下载PDF
基于通道加权的多模态特征融合用于EEG疲劳驾驶检测
9
作者 程文鑫 闫光辉 +2 位作者 常文文 吴佰靖 黄亚宁 《浙江大学学报(工学版)》 北大核心 2025年第9期1775-1783,1802,共10页
针对疲劳驾驶检测方法泛化能力差、特征提取模式单一、模型不可解释等问题,提出多模态特征融合模型nsNMF-PCNN-GRU-MSA,通过分析驾驶员脑电图(EEG)信号实现疲劳程度的检测.在网络浅层设计通道加权模块,引入非平滑非负矩阵分解(nsNMF)算... 针对疲劳驾驶检测方法泛化能力差、特征提取模式单一、模型不可解释等问题,提出多模态特征融合模型nsNMF-PCNN-GRU-MSA,通过分析驾驶员脑电图(EEG)信号实现疲劳程度的检测.在网络浅层设计通道加权模块,引入非平滑非负矩阵分解(nsNMF)算法计算电极通道的贡献度;在网络中层设计多模态特征融合模块,引入格拉姆角场成像方法将一维EEG数据映射成二维图像,并采用PCNN-GRU并行方式融合不同模态的时空特征;在网络深层融合多头自注意力机制(MSA),完成疲劳驾驶状态分类任务.实验结果表明,该模型在数据集SEED-VIG和SAD的混合样本上的疲劳检测准确率分别为93.37%、90.78%,单个被试数据准确率最低分别为86.60%、85.59%,高于近年先进模型.将特征激活值映射到大脑拓扑图上的分析方法不仅提高了模型的可解释性,而且为疲劳驾驶检测提供了新视角. 展开更多
关键词 eeg 疲劳驾驶检测 nsNMF 格拉姆角场 多模态特征融合 模型可解释性
在线阅读 下载PDF
基于Dempster-Shafer证据推理的EEG-fNIRS运动想象分类决策层融合方法
10
作者 康冉斓 李玉榕 +1 位作者 史武翔 李吉祥 《电子学报》 北大核心 2025年第3期941-950,共10页
为解决传统基于脑电信号(Electroenc Ephalo Graphy,EEG)的单模态脑机接口(Brain-Computer Interface,BCI)技术存在的空间分辨率低、易受噪声干扰等问题,越来越多的研究开始关注基于EEG信号和功能近红外光谱(functional Near-InfRared S... 为解决传统基于脑电信号(Electroenc Ephalo Graphy,EEG)的单模态脑机接口(Brain-Computer Interface,BCI)技术存在的空间分辨率低、易受噪声干扰等问题,越来越多的研究开始关注基于EEG信号和功能近红外光谱(functional Near-InfRared Spectroscopy,fNIRS)信号融合的BCI研究.然而,这两种异构信号之间的融合具有挑战性,本文创新性地提出一种基于深度学习和证据理论的端对端信号融合方法,用于运动想象(Motor Imagery,MI)分类.对于EEG信号,本文通过双尺度时间卷积和深度可分离卷积提取其时空特征信息,并引入混合注意力模块以增强网络对重要特征的感知能力.对于fNIRS信号,本文通过全通道的空间卷积探索大脑不同区域之间的激活差异,并通过并联时间卷积和门控循环单元(Gated Recurrent Unit,GRU)模块捕获更丰富的时间特征信息.在决策融合阶段,首先将两种信号分别解码得到的决策输出利用Dirichlet分布参数估计,以量化不确定性;然后使用Dempster-Shafer理论(Dempster-Shafer Theory,DST)进行双层推理,从而融合来自两种基本信念分配(Basic Belief Assignment,BBA)方法和不同模态的证据,得到最终的分类结果.本文基于公开数据集TU-Berlin-A进行模型的测试评估,获得了83.26%的平均准确率,相较于最先进研究提升了3.78个百分点,该结果为基于EEG和fNIRS信号的融合研究提供了新的思路和方法. 展开更多
关键词 混合脑机接口(BCI) 运动想象(MI) 深度学习 DEMPSTER-SHAFER理论 功能近红外光谱(fNIRS)信号 脑电信号(eeg)信号
在线阅读 下载PDF
面向癫痫EEG信号检测的对抗混合TSK模糊分类器
11
作者 于林表 卞则康 +2 位作者 瞿佳 张进 王士同 《计算机科学与探索》 北大核心 2025年第12期3395-3411,共17页
近年来,基于栈式集成结构的深度TSK(Takagi-Sugeno-Kang)模糊分类器已成为TSK模糊分类器研究热点之一,与传统单一的TSK模糊分类器相比,深度TSK模糊分类器不仅具有增强的泛化能力,而且具有较好的可解释性。然而,当深度TSK模糊分类器应用... 近年来,基于栈式集成结构的深度TSK(Takagi-Sugeno-Kang)模糊分类器已成为TSK模糊分类器研究热点之一,与传统单一的TSK模糊分类器相比,深度TSK模糊分类器不仅具有增强的泛化能力,而且具有较好的可解释性。然而,当深度TSK模糊分类器应用于癫痫脑电图(EEG)信号检测时,需要解决如下两个挑战:(1)如何改进现有的深度结构,在保证癫痫EEG信号检测精度的基础上,加快模型的构建速度并同时提高模型的可解释性(更少的规则数和提供两种类型的可解释性);(2)如何利用人类认知行为,进一步提升深度TSK模糊分类器的泛化能力。为了解决上述两个挑战,提出面向癫痫EEG信号检测的对抗混合TSK模糊分类器(AH-TSK)。针对挑战(1),在现有深度栈式集成结构的基础上,引入宽度集成结构,从而提出一种新型的基于深度和宽度的混合集成结构,集成单个线性子模型(SRLc)和多个非线性子模型(A-TSK);针对挑战(2),基于“从全局粗略到局部精细化”和“知识遗弃”这两种认知行为,提出了一种新的对抗训练方法。该方法先在EEG数据集的所有原始样本上训练线性模型(SRLc),以分类非线性分布的样本;在得到的非线性部分上,引入“知识遗弃”的对抗策略,并行训练多个A-TSK;通过使用最近标签策略,对SRLc和所有A-TSK的输出进行集成得到最终输出。实验结果表明,与对比方法相比,AH-TSK具有增强的泛化能力、较快的运行速度以及较好的可解释性,此外能够提供更多类型的可解释性(语义和基于特征重要性的可解释性)。 展开更多
关键词 混合TSK模糊分类器 癫痫脑电图(eeg)信号检测 对抗训练方法 基于特征重要性的可解释性 语义可解释性
在线阅读 下载PDF
基于EEG与机器学习的酒精刺激感知神经解码及脑区分区策略的对比研究
12
作者 程焕 王广南 +1 位作者 刘东红 叶兴乾 《中国食品学报》 北大核心 2025年第6期14-26,共13页
乙醇含量对酒精饮料风味特征和感官体验起关键作用。然而,其神经感知机制仍未完全明晰,这在一定程度上制约了对酒精饮料感官评价进行客观量化的进程。脑电图(EEG)作为一种高时间分辨率的神经影像技术,能够为解析酒精刺激的神经生理基础... 乙醇含量对酒精饮料风味特征和感官体验起关键作用。然而,其神经感知机制仍未完全明晰,这在一定程度上制约了对酒精饮料感官评价进行客观量化的进程。脑电图(EEG)作为一种高时间分辨率的神经影像技术,能够为解析酒精刺激的神经生理基础提供有效手段。然而,不同的脑区分区方式可能影响EEG特征提取与建模精度,进而影响其预测性能。鉴于此,本研究系统比较了10-10传统解剖学分区与Yeo-7功能分区在EEG预测酒精刺激评分任务中的适用性,并运用8种机器学习模型展开对比分析。研究结果表明,相较于10-10解剖学分区,Yeo-7功能分区显著提升了模型的预测性能,其中线性回归(R2=0.76)和支持向量机(R2=0.74)表现最佳。此外,特征贡献度分析显示,边缘系统(Limbic Network)、额顶控制网络(Frontoparietal Network,FPN)和腹侧注意网络(Ventral Attention Network,VAN)在EEG预测中贡献较高,表明功能性分区能够更准确地提取酒精刺激相关的神经信号。本研究证实基于功能连接的脑区划分在EEG预测建模中的优越性,并为EEG在风味感知、神经科学及食品科学等领域的应用开拓了新的研究思路。 展开更多
关键词 酒精饮料 风味感知 脑电图 机器学习
在线阅读 下载PDF
多通道类别学习的认知特征与神经机制:EEG与DDM证据
13
作者 吴洁 车子轩 《心理学报》 北大核心 2025年第10期1715-1728,共14页
多通道类别学习的认知特征和神经机制对揭示跨通道知识表征规律具有关键意义。本研究结合事件相关电位技术与漂移扩散模型,系统考察多通道类别学习的认知特征和神经机制。行为结果显示,相较于学习前期,学习中期和后期在行为层面表现出... 多通道类别学习的认知特征和神经机制对揭示跨通道知识表征规律具有关键意义。本研究结合事件相关电位技术与漂移扩散模型,系统考察多通道类别学习的认知特征和神经机制。行为结果显示,相较于学习前期,学习中期和后期在行为层面表现出正确率和漂移率显著提升,反应时显著降低,同时决策起始点向正确选项偏移。神经层面发现,学习中期和学习后期引发N1、P1、N250、FSP(Frontal Selection Positivity)及LPC(Late Positive Component)振幅的变化;时频分析显示Theta、Alpha及Delta频段能量显著衰减。回归分析表明N250-FSP振幅和Theta振荡共同解释漂移率变异,而P1、N250-FSP和LPC可预测决策起始点偏移。研究表明,学习训练通过双重机制优化决策效能:(1)信息积累速率提升与N250-FSP振幅降低及Theta频段能量衰减相关;(2)决策起始点偏移由早期感知编码(P1)、特征辨别(N250-FSP)和记忆提取(LPC)的协同作用驱动。 展开更多
关键词 多感官 类别学习 漂移扩散模型 eeg
在线阅读 下载PDF
基于卷积内SWCS的时间卷积网络对MI-EEG解码
14
作者 付荣荣 祝悦 +1 位作者 李林玉 路斌 《计量学报》 北大核心 2025年第6期910-916,共7页
传统的机器学习方法中脑电信号通常需要经过繁琐的预处理和特征工程才能进行解码。如何构建一个能够快速、可靠地解码运动想象脑电信号的端到端深度学习网络,成为当前运动想象脑电信号解码研究的关键问题。因此,在结合卷积内滑动窗口裁... 传统的机器学习方法中脑电信号通常需要经过繁琐的预处理和特征工程才能进行解码。如何构建一个能够快速、可靠地解码运动想象脑电信号的端到端深度学习网络,成为当前运动想象脑电信号解码研究的关键问题。因此,在结合卷积内滑动窗口裁剪策略(sliding window cropping strategy,SWCS)和时间卷积网络(temporal convolutional network,TCN)的基础上,提出一种新的卷积内SWCS的时间卷积网络,并使用该网络对运动想象脑电信号进行识别研究。该网络利用二维卷积提取脑电信号的浅层特征,使用卷积内SWCS将时间序列划分为多个时间窗口,然后将二维卷积提取的脑电信号浅层特征输送到TCN网络中提取时间序列中更高级的时间特征。在第Ⅳ届脑机接口竞赛的数据集上的分类结果表明,卷积内SWCS的时间卷积网络的分类效果优秀。 展开更多
关键词 脑电信号 卷积内SWCS 运动想象 时间卷积网络 信号解码 脑机接口
在线阅读 下载PDF
基于SD量表与EEG的养老机构“加龄臭”对老人空间感知影响探究
15
作者 李林峰 李云豪 于川峰 《城市建筑》 2025年第23期72-76,共5页
在养老院建筑环境设计当中,“加龄臭”已然成为一个较为突出的气味环境问题。目前,针对特殊气味环境下的建筑空间感知研究相对较少。本研究以老年人为研究对象,通过定量释放加龄臭气体,借助脑电设备与评价问卷,探究加龄臭对老年人空间... 在养老院建筑环境设计当中,“加龄臭”已然成为一个较为突出的气味环境问题。目前,针对特殊气味环境下的建筑空间感知研究相对较少。本研究以老年人为研究对象,通过定量释放加龄臭气体,借助脑电设备与评价问卷,探究加龄臭对老年人空间感知影响的差异。研究发现:①加龄臭对老年人空间感知有负面影响,气味浓度越高负面影响越大。②加龄臭对额叶区F7、FC5以及颞叶区T7电极的脑电总功率具有显著影响。③FC5-θ频带功率可在一定程度上量化表征气味浓度、气味舒适度、空间舒适度及空间尺寸等多因素对脑电活动的综合作用效应。本研究借用SD量表与EEG解释了加龄臭对不同年龄组空间感知的影响,对完善养老院气味环境研究提供了一定的研究基础。 展开更多
关键词 养老机构 加龄臭 eeg 空间感知
在线阅读 下载PDF
Prediction of Pharmacoresistance in Drug-Naive Temporal Lobe Epilepsy Using Ictal EEGs Based on Convolutional Neural Network
16
作者 Yiwei Gong Zheng Zhang +14 位作者 Yuanzhi Yang Shuo Zhang Ruifeng Zheng Xin Li Xiaoyun Qiu Yang Zheng Shuang Wang Wenyu Liu Fan Fei Heming Cheng Yi Wang Dong Zhou Kejie Huang Zhong Chen Cenglin Xu 《Neuroscience Bulletin》 2025年第5期790-804,共15页
Approximately 30%-40% of epilepsy patients do not respond well to adequate anti-seizure medications(ASMs),a condition known as pharmacoresistant epilepsy.The management of pharmacoresistant epilepsy remains an intract... Approximately 30%-40% of epilepsy patients do not respond well to adequate anti-seizure medications(ASMs),a condition known as pharmacoresistant epilepsy.The management of pharmacoresistant epilepsy remains an intractable issue in the clinic.Its early prediction is important for prevention and diagnosis.However,it still lacks effective predictors and approaches.Here,a classical model of pharmacoresistant temporal lobe epilepsy(TLE)was established to screen pharmacoresistant and pharmaco-responsive individuals by applying phenytoin to amygdaloid-kindled rats.Ictal electroencephalograms(EEGs)recorded before phenytoin treatment were analyzed.Based on ictal EEGs from pharmacoresistant and pharmaco-responsive rats,a convolutional neural network predictive model was constructed to predict pharmacoresistance,and achieved 78% prediction accuracy.We further found the ictal EEGs from pharmacoresistant rats have a lower gamma-band power,which was verified in seizure EEGs from pharmacoresistant TLE patients.Prospectively,therapies targeting the subiculum in those predicted as“pharmacoresistant”individual rats significantly reduced the subsequent occurrence of pharmacoresistance.These results demonstrate a new methodology to predict whether TLE individuals become resistant to ASMs in a classic pharmacoresistant TLE model.This may be of translational importance for the precise management of pharmacoresistant TLE. 展开更多
关键词 Pharmacoresistance Temporal lobe epilepsy eeg PREDICTION Precision medicine
原文传递
A Personalized Predictor of Motor Imagery Ability Based on Multi-frequency EEG Features
17
作者 Mengfan Li Qi Zhao +3 位作者 Tengyu Zhang Jiahao Ge Jingyu Wang Guizhi Xu 《Neuroscience Bulletin》 2025年第7期1198-1212,共15页
A brain-computer interface(BCI)based on motor imagery(MI)provides additional control pathways by decoding the intentions of the brain.MI ability has great intra-individual variability,and the majority of MI-BCI system... A brain-computer interface(BCI)based on motor imagery(MI)provides additional control pathways by decoding the intentions of the brain.MI ability has great intra-individual variability,and the majority of MI-BCI systems are unable to adapt to this variability,leading to poor training effects.Therefore,prediction of MI ability is needed.In this study,we propose an MI ability predictor based on multi-frequency EEG features.To validate the performance of the predictor,a video-guided paradigm and a traditional MI paradigm are designed,and the predictor is applied to both paradigms.The results demonstrate that all subjects achieved>85%prediction precision in both applications,with a maximum of 96%.This study indicates that the predictor can accurately predict the individuals’MI ability in different states,provide the scientific basis for personalized training,and enhance the effect of MI-BCI training. 展开更多
关键词 eeg Brain computer interface Motor imagery Personalized predictor
原文传递
Correction:Neural Dynamics of Visual Stream Interactions During Memory-Guided Actions Investigated by Intracranial EEG
18
作者 Sofiia Moraresku Jiri Hammer +6 位作者 Vasileios Dimakopoulos Michaela Kajsova Radek Janca Petr Jezdik Adam Kalina Petr Marusic Kamil Vlcek 《Neuroscience Bulletin》 2025年第9期1709-1709,共1页
Correction to:Neuroscience Bulletin https://doi.org/10.1007/s12264-025-01371-x In this article the affiliation"Department of Circuit Theory,Faculty of Electrical Engineering,Czech Technical University in Prague,M... Correction to:Neuroscience Bulletin https://doi.org/10.1007/s12264-025-01371-x In this article the affiliation"Department of Circuit Theory,Faculty of Electrical Engineering,Czech Technical University in Prague,Member of the Epilepsy Research Centre Prague-EpiReC Consortium,Prague,Czechia"should only be assigned to Radek Janca and Petr Jezdik.It is removed from the authors:Jiri Hammer,Michaela Kajsova,Adam Kalina,Petr Marusic,and Kamil Vlcek. 展开更多
关键词 visual stream interactions memory guided actions neural dynamics neuroscience intracranial eeg
原文传递
Utilizing Machine Learning Techniques to Enhance Attention-Deficit Hyperactivity Disorder Diagnosis Using Resting-State EEG Data
19
作者 Lina Han Liyan Li +6 位作者 Yanyan Chen Xiaohan Wu Yang Yu Xu Liu Zihan Yang Ling Li Xinxian Peng 《Journal of Clinical and Nursing Research》 2025年第1期209-217,共9页
Objective: This study investigates the auxiliary role of resting-state electroencephalography (EEG) in the clinical diagnosis of attention-deficit hyperactivity disorder (ADHD) using machine learning techniques. Metho... Objective: This study investigates the auxiliary role of resting-state electroencephalography (EEG) in the clinical diagnosis of attention-deficit hyperactivity disorder (ADHD) using machine learning techniques. Methods: Resting-state EEG recordings were obtained from 57 children, comprising 28 typically developing children and 29 children diagnosed with ADHD. The EEG signal data from both groups were analyzed. To ensure analytical accuracy, artifacts and noise in the EEG signals were removed using the EEGLAB toolbox within the MATLAB environment. Following preprocessing, a comparative analysis was conducted using various ensemble learning algorithms, including AdaBoost, GBM, LightGBM, RF, XGB, and CatBoost. Model performance was systematically evaluated and optimized, validating the superior efficacy of ensemble learning approaches in identifying ADHD. Conclusion: Applying machine learning techniques to extract features from resting-state EEG signals enabled the development of effective ensemble learning models. Differential entropy and energy features across multiple frequency bands proved particularly valuable for these models. This approach significantly enhances the detection rate of ADHD in children, demonstrating high diagnostic efficacy and sensitivity, and providing a promising tool for clinical application. 展开更多
关键词 Attention-deficit hyperactivity disorder Machine learning eeg signals Feature extraction Ensemble learning models DIAGNOSIS
暂未订购
EEG Scalogram Analysis in Emotion Recognition:A Swin Transformer and TCN-Based Approach
20
作者 Selime Tuba Pesen Mehmet Ali Altuncu 《Computers, Materials & Continua》 2025年第9期5597-5611,共15页
EEG signals are widely used in emotion recognition due to their ability to reflect involuntary physiological responses.However,the high dimensionality of EEG signals and their continuous variability in the time-freque... EEG signals are widely used in emotion recognition due to their ability to reflect involuntary physiological responses.However,the high dimensionality of EEG signals and their continuous variability in the time-frequency plane make their analysis challenging.Therefore,advanced deep learning methods are needed to extract meaningful features and improve classification performance.This study proposes a hybrid model that integrates the Swin Transformer and Temporal Convolutional Network(TCN)mechanisms for EEG-based emotion recognition.EEG signals are first converted into scalogram images using Continuous Wavelet Transform(CWT),and classification is performed on these images.Swin Transformer is used to extract spatial features in scalogram images,and the TCN method is used to learn long-term dependencies.In addition,attention mechanisms are integrated to highlight the essential features extracted from both models.The effectiveness of the proposed model has been tested on the SEED dataset,widely used in the field of emotion recognition,and it has consistently achieved high performance across all emotional classes,with accuracy,precision,recall,and F1-score values of 97.53%,97.54%,97.53%,and 97.54%,respectively.Compared to traditional transfer learning models,the proposed approach achieved an accuracy increase of 1.43%over ResNet-101,1.81%over DenseNet-201,and 2.44%over VGG-19.In addition,the proposed model outperformed many recent CNN,RNN,and Transformer-based methods reported in the literature. 展开更多
关键词 Continuous wavelet transform eeg emotion recognition Swin Transformer temporal convolutional network
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部