期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
肿瘤分子生物学研究进展 被引量:5
1
作者 曹亚 《国外医学(生理病理科学与临床分册)》 2005年第1期1-4,共4页
当生命科学的研究进入后基因组时代,肿瘤分子生物学的发展也进入了一个崭新的阶段。从肿瘤的多阶段到肿瘤防治的新概念,从肿瘤的遗传易感到早期检测研究网,肿瘤分子生物学的迅猛发展必将为促进临床肿瘤学和临床预防肿瘤学的发展提供新... 当生命科学的研究进入后基因组时代,肿瘤分子生物学的发展也进入了一个崭新的阶段。从肿瘤的多阶段到肿瘤防治的新概念,从肿瘤的遗传易感到早期检测研究网,肿瘤分子生物学的迅猛发展必将为促进临床肿瘤学和临床预防肿瘤学的发展提供新的机遇和挑战。 展开更多
关键词 肿瘤 肿瘤防治 SNP edrn
原文传递
Improving Biomarker Development and Assessment:Standards for Study Design
2
作者 Ziding FENG 《中国肺癌杂志》 CAS 2009年第6期I0059-I0059,共1页
Background:The Early Detection Research Network (EDRN), NCI funded and investigator driven, has the mission to evaluate biomarkers for their clinical utilities in cancer risk prediction, diagnosis, early detection,
关键词 edrn 肺癌 癌细胞 扩散 治疗
暂未订购
Intelligent acoustic detection of blade icing on wind turbines:600 W prototype study
3
作者 Sun Bingchuan Cui Hongmei Su Mingxu 《Energy and AI》 2025年第3期519-530,共12页
Diagnosing wind turbine blade icing is crucial for enhancing the efficiency and reliability of wind power generation in cold regions.Current acoustic-based diagnostic techniques,while cost-efficient,face challenges in... Diagnosing wind turbine blade icing is crucial for enhancing the efficiency and reliability of wind power generation in cold regions.Current acoustic-based diagnostic techniques,while cost-efficient,face challenges in precision and signal processing within complex sound environments.For this reason,this paper proposes a new method for diagnosing blade icing,which includes an enhanced deep residual network based on densely connected modules and a data enhancement strategy to improve diagnostic results in complex environments.In particular,blade acoustic signatures,rich in spatial information,are captured using a microphone array.These signals are then processed by a model combining fixed-orientation delay-and-sum beamforming with the enhanced deep residual network.The performance of the proposed method for blade icing damage diagnosis has been evaluated through a 600 W wind turbine under different operating and measurement conditions,and experiments have been conducted under different blade icing positions.The results show that the proposed approach achieved high diagnostic precision,yielding F1-scores of 0.9354 and 0.9297.These scores indicate a substantial improvement in accurately identifying blade icing compared to existing other methods.Furthermore,the competitiveness of the proposed method is further demonstrated through ablation studies.This work makes an important contribution to the sustainable utilization of wind energy resources in cold regions. 展开更多
关键词 Icing diagnosis Wind turbine blade Microphone array edrn Deep learning
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部