In this study,novel electrochromic copolymers of 3,4-ethylenedioxythiophene(EDOT)and(E)-1,2-bis(2-fluoro-4-(4-hexylthiophen-2-yl)phenyl)diazene(M1)with different monomer feed ratios were designed and synthesized elect...In this study,novel electrochromic copolymers of 3,4-ethylenedioxythiophene(EDOT)and(E)-1,2-bis(2-fluoro-4-(4-hexylthiophen-2-yl)phenyl)diazene(M1)with different monomer feed ratios were designed and synthesized electrochemically.Electrochemical and spectroelectrochemical characterizations were performed using voltammetry and UV-Vis-NIR spectrophotometry techniques to test the applicability of copolymers for electrochromic applications.In terms of electrochemical behaviors,addition of an electron-rich EDOT unit into the azobenzenecontaining copolymer increased the electron density on the polymer chain and afforded copolymers with very low oxidation potentials at around0.30 V.While the homopolymers(P1 and PEDOT)exhibited neutral state absorptions centered at 510 and 583 nm,EDOT-bearing copolymers showed red shifted absorptions compared to those of P1 with narrower optical band gaps.In addition,the poor optical contrast and switching times of azobenzene-bearing homopolymer were significantly improved with EDOT addition into the copolymer chain.As a result of the promising electrochromic and kinetic preperties,Co P1.5-bearing single layer electrochromic device that works between purple and light greenish blue colors was constructed and characterized.展开更多
A couple of novel electrochromic materials poly(2,3,4,5-tetrakis(2,3-hydrothieno[3,4-b]dixin-5-yl)-1-methyl-1H-pyrrole)(P(t-EDOT-mPy))and poly(5,5',5",5'"-(thiophene-2,3,4,5-tetrayl)tetrakis(2,3-dihy...A couple of novel electrochromic materials poly(2,3,4,5-tetrakis(2,3-hydrothieno[3,4-b]dixin-5-yl)-1-methyl-1H-pyrrole)(P(t-EDOT-mPy))and poly(5,5',5",5'"-(thiophene-2,3,4,5-tetrayl)tetrakis(2,3-dihydrothieno[3,4-b][1,4]dioxine))(P(t-EDOTTh))are electrodeposited via multi-position polymerization of their tetra-EDOT substituted monomers t-EDOT-mPy and t-EDOT-Th,respectively.Compared with the linear 2D structured poly(thiophene)(E_g=2.2 eV)and poly(2,5-bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)thiophene)(E_g=1.7eV),P(t-EDOT-Th)(E_g=1.62eV)has the lowest band gap.Hence,we speculate that the band gaps of the two polymers,having 3D structures,are decreased in contrast to non-substituted polymers or bi-EDOT substituted polymers,thiophene and 1-methyl-1H-pyrrole.The results indicated that P(t-EDOT-Th)thin films are more stable and show higher transmittance amid two polymers,which may find their utilization in organic optoelectronics.展开更多
A new and efficient synthetic route to hydroxymethylated-3,4-ethylenedioxylthiophene (EDOT-MeOH) was developed by a simple four-step sequence, and its global yield was approximately 41.06%. The poly(hydroxymethylat...A new and efficient synthetic route to hydroxymethylated-3,4-ethylenedioxylthiophene (EDOT-MeOH) was developed by a simple four-step sequence, and its global yield was approximately 41.06%. The poly(hydroxymethylated- 3,4-ethylenedioxylthiophene) (PEDOT-MeOIq) film was electrosynthesized in aqueous sodium dodecylsulfate micellar solutions and characterized by different methods. The EDOT-MeOH possessed better water solubility, and lower onset oxidation potential than EDOT. The as-obtained PEDOT-MeOH film displayed good reversible redox activity, stability and capacitance properties in a monomer-free electrolyte, especially the good solubility of PEDOT-MeOH film in strong polar organic solvents such as dimethyl sulfoxide and tetrahydrofuran created a potential application in many different fields. Fluorescent spectra indicated that PEDOT-MeOH was a yellow-green-light-emitter with maximum emission at 568 rim. The as-formed PEDOT-MeOH film had good biocompatibility and was used for fabricating the electrochemical vitamin C biosensor. The proposed biosensor showed a linear range of 3× 10 ^6 mol/L to 1.2 × 10^-2 mol/L with the detection limit of 1 μmol/L, a sensitivity of 95.6 μA (mmol/L) ^-1 cm 2, and a current response time less than 10 s and a fairly good stability (The relative standard deviation was 0.43% for 20 successive assays, the proposed biosensor still retained 93.5% of bioactivity after 15 days storage. This result indicated that the prepared PEDOT-MeOH film as immobilization matrix of biologically-active species could be a promising candidate for the design and application of biosensor.展开更多
A novel graphene oxide (GO) doped poly(hydroxymethylated-3,4-ethylenedioxythiophene) (PEDOTM) film has been achieved via one-step co-electrodeposition and utilized for electrochemical studies of indole-3-acetic ...A novel graphene oxide (GO) doped poly(hydroxymethylated-3,4-ethylenedioxythiophene) (PEDOTM) film has been achieved via one-step co-electrodeposition and utilized for electrochemical studies of indole-3-acetic acid (IAA). The incorporation of GO into PEDOTM film facilitated the electrocatalytic activity and exhibited a favorable interaction between the PEDOTM/GO film and the phytohormone during the oxidation of IAA. Under optimized conditions, differential pulse voltammetry and square wave voltammetry were used for the quantitative analysis of IAA, respectively, each exhibiting a wide linearity range from 0.6 μmol L-1 to 10 μmol L-1 and 0.05 μmol L-1 to 40 μmol L-1, good sensitivity with a low detection Iimit of 0.087 μmol L-1 and 0.033μmol L T, respectively, as well as good stability. With the notable advantages of a green, sensitive method, expeditious response and facile operation, the as-prepared PEDOTM/GO organic-inorganic composite film provides a promising platform for electrochemical studies of IAA.展开更多
文摘In this study,novel electrochromic copolymers of 3,4-ethylenedioxythiophene(EDOT)and(E)-1,2-bis(2-fluoro-4-(4-hexylthiophen-2-yl)phenyl)diazene(M1)with different monomer feed ratios were designed and synthesized electrochemically.Electrochemical and spectroelectrochemical characterizations were performed using voltammetry and UV-Vis-NIR spectrophotometry techniques to test the applicability of copolymers for electrochromic applications.In terms of electrochemical behaviors,addition of an electron-rich EDOT unit into the azobenzenecontaining copolymer increased the electron density on the polymer chain and afforded copolymers with very low oxidation potentials at around0.30 V.While the homopolymers(P1 and PEDOT)exhibited neutral state absorptions centered at 510 and 583 nm,EDOT-bearing copolymers showed red shifted absorptions compared to those of P1 with narrower optical band gaps.In addition,the poor optical contrast and switching times of azobenzene-bearing homopolymer were significantly improved with EDOT addition into the copolymer chain.As a result of the promising electrochromic and kinetic preperties,Co P1.5-bearing single layer electrochromic device that works between purple and light greenish blue colors was constructed and characterized.
基金the Shenzhen Key Laboratory of Organic Optoelectromagnetic Functional Materials of Shenzhen Science and Technology Plan(ZDSYS20140509094114164)the Shenzhen Peacock Program(KQTD2014062714543296)+6 种基金Shenzhen Science and Technology Research Grant(JCYJ20140509093817690)the Nanshan Innovation Agency Grant(KC2015ZDYF0016A)the Guangdong Key Research Project(2014B090914003,2015B090914002)the Guangdong Talents Project,the National Basic Research Program of China(2015CB856505)the National Natural Science Foundation of China(51373075)the Guangdong Academician Workstation(2013B090400016)the Natural Science Foundation of Guangdong Province(2014A030313800)
文摘A couple of novel electrochromic materials poly(2,3,4,5-tetrakis(2,3-hydrothieno[3,4-b]dixin-5-yl)-1-methyl-1H-pyrrole)(P(t-EDOT-mPy))and poly(5,5',5",5'"-(thiophene-2,3,4,5-tetrayl)tetrakis(2,3-dihydrothieno[3,4-b][1,4]dioxine))(P(t-EDOTTh))are electrodeposited via multi-position polymerization of their tetra-EDOT substituted monomers t-EDOT-mPy and t-EDOT-Th,respectively.Compared with the linear 2D structured poly(thiophene)(E_g=2.2 eV)and poly(2,5-bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)thiophene)(E_g=1.7eV),P(t-EDOT-Th)(E_g=1.62eV)has the lowest band gap.Hence,we speculate that the band gaps of the two polymers,having 3D structures,are decreased in contrast to non-substituted polymers or bi-EDOT substituted polymers,thiophene and 1-methyl-1H-pyrrole.The results indicated that P(t-EDOT-Th)thin films are more stable and show higher transmittance amid two polymers,which may find their utilization in organic optoelectronics.
基金supported by the National Natural Science Foundation of China(51203138,51273179)Intenatonal S&T Cooperation Program,China(2012DFA51210)+1 种基金Natural Science Foundation of Zhejiang Province,China(LY15E030006)Natural Science Foundation of Zhejiang University of Technology,China(1401101002408)~~
基金supported by the NSFC(Nos.50963002,51073074)Jiangxi Provincial Department of Education(GJJ10678,GJJ11590)+1 种基金Natural Science Foundation of Jiangxi Province(2010GZH0041,20114BAB203015)Jiangxi Science & Technology Normal University(KY2010ZY13)
文摘A new and efficient synthetic route to hydroxymethylated-3,4-ethylenedioxylthiophene (EDOT-MeOH) was developed by a simple four-step sequence, and its global yield was approximately 41.06%. The poly(hydroxymethylated- 3,4-ethylenedioxylthiophene) (PEDOT-MeOIq) film was electrosynthesized in aqueous sodium dodecylsulfate micellar solutions and characterized by different methods. The EDOT-MeOH possessed better water solubility, and lower onset oxidation potential than EDOT. The as-obtained PEDOT-MeOH film displayed good reversible redox activity, stability and capacitance properties in a monomer-free electrolyte, especially the good solubility of PEDOT-MeOH film in strong polar organic solvents such as dimethyl sulfoxide and tetrahydrofuran created a potential application in many different fields. Fluorescent spectra indicated that PEDOT-MeOH was a yellow-green-light-emitter with maximum emission at 568 rim. The as-formed PEDOT-MeOH film had good biocompatibility and was used for fabricating the electrochemical vitamin C biosensor. The proposed biosensor showed a linear range of 3× 10 ^6 mol/L to 1.2 × 10^-2 mol/L with the detection limit of 1 μmol/L, a sensitivity of 95.6 μA (mmol/L) ^-1 cm 2, and a current response time less than 10 s and a fairly good stability (The relative standard deviation was 0.43% for 20 successive assays, the proposed biosensor still retained 93.5% of bioactivity after 15 days storage. This result indicated that the prepared PEDOT-MeOH film as immobilization matrix of biologically-active species could be a promising candidate for the design and application of biosensor.
基金supported by the National Natural Science Foundation of China(Nos.51263010,51272096)Jiangxi Provincial Department of Education(No.GJJ11590)Natural Science Foundation of Jiangxi Province(No.2010GZH0041)
文摘A novel graphene oxide (GO) doped poly(hydroxymethylated-3,4-ethylenedioxythiophene) (PEDOTM) film has been achieved via one-step co-electrodeposition and utilized for electrochemical studies of indole-3-acetic acid (IAA). The incorporation of GO into PEDOTM film facilitated the electrocatalytic activity and exhibited a favorable interaction between the PEDOTM/GO film and the phytohormone during the oxidation of IAA. Under optimized conditions, differential pulse voltammetry and square wave voltammetry were used for the quantitative analysis of IAA, respectively, each exhibiting a wide linearity range from 0.6 μmol L-1 to 10 μmol L-1 and 0.05 μmol L-1 to 40 μmol L-1, good sensitivity with a low detection Iimit of 0.087 μmol L-1 and 0.033μmol L T, respectively, as well as good stability. With the notable advantages of a green, sensitive method, expeditious response and facile operation, the as-prepared PEDOTM/GO organic-inorganic composite film provides a promising platform for electrochemical studies of IAA.