To understand the roles of charcoal and ectomycorrhizal fungi(ECMF)on tree growth,which relates to the rehabilitation of forest ecosystems after forest fires,two experiments were set up in this study,the first was to ...To understand the roles of charcoal and ectomycorrhizal fungi(ECMF)on tree growth,which relates to the rehabilitation of forest ecosystems after forest fires,two experiments were set up in this study,the first was to determine the correct amount of charcoal for Japanese larch(Larix kaempferi Sarg.)seedling growth by applying oak charcoal to basic soil medium at ratios of 1:1,1:2,1:4 and 1:8 by volume.The second experiment investigated the combined effects of four types of charcoal:derived from oak wood,husks of buckwheat,rice and activated charcoal of larch wood,and two types of ECMF:Pt(Pisolithus tinctorius Pers.)and Ec(Pt+Rhizopogon spp.+Laccaria spp.+Scleroderma spp.)on the growth of Japanese larch seedlings.Our results show that growth was significantly stressed by large amounts charcoal applications.There were significant variations among the four types of charcoal on growth.We concluded that the addition of charcoal was the critical factor that influenced larch growth and ECMF formation.Rice charcoal and Ec stimulates the growth and nitrogen uptake of Japanese larch seedlings,thus the most suitable fungus and charcoal for practices is Ec-rice charcoal(1:8 charcoal to basic soil).展开更多
Concentration of copper and zinc in isolated Suillus bovinus mycelia, used nutrient solution and 0.5 mol/L EDTA mycelia washing solution were measured to investigate the distribution of heavy metals in mycelia growth ...Concentration of copper and zinc in isolated Suillus bovinus mycelia, used nutrient solution and 0.5 mol/L EDTA mycelia washing solution were measured to investigate the distribution of heavy metals in mycelia growth in excess copper or zinc nutrient solution. Treated with zinc, most of added zinc maintained in used solution, and 9.8%/14.6% was in/on mycelia in treatment, and in treatment 2 was 3.9%/8.0% in/on mycelia. In the copper applications, copper stimulated in more than on mycelia, i.e., 25.9%/4.5% in/on mycelia in treatment, and 7%/18.8% in/on mycelia while most of copper retained in used nutrient solution. Certain amount of copper or zinc uptake by mycelia led to pronounced influence on glycolysis and nitrogen incorporating process of Suillus bovinus, while the tested enzymes kept constant in treatment. In crude extracts of copper treatment 2 mycelia, activities of HK, PFK and GS were inhibited and decrease to 63%, 48% and 38% and GIDH increased by 68% of the control, respectively. The behaviors of these tested enzymes toward zinc corresponded in general with that towards copper. The potential protection of Suillus bovinus for its host plant under excess copper or zinc threaten was discussed.展开更多
Growth and photosynthesis responses were measured for Scots pine( Pinus sylvestris L. cv.) inoculated with ectomycorrhizal fungi( Suillus bovinus ) under 6 5 and 25 mg/L Cu treatments to evaluate ectomycorrhizal...Growth and photosynthesis responses were measured for Scots pine( Pinus sylvestris L. cv.) inoculated with ectomycorrhizal fungi( Suillus bovinus ) under 6 5 and 25 mg/L Cu treatments to evaluate ectomycorrhizal seedlings' tolerance to heavy metal stress.Results showed that excessive Cu can significantly impair the growth and photosynthesis of pine seedlings, but such impairment is much smaller to the ectomycorrhizal seedlings. Under 25 mg/L Cu treatment, the dry weight of ectomycorrhizal seedlings is 25% lower than the control in contrary to 53% of the non mycorrhizal seedlings, and the fresh weight of ectomycorrhizal roots was significantly higher than those of non mycorrhizal roots, about 25% and 42% higher at 6 5 and 25 mg/L Cu treatments respectively. Furthermore, ectomycorrhizal fungi induced remarkable difference in the growth rate and pigment content of seedlings under excessive Cu stress. At 25 mg/L Cu, the contents of total chlorophyll, chlorophyll a and chlorophyll b were 30% higher in ectomycorrhizal plants than those in non mycorrhizal plants. O 2 evolution and electron transport of PSI and PSII were restrained by elevated Cu stress. However, no significant improvement was observed in reducing the physiological restraining in ectomycorrhizal seedlings over the non mycorrhizal ones.展开更多
A survey was conducted for about 3 years to study the abundance and diversity of ectomycorrhizal fungi (EMF) in Jiangsu Province, China. The identification of the fungal species was based on the microscopic and macros...A survey was conducted for about 3 years to study the abundance and diversity of ectomycorrhizal fungi (EMF) in Jiangsu Province, China. The identification of the fungal species was based on the microscopic and macroscopic characteristics of their fruiting bodies. About 126 species of EMF were found in Jiangsu Province. These fungi were largely categorized into three orders (of 121 species), four families (of 96 species), and six genera (of about 86 species).展开更多
This research investigates the mechanism of increased salinity tolerance of ectomycorrhizal fungiinoculated P. sylvestris var. mongolica to provide a theoretical basis for the application of the fungus in saline soils...This research investigates the mechanism of increased salinity tolerance of ectomycorrhizal fungiinoculated P. sylvestris var. mongolica to provide a theoretical basis for the application of the fungus in saline soils.Growth effects due to inoculation of seedlings with Suillus luteus(a symbiotic ectomycorrhizal fungus), were determined in four kinds of saline–alkali soils. Growth and physiological indicators, including photosynthetic characteristics, plant height, biomass, photosynthetic pigments,catalase(CAT) and superoxide dismutase(SOD) enzyme levels, and malondialdehyde(MDA), an organic marker for oxidative stress, and soluble protein levels were determined. Mycorrhizal colonization rate decreased with increasing saline–alkalinity and growth of inoculated seedlings was significantly enhanced. Biomass and chlorophyll contents also increased significantly. SOD and CAT activities were higher than in non-inoculated seedlings. However, MDA content decreased in inoculatedseedlings. Soluble protein content did not increase significantly. Inoculation with a symbiotic ectomycorrhizal fungus could enhance the saline–alkali tolerance of P. sylvestris var. mongolica. Growth and physiological performance of inoculated seedlings were significantly better than that of uninoculated seedlings. The results indicate that inoculated P. sylvestris var. mongolica seedlings may be useful in the improvement of saline–alkali lands.展开更多
Objective To investigate the potential of Gomphidius viscidus,a kind of ectomycorrhizal fungi,for phytoremediation of anthracene in soil.Methods Absorptioe changes of micro-habitat were studied in detail.Conclusion Ec...Objective To investigate the potential of Gomphidius viscidus,a kind of ectomycorrhizal fungi,for phytoremediation of anthracene in soil.Methods Absorptioe changes of micro-habitat were studied in detail.Conclusion Ectomycorrhizal plants have a strong potential for remediation of polycyclic aromatic hydrocarn characteristics of both active and inactivated mycelia.Results A high calculated adsorption capacity of 1 886.79 mg/g and 1 515.15 mg/g at 25 ℃,pH 6.0 for active and inactivated mycelia respectively,was obtained based on Langmuir model.The ANT biosorption was more ideally characterized by the Langmuir model than by the Freundlich model.The biosorption of anthracene to biomass was extremely fast and could be modeled with pseudo-second order adsorption kinetics.Moreover,ectomycorrhizal mycelia demonstrated a strong ability to adjust the physiological process to get adapted to the change of micro-habitat.展开更多
Ectomycorrhizal fungi, including Cenococcum geophilum SIV (Cg SIV), and Pisolithus tinctorius 2144 (Pt 2144), 441 (Pt 441) and XC1 (Pt XC1), were cultured in Pachlewski liquid medium with H2KPO4,KCl- saturated vermicu...Ectomycorrhizal fungi, including Cenococcum geophilum SIV (Cg SIV), and Pisolithus tinctorius 2144 (Pt 2144), 441 (Pt 441) and XC1 (Pt XC1), were cultured in Pachlewski liquid medium with H2KPO4,KCl- saturated vermiculite and mica as K sources, respectively, to investigate the mechanism of K absorption and mobilization by the fungi. Fungal growth rate, K absorption and mobilization varied significantly among the fungal species. Faster growth and greater K accumulation in Pt XC1 than Pt 2 144, Pt 441 and Cg siv were observed. Ectomycorrhizal fungi depressed HCl-soluble K in minerals after successive extractions by water and NH4OAc. Ratio of the total amount of K, including water-, NH4OAc- and HCI-soluble K, lost from substrates to the K accumulated in fungal colonies was less than 60%. These reveal that the ectomycorrhizal fungi could utilize K in interlayer and structural pools, which are usually unavailable for plants in short period. Large differences in the depletion of K in interlayer and structural pools by fungi were observed at fungal harvest. Taking into account the nutrient absorption by ectomycorrhizal fungi in symbionts and the direct contact between hyphae and soils, the fungi species colonized on the root surfaces seemed to be related to the effectiveness of mycorrhizas to utilize K in soils. Ectomycorrhizal fungi differed in the efflux of protons and oxalate. Pt XC1 was observed to have greatest ability to effuse protons and oxalate among the fungi adopted in the experiment. Furthermore, the higher the concentrations of protons and oxalate in the liquid culture solutions, the larger the depletion of K in interlayer and structural pools in minerals by fungi. Protons could replace interlayer K and chelation of oxalate with Fe and Al in crystal lattice could cause weathering of clay minerals. So, protons and oxalate produced by ectomycorrhizal fungi might play an important role in K mobilization in these two pools.展开更多
To understand the role of ectomycorrhizas in improving the tolerance of its host to excessive heavy metals in soil, this study was conducted to exam the patterns of four fractions (the exchangeable, the carbonate-boun...To understand the role of ectomycorrhizas in improving the tolerance of its host to excessive heavy metals in soil, this study was conducted to exam the patterns of four fractions (the exchangeable, the carbonate-bound, the Fe-Mn oxide- bound and the organically bound) of both Cu and Cd in the rhizosphere of Chinese pine (Pinus tabulaeformis) seedlings grown in excessive Cu and Cd environment. The results showed that the speciation of Cu and Cd in the rhizosphere was significantly influenced by inoculation of ectomycorrhizal fungus Boletus edulis. Compared to the rhizosphere, the content of exchangeable Cu slightly decreased in the mycorrhizosphere of the seedlings grown in 166 and 400 mg kg-1 Cu contaminated soil, whereas the exchangeable Cd in the mycorrhizosphere decreased remarkably to only 33% and to 60% that of the rhizosphere at 0.75 and 1.50 mg kg-1 Cd levels, respectively. These indicate the potential capacity of mycorrhizas to alleviate the damage of heavy metals to the host plants by reducing the bioavailability of heavy metals in soil. Distribution of the 4 tested fractions of Cu and Cd at different contamination levels showed that there was a strong tendency of changing from loosely associated fractions to strongly associated fractions in the mycorrhizosphere. The most stable Cd fraction, organically bound Cd, was significantly larger in the mycorrhizosphere than in the rhizosphere at different Cd contamination levels. This phenomenon was also observed for Cu but the difference was not statistically significant.展开更多
Plant tolerance to aluminum(Al)toxicity can be enhanced by an ectomycorrhizal(ECM)fungus through biological filtering or physical blockage.To understand the roles of ECM colonization in Al absorption with regard to Al...Plant tolerance to aluminum(Al)toxicity can be enhanced by an ectomycorrhizal(ECM)fungus through biological filtering or physical blockage.To understand the roles of ECM colonization in Al absorption with regard to Al tolerance,Pinus massoniana seedlings were inoculated with either Lactarius deliciosus(L.:Fr.)Gray isolate 2 or Pisolithus tinctorius(Pers.)Coker et Couch isolate 715 and cultivated in an acid yellow soil with or without 1.0 mM Al^(3+)irrigation for 10 weeks.Biomass production,Al bioaccumulation and transport in seedlings colonized by the two ECM fungi were compared,and the three absorption kinetics(pseudo-first order,pseudo-second order and intraparticle diffusion)models used to evaluate variances in root Al^(3+)absorption capacity.Results show that both fungi increased aboveground biomass and Al tolerance of P.massoniana seedlings,but L.deliciosus 2 was more effective than P.tinctorius 715.Lower Al absorption capacity,fewer available active sites and decreased affinity and boundary layer thickness for Al^(3+),and higher Al accumulation and translocation contributed to the increased Al tolerance in the ECM-inoculated seedlings.These results advance our understanding of the mechanisms and strategies in plant Alto lerance conferred by ECM fungi and show that inoculation with L.deliciosus will better enhance Al tolerance in P.massoniana seedlings used for forest plantation and ecosystem restoration in acidic soils,particularly in Southwest China and similar soils worldwide.展开更多
The slope aspect is one of the most critical topographic factors in mountainous areas.Little is known,however,about the eff ect of the aspect on the ectomycorrhizal(ECM)fungal community.Additionally,we know very littl...The slope aspect is one of the most critical topographic factors in mountainous areas.Little is known,however,about the eff ect of the aspect on the ectomycorrhizal(ECM)fungal community.Additionally,we know very little about the composition of ECM fungal communities associated with Quercus variabilis,which is widely distributed in East Asia.In this study,we compared the richness,community composition,and exploration types of ECM fungi associated with Q.variabilis between predominantly south-and north-facing slopes in the Taihang Mountain,North China for the fi rst time.DNA was extracted from the root tips of Q.variabilis,and Illumina MiSeq sequencing was used to identify ECM fungi.In total,168 operational taxonomic units belonging to 28 genera were detected,and the ECM community was found to be dominated by Russula,Inocybe,Tomentella,Scleroderma,and Cortinarius.Compared with the north-facing slopes,the ECM communities on the south-facing slopes had higher diversity.The community composition and exploration types were directly aff ected by the slope aspect.Also,the aspect-induced edaphic variables,such as total phosphorus,total nitrogen,total potassium,pH,and soil water content,were important sources of variation in ECM fungal richness and distributions of exploration types.Diff erent genera tended to be distributed in various slope aspects.Cenococcum,Genea,and Clavulina were signifi cantly enriched in north-facing slopes,while Geopora,Helvelosebacina,Scleroderma,Gyroporus,Astraeus,Boletus,Tricholoma,Hebeloma,Cortinarius and unclassifi ed Thelephoraceae were more abundant in south-facing slopes.Hydrophobic ECM fungi were obviously enriched in the south-facing slope,but there was no statistical diff erence between hydrophilic among the south-and north-facing slopes.Our study deepened our knowledge of the aspect-driven variation in ECM fungal communities associated with Q.variabilis.展开更多
Ectomycorrhizal fungi, a group of widespread symbiotic fungi with plant, obtain carbon source from trees and improve plant mineral nutrient uptake with their widespread hyphal network. Ectomycorrhizal fungi can be use...Ectomycorrhizal fungi, a group of widespread symbiotic fungi with plant, obtain carbon source from trees and improve plant mineral nutrient uptake with their widespread hyphal network. Ectomycorrhizal fungi can be used as inoculants to improve the survival rates of plantation. Saprophytic fungi use the nutrition from the debris of plant or animals, and it is difficult to distinguish the saprophytic and ectomycorrhizal fungi by morphological and anatomic methods. In this research, the differences of stable carbon and nitrogen isotopic compositions of these fungi were analyzed. The results showed that the abundances of 13C of were higher than those of ectomycorrhizal fungi and the abundances of 15N of saprophytic fungi were lower than those of ectomycorrhizal fungi. Such differences of stable carbon and nitrogen isotopic compositions between ectomycorrhizal fungi and saprophytic fungi can be ascribed to their different nutrition sources and ecological functions. These results collectively indicate that stable carbon and nitrogen isotopic compositions are an effective proxy for distinguishing between ectomycorrhizal and saprophytic fungi.展开更多
The addition of ectomycorrhizal fungi(ECMF),beneficial rhizosphere microorganisms,to the soil can pro-mote plant growth and resistance.Here,Populus davidi-ana×Populus bolleana tissue culture seedlings were grown ...The addition of ectomycorrhizal fungi(ECMF),beneficial rhizosphere microorganisms,to the soil can pro-mote plant growth and resistance.Here,Populus davidi-ana×Populus bolleana tissue culture seedlings were grown for 3 months in soils inoculated with one of the species,then seedlings were assessed for mycorrhizal colonization rate and growth,physiological and root traits.Suillus luteus and Populus involutus each formed ectomycorrhizal associa-tions with the seedlings.Seedling height,ground diameter,biomass,and leaf area were significantly greater after treat-ment with ECMF than in the non-inoculated controls.Treat-ment improved all physiological and root variables assessed(chlorophylls and carotenoids,cellulose,and soluble sugars and proteins;root length,surface area,projected area,mean diameter,volume,number of root tips).Seedlings inocu-lated with S.luteus outperformed those inoculated with P.involutus.展开更多
Late-stage or later-successional ectomycorrhizal fungi,dominant ectomycorrhizal species in mature forest,are generally important symbiotic partners of dominant tree species in many forest ecosystems.Spatial patterns o...Late-stage or later-successional ectomycorrhizal fungi,dominant ectomycorrhizal species in mature forest,are generally important symbiotic partners of dominant tree species in many forest ecosystems.Spatial patterns of fungal sporocarps of three families,i.e.Amanitaceae,Boletaceae and Russulaceae,in a subtropical forest in Dujiangyan were examined using second-order analysis in the present paper.The woody plant compositions of the plots associated with ectomycorrhizal fungi of three families were also compared using binary logistic regression analysis.Results indicated that presences of non-ectomycorrhizal and some ectomycorrhizal plants might have negative effects on the occurrence of ectomyconrhizas(ECM)fungal sporocarps and the characteristics in clonal growth of fungal taxa would not be the only determinant in the spatial pattern of ECM fungi.We suggest that besides host plants,non-ectomycorrhizal woody plants and interaction of ECM fungi should also be considered in spatial studies of ECM fungal communities in natural forests.展开更多
Mycophagists can influence fungal diversity within their home ranges by ensuring the continued and effective dispersal of spores from one site to another. However, the passage of spores through the digestive tract of ...Mycophagists can influence fungal diversity within their home ranges by ensuring the continued and effective dispersal of spores from one site to another. However, the passage of spores through the digestive tract of vertebrates can affect the activity and viability of the spores ingested. This phenomenon has been rarely documented in opportunistic mycophagists consuming epigeous fungi. Using laboratory experiments, we investigated the activity and viability of spores of two epigeous ectomycorrhizal fungal species (Laccaria trichodermophora and SuiUus tomentosus) after passage through the digestive tract of two opportunistic mycophagous small rodents, the volcano mouse Peromyscus alstoni and the deer mouse P maniculatus. We found that passage through the gut of either species of rodent had a significant effect on spore activity and viability for both fungal species. The proportion of active spores (0.37-0.40) of L. trichodermophora in the feces of both species of rodents was less than that recorded for the control (0.82). However, the proportion of active spores (0.644).73) of S. tomentosus in the feces of each species of rodent was higher than in the control (0.40). On the other hand, the viability of spores was lower (0.26-0.30 in L. trichodermophora and 0.604).69 in S. tomentosus) for both fungi when consumed by either rodent relative to the controls (0.90 in L. trichodermophora and 0.82 in S. tomentosus). These findings suggest that these rodent species may be effective dispersers of both epigeous fungi [Current Zoology 57 (3): 293-299, 2011].展开更多
Ectomycorrhizal(EM)networks provide a variety of services to plants and ecosystems include nutrient uptake and transfer,seedling survival,internal cycling of nutrients,plant competition,and so on.To deeply their struc...Ectomycorrhizal(EM)networks provide a variety of services to plants and ecosystems include nutrient uptake and transfer,seedling survival,internal cycling of nutrients,plant competition,and so on.To deeply their structure and function in ecosystems,we investigated the spatial patterns and nitrogen(N)transfer of EM networks usingN labelling technique in a Mongolian scotch pine(Pinus sylvestris var.mongolica Litv.)plantation in Northeastern China.In August 2011,four plots(20 × 20 m)were set up in the plantation.125 ml 5 at.%0.15 mol/LNHNOsolution was injected into soil at the center of each plot.Before and 2,6,30 and 215 days after theN application,needles(current year)of each pine were sampled along four 12 m sampling lines.Needle total N andN concentrations were analyzed.We observed needle N andN concentrations increased significantly over time afterN application,up to 31 and0.42%,respectively.There was no correlation between needle N concentration andN/N ratio(R2=0.40,n=5,P=0.156),while excess needle N concentration and excess needleN/N ratio were positively correlated across different time intervals(R~2=0.89,n=4,P\0.05),but deceased with time interval lengthening.NeedleN/N ratio increased with time,but it was not correlated with distance.NeedleN/N ratio was negative with distance before and 6th day and 30th day,positive with distance at 2nd day,but the trend was considerably weaker,their slop were close to zero.These results demonstrated that EM networks were ubiquitous and uniformly distributed in the Mongolian scotch pine plantation and a random network.We found N transfer efficiency was very high,absorbed N by EM network was transferred as wide as possible,we observed N uptake of plant had strong bias forN andN,namely N fractionation.Understanding the structure and function of EM networks in ecosystems may lead to a deeper understanding of ecological stability and evolution,and thus provide new theoretical approaches to improve conservation practices for the management of the Earth’s ecosystems.展开更多
91 noteworthy ectomycorrhizal fungi associated with Larix sibirica Ledeb.etc.from Xing jiang are discussed.Hydnellum caeruleum(Horn.:Pers.)Karst.,H.peckii Banker apud Peck,Cortinarius azureovelatus Orton,C.pinicola Or...91 noteworthy ectomycorrhizal fungi associated with Larix sibirica Ledeb.etc.from Xing jiang are discussed.Hydnellum caeruleum(Horn.:Pers.)Karst.,H.peckii Banker apud Peck,Cortinarius azureovelatus Orton,C.pinicola Orton,C.rickenianus Maire are new record to China.Among which 66 species are edible,14 species are poisonous,13 species are pharmaceutical,22 species are probably anticancer.展开更多
Ectomycorrhizal fungus Laccaria bicolor S238N, isolated from a forest soil in central France in 1990s,has demonstrated unequivocally an ability to promote pine growth. In the present nursery bed experiment,the ability...Ectomycorrhizal fungus Laccaria bicolor S238N, isolated from a forest soil in central France in 1990s,has demonstrated unequivocally an ability to promote pine growth. In the present nursery bed experiment,the ability of this ectomycorrhizal fungus to increase growth and P and K uptake of Douglas Fir seedlings(Zone 22) was examined. Growth of inoculated seedlings was over twice (plant height) and three times(biomass) that of non-inoculated ones. Similarly, both the concentrations and the amounts of P and Kuptake by seedlings were significantly increased by fungal inoculation, indicating the improvement of P and Knutrition in mycorrhizal seedlings. In contrast, Al-p in the soils was decreased obviously by plants, especiallyby mycorrhizas, suggesting utilization of this soil P pool by plants and more efficient Al-P mobilization bymycorrhizas than by nonmycorrhizas. Moreover, K extracted by 1 mol/L HCl following consecutive extractionof H<sub>2</sub>O and CH<sub>3</sub>COONH<sub>4</sub>, which may not be plant available, could be utilized by fungus colonized roots.This could be explained by the release of protons and oxalate by hypae which leads to replacement of interlayerK in nonexpanded 2:1 clay minerals and bio-weathering of phyllosilicates.展开更多
The aim of this study was to investigate the phenolic compounds content, HPLC-profiles of phenolic compounds and organic acids, and also antioxidant activities via the ability to scavenge DPPH radical of three wild ed...The aim of this study was to investigate the phenolic compounds content, HPLC-profiles of phenolic compounds and organic acids, and also antioxidant activities via the ability to scavenge DPPH radical of three wild edible mushrooms belonging to Russula genus and being collected in center of Côte d’Ivoire. Total phenolic compounds, flavonoids and tannins contents of methanolic extracts were assessed by colorimetric assays. So, the obtained values of these chemical parameters ranged from 394.05 to 513.50 mg/100 g DW, 94.50 to 139.95 mg/100 g DW and from 124.20 to 165 ± 0.54 mg/100 g DW, respectively. Otherwise, HPLC-profiles of the methanolic extracts revealed that quercetin, salicylic acid and tannin ol were the main phenolic compounds in R. delica whereas R. lepida contained gallic acid, catechin and protocatechuic acid as main phenolic compounds. Besides, it showed that the phenolic compounds such as salicylic acid, tannin ol and catechin were observed in R. mustelina. As for HPLC-profiles of organic acid, the fumaric and malic acid were recorded as the main organic acids in the three species of wild edible mushrooms. However, citric acid content was found to be highest in R. lepida. The methanolic extracts of the three mushrooms exhibited high DPPH radical scavenging activities ranging from 74.92% to 58.92%. These wild edible mushrooms could be considered a potential supply source of adequate natural antioxidant for local population.展开更多
Vegetation,elevation gradient and soil temperature are considered as major drivers of ECM fungi species richness.ECM sporocarps were collected during rainy seasons for two years to study the link between the distribut...Vegetation,elevation gradient and soil temperature are considered as major drivers of ECM fungi species richness.ECM sporocarps were collected during rainy seasons for two years to study the link between the distribution of ECM mushrooms with Castonopsis echinocarpa,Parashorea chinensis,and Pittosporopsis kerrii with varying elevations and soil temperatures,in a tropical rain forest Xishuangbanna,Yunnan,China.For each tree species,60 trees of approximately the same size were selected,where half of them were growing at higher elevation levels and the rest at lower levels.The highest total counts of ECM fungi,as well as the highest species richness were produced by P.chinensis followed by C.echinocarpa and P.kerrii.Highest species richness was shown in September by P.chinensis,while P.kerrii trees had the lowest count of mushrooms across rainy seasons.Species of Boletales were recorded with highest species richness followed by species of order Agaricales around both C.echinocarpa and P.chinensis.ECM fungi count declined with increased elevation.Furthermore,fungi species richness increased positively with increased soil temperature in a tropical seasonal rainforest.展开更多
基金supported by the National Key Research and Development Program of China(2022 YFF 1303201)the Japan Society for the Promotion of Science.
文摘To understand the roles of charcoal and ectomycorrhizal fungi(ECMF)on tree growth,which relates to the rehabilitation of forest ecosystems after forest fires,two experiments were set up in this study,the first was to determine the correct amount of charcoal for Japanese larch(Larix kaempferi Sarg.)seedling growth by applying oak charcoal to basic soil medium at ratios of 1:1,1:2,1:4 and 1:8 by volume.The second experiment investigated the combined effects of four types of charcoal:derived from oak wood,husks of buckwheat,rice and activated charcoal of larch wood,and two types of ECMF:Pt(Pisolithus tinctorius Pers.)and Ec(Pt+Rhizopogon spp.+Laccaria spp.+Scleroderma spp.)on the growth of Japanese larch seedlings.Our results show that growth was significantly stressed by large amounts charcoal applications.There were significant variations among the four types of charcoal on growth.We concluded that the addition of charcoal was the critical factor that influenced larch growth and ECMF formation.Rice charcoal and Ec stimulates the growth and nitrogen uptake of Japanese larch seedlings,thus the most suitable fungus and charcoal for practices is Ec-rice charcoal(1:8 charcoal to basic soil).
文摘Concentration of copper and zinc in isolated Suillus bovinus mycelia, used nutrient solution and 0.5 mol/L EDTA mycelia washing solution were measured to investigate the distribution of heavy metals in mycelia growth in excess copper or zinc nutrient solution. Treated with zinc, most of added zinc maintained in used solution, and 9.8%/14.6% was in/on mycelia in treatment, and in treatment 2 was 3.9%/8.0% in/on mycelia. In the copper applications, copper stimulated in more than on mycelia, i.e., 25.9%/4.5% in/on mycelia in treatment, and 7%/18.8% in/on mycelia while most of copper retained in used nutrient solution. Certain amount of copper or zinc uptake by mycelia led to pronounced influence on glycolysis and nitrogen incorporating process of Suillus bovinus, while the tested enzymes kept constant in treatment. In crude extracts of copper treatment 2 mycelia, activities of HK, PFK and GS were inhibited and decrease to 63%, 48% and 38% and GIDH increased by 68% of the control, respectively. The behaviors of these tested enzymes toward zinc corresponded in general with that towards copper. The potential protection of Suillus bovinus for its host plant under excess copper or zinc threaten was discussed.
文摘Growth and photosynthesis responses were measured for Scots pine( Pinus sylvestris L. cv.) inoculated with ectomycorrhizal fungi( Suillus bovinus ) under 6 5 and 25 mg/L Cu treatments to evaluate ectomycorrhizal seedlings' tolerance to heavy metal stress.Results showed that excessive Cu can significantly impair the growth and photosynthesis of pine seedlings, but such impairment is much smaller to the ectomycorrhizal seedlings. Under 25 mg/L Cu treatment, the dry weight of ectomycorrhizal seedlings is 25% lower than the control in contrary to 53% of the non mycorrhizal seedlings, and the fresh weight of ectomycorrhizal roots was significantly higher than those of non mycorrhizal roots, about 25% and 42% higher at 6 5 and 25 mg/L Cu treatments respectively. Furthermore, ectomycorrhizal fungi induced remarkable difference in the growth rate and pigment content of seedlings under excessive Cu stress. At 25 mg/L Cu, the contents of total chlorophyll, chlorophyll a and chlorophyll b were 30% higher in ectomycorrhizal plants than those in non mycorrhizal plants. O 2 evolution and electron transport of PSI and PSII were restrained by elevated Cu stress. However, no significant improvement was observed in reducing the physiological restraining in ectomycorrhizal seedlings over the non mycorrhizal ones.
基金Project supported by the Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX3-SW-140) the Funds for Attracting Talents of Nanjing Normal University, China (No. 184070H2B39).
文摘A survey was conducted for about 3 years to study the abundance and diversity of ectomycorrhizal fungi (EMF) in Jiangsu Province, China. The identification of the fungal species was based on the microscopic and macroscopic characteristics of their fruiting bodies. About 126 species of EMF were found in Jiangsu Province. These fungi were largely categorized into three orders (of 121 species), four families (of 96 species), and six genera (of about 86 species).
基金supported by the National Natural Science Foundation of China(31800542,31670649,31200484,31170597)Natural Science Foundation of Liaoning(20180550893)。
文摘This research investigates the mechanism of increased salinity tolerance of ectomycorrhizal fungiinoculated P. sylvestris var. mongolica to provide a theoretical basis for the application of the fungus in saline soils.Growth effects due to inoculation of seedlings with Suillus luteus(a symbiotic ectomycorrhizal fungus), were determined in four kinds of saline–alkali soils. Growth and physiological indicators, including photosynthetic characteristics, plant height, biomass, photosynthetic pigments,catalase(CAT) and superoxide dismutase(SOD) enzyme levels, and malondialdehyde(MDA), an organic marker for oxidative stress, and soluble protein levels were determined. Mycorrhizal colonization rate decreased with increasing saline–alkalinity and growth of inoculated seedlings was significantly enhanced. Biomass and chlorophyll contents also increased significantly. SOD and CAT activities were higher than in non-inoculated seedlings. However, MDA content decreased in inoculatedseedlings. Soluble protein content did not increase significantly. Inoculation with a symbiotic ectomycorrhizal fungus could enhance the saline–alkali tolerance of P. sylvestris var. mongolica. Growth and physiological performance of inoculated seedlings were significantly better than that of uninoculated seedlings. The results indicate that inoculated P. sylvestris var. mongolica seedlings may be useful in the improvement of saline–alkali lands.
基金supported by the National Natural Science Foundation of China (No. 50979002 and No. 20677003)
文摘Objective To investigate the potential of Gomphidius viscidus,a kind of ectomycorrhizal fungi,for phytoremediation of anthracene in soil.Methods Absorptioe changes of micro-habitat were studied in detail.Conclusion Ectomycorrhizal plants have a strong potential for remediation of polycyclic aromatic hydrocarn characteristics of both active and inactivated mycelia.Results A high calculated adsorption capacity of 1 886.79 mg/g and 1 515.15 mg/g at 25 ℃,pH 6.0 for active and inactivated mycelia respectively,was obtained based on Langmuir model.The ANT biosorption was more ideally characterized by the Langmuir model than by the Freundlich model.The biosorption of anthracene to biomass was extremely fast and could be modeled with pseudo-second order adsorption kinetics.Moreover,ectomycorrhizal mycelia demonstrated a strong ability to adjust the physiological process to get adapted to the change of micro-habitat.
基金Project (No. 3967002) supported by the National Natural Science Foundation of China.
文摘Ectomycorrhizal fungi, including Cenococcum geophilum SIV (Cg SIV), and Pisolithus tinctorius 2144 (Pt 2144), 441 (Pt 441) and XC1 (Pt XC1), were cultured in Pachlewski liquid medium with H2KPO4,KCl- saturated vermiculite and mica as K sources, respectively, to investigate the mechanism of K absorption and mobilization by the fungi. Fungal growth rate, K absorption and mobilization varied significantly among the fungal species. Faster growth and greater K accumulation in Pt XC1 than Pt 2 144, Pt 441 and Cg siv were observed. Ectomycorrhizal fungi depressed HCl-soluble K in minerals after successive extractions by water and NH4OAc. Ratio of the total amount of K, including water-, NH4OAc- and HCI-soluble K, lost from substrates to the K accumulated in fungal colonies was less than 60%. These reveal that the ectomycorrhizal fungi could utilize K in interlayer and structural pools, which are usually unavailable for plants in short period. Large differences in the depletion of K in interlayer and structural pools by fungi were observed at fungal harvest. Taking into account the nutrient absorption by ectomycorrhizal fungi in symbionts and the direct contact between hyphae and soils, the fungi species colonized on the root surfaces seemed to be related to the effectiveness of mycorrhizas to utilize K in soils. Ectomycorrhizal fungi differed in the efflux of protons and oxalate. Pt XC1 was observed to have greatest ability to effuse protons and oxalate among the fungi adopted in the experiment. Furthermore, the higher the concentrations of protons and oxalate in the liquid culture solutions, the larger the depletion of K in interlayer and structural pools in minerals by fungi. Protons could replace interlayer K and chelation of oxalate with Fe and Al in crystal lattice could cause weathering of clay minerals. So, protons and oxalate produced by ectomycorrhizal fungi might play an important role in K mobilization in these two pools.
基金the National Natural Science Foundation of China (No.20777004).
文摘To understand the role of ectomycorrhizas in improving the tolerance of its host to excessive heavy metals in soil, this study was conducted to exam the patterns of four fractions (the exchangeable, the carbonate-bound, the Fe-Mn oxide- bound and the organically bound) of both Cu and Cd in the rhizosphere of Chinese pine (Pinus tabulaeformis) seedlings grown in excessive Cu and Cd environment. The results showed that the speciation of Cu and Cd in the rhizosphere was significantly influenced by inoculation of ectomycorrhizal fungus Boletus edulis. Compared to the rhizosphere, the content of exchangeable Cu slightly decreased in the mycorrhizosphere of the seedlings grown in 166 and 400 mg kg-1 Cu contaminated soil, whereas the exchangeable Cd in the mycorrhizosphere decreased remarkably to only 33% and to 60% that of the rhizosphere at 0.75 and 1.50 mg kg-1 Cd levels, respectively. These indicate the potential capacity of mycorrhizas to alleviate the damage of heavy metals to the host plants by reducing the bioavailability of heavy metals in soil. Distribution of the 4 tested fractions of Cu and Cd at different contamination levels showed that there was a strong tendency of changing from loosely associated fractions to strongly associated fractions in the mycorrhizosphere. The most stable Cd fraction, organically bound Cd, was significantly larger in the mycorrhizosphere than in the rhizosphere at different Cd contamination levels. This phenomenon was also observed for Cu but the difference was not statistically significant.
基金supported by the National Natural Science Foundation of China (31570599 and 32171753)。
文摘Plant tolerance to aluminum(Al)toxicity can be enhanced by an ectomycorrhizal(ECM)fungus through biological filtering or physical blockage.To understand the roles of ECM colonization in Al absorption with regard to Al tolerance,Pinus massoniana seedlings were inoculated with either Lactarius deliciosus(L.:Fr.)Gray isolate 2 or Pisolithus tinctorius(Pers.)Coker et Couch isolate 715 and cultivated in an acid yellow soil with or without 1.0 mM Al^(3+)irrigation for 10 weeks.Biomass production,Al bioaccumulation and transport in seedlings colonized by the two ECM fungi were compared,and the three absorption kinetics(pseudo-first order,pseudo-second order and intraparticle diffusion)models used to evaluate variances in root Al^(3+)absorption capacity.Results show that both fungi increased aboveground biomass and Al tolerance of P.massoniana seedlings,but L.deliciosus 2 was more effective than P.tinctorius 715.Lower Al absorption capacity,fewer available active sites and decreased affinity and boundary layer thickness for Al^(3+),and higher Al accumulation and translocation contributed to the increased Al tolerance in the ECM-inoculated seedlings.These results advance our understanding of the mechanisms and strategies in plant Alto lerance conferred by ECM fungi and show that inoculation with L.deliciosus will better enhance Al tolerance in P.massoniana seedlings used for forest plantation and ecosystem restoration in acidic soils,particularly in Southwest China and similar soils worldwide.
基金the National Key Technology Research and Development Program of the Ministry of Science and Technology of China(2015BAD07B02).
文摘The slope aspect is one of the most critical topographic factors in mountainous areas.Little is known,however,about the eff ect of the aspect on the ectomycorrhizal(ECM)fungal community.Additionally,we know very little about the composition of ECM fungal communities associated with Quercus variabilis,which is widely distributed in East Asia.In this study,we compared the richness,community composition,and exploration types of ECM fungi associated with Q.variabilis between predominantly south-and north-facing slopes in the Taihang Mountain,North China for the fi rst time.DNA was extracted from the root tips of Q.variabilis,and Illumina MiSeq sequencing was used to identify ECM fungi.In total,168 operational taxonomic units belonging to 28 genera were detected,and the ECM community was found to be dominated by Russula,Inocybe,Tomentella,Scleroderma,and Cortinarius.Compared with the north-facing slopes,the ECM communities on the south-facing slopes had higher diversity.The community composition and exploration types were directly aff ected by the slope aspect.Also,the aspect-induced edaphic variables,such as total phosphorus,total nitrogen,total potassium,pH,and soil water content,were important sources of variation in ECM fungal richness and distributions of exploration types.Diff erent genera tended to be distributed in various slope aspects.Cenococcum,Genea,and Clavulina were signifi cantly enriched in north-facing slopes,while Geopora,Helvelosebacina,Scleroderma,Gyroporus,Astraeus,Boletus,Tricholoma,Hebeloma,Cortinarius and unclassifi ed Thelephoraceae were more abundant in south-facing slopes.Hydrophobic ECM fungi were obviously enriched in the south-facing slope,but there was no statistical diff erence between hydrophilic among the south-and north-facing slopes.Our study deepened our knowledge of the aspect-driven variation in ECM fungal communities associated with Q.variabilis.
基金supported by the National Science Fund for Creative Research Groups(Grant Nos.40721002,41021062)the Central University Basic Scientific Research Business Expenses Special Funds(Grant No.53200959117)
文摘Ectomycorrhizal fungi, a group of widespread symbiotic fungi with plant, obtain carbon source from trees and improve plant mineral nutrient uptake with their widespread hyphal network. Ectomycorrhizal fungi can be used as inoculants to improve the survival rates of plantation. Saprophytic fungi use the nutrition from the debris of plant or animals, and it is difficult to distinguish the saprophytic and ectomycorrhizal fungi by morphological and anatomic methods. In this research, the differences of stable carbon and nitrogen isotopic compositions of these fungi were analyzed. The results showed that the abundances of 13C of were higher than those of ectomycorrhizal fungi and the abundances of 15N of saprophytic fungi were lower than those of ectomycorrhizal fungi. Such differences of stable carbon and nitrogen isotopic compositions between ectomycorrhizal fungi and saprophytic fungi can be ascribed to their different nutrition sources and ecological functions. These results collectively indicate that stable carbon and nitrogen isotopic compositions are an effective proxy for distinguishing between ectomycorrhizal and saprophytic fungi.
基金part of the Liaoning Provincial Department of Education project LJKZ0684supported by the National Natural Science Foundation of China (31800542)
文摘The addition of ectomycorrhizal fungi(ECMF),beneficial rhizosphere microorganisms,to the soil can pro-mote plant growth and resistance.Here,Populus davidi-ana×Populus bolleana tissue culture seedlings were grown for 3 months in soils inoculated with one of the species,then seedlings were assessed for mycorrhizal colonization rate and growth,physiological and root traits.Suillus luteus and Populus involutus each formed ectomycorrhizal associa-tions with the seedlings.Seedling height,ground diameter,biomass,and leaf area were significantly greater after treat-ment with ECMF than in the non-inoculated controls.Treat-ment improved all physiological and root variables assessed(chlorophylls and carotenoids,cellulose,and soluble sugars and proteins;root length,surface area,projected area,mean diameter,volume,number of root tips).Seedlings inocu-lated with S.luteus outperformed those inoculated with P.involutus.
文摘Late-stage or later-successional ectomycorrhizal fungi,dominant ectomycorrhizal species in mature forest,are generally important symbiotic partners of dominant tree species in many forest ecosystems.Spatial patterns of fungal sporocarps of three families,i.e.Amanitaceae,Boletaceae and Russulaceae,in a subtropical forest in Dujiangyan were examined using second-order analysis in the present paper.The woody plant compositions of the plots associated with ectomycorrhizal fungi of three families were also compared using binary logistic regression analysis.Results indicated that presences of non-ectomycorrhizal and some ectomycorrhizal plants might have negative effects on the occurrence of ectomyconrhizas(ECM)fungal sporocarps and the characteristics in clonal growth of fungal taxa would not be the only determinant in the spatial pattern of ECM fungi.We suggest that besides host plants,non-ectomycorrhizal woody plants and interaction of ECM fungi should also be considered in spatial studies of ECM fungal communities in natural forests.
文摘Mycophagists can influence fungal diversity within their home ranges by ensuring the continued and effective dispersal of spores from one site to another. However, the passage of spores through the digestive tract of vertebrates can affect the activity and viability of the spores ingested. This phenomenon has been rarely documented in opportunistic mycophagists consuming epigeous fungi. Using laboratory experiments, we investigated the activity and viability of spores of two epigeous ectomycorrhizal fungal species (Laccaria trichodermophora and SuiUus tomentosus) after passage through the digestive tract of two opportunistic mycophagous small rodents, the volcano mouse Peromyscus alstoni and the deer mouse P maniculatus. We found that passage through the gut of either species of rodent had a significant effect on spore activity and viability for both fungal species. The proportion of active spores (0.37-0.40) of L. trichodermophora in the feces of both species of rodents was less than that recorded for the control (0.82). However, the proportion of active spores (0.644).73) of S. tomentosus in the feces of each species of rodent was higher than in the control (0.40). On the other hand, the viability of spores was lower (0.26-0.30 in L. trichodermophora and 0.604).69 in S. tomentosus) for both fungi when consumed by either rodent relative to the controls (0.90 in L. trichodermophora and 0.82 in S. tomentosus). These findings suggest that these rodent species may be effective dispersers of both epigeous fungi [Current Zoology 57 (3): 293-299, 2011].
基金supported by National Natural Science Foundation of China(30830024)
文摘Ectomycorrhizal(EM)networks provide a variety of services to plants and ecosystems include nutrient uptake and transfer,seedling survival,internal cycling of nutrients,plant competition,and so on.To deeply their structure and function in ecosystems,we investigated the spatial patterns and nitrogen(N)transfer of EM networks usingN labelling technique in a Mongolian scotch pine(Pinus sylvestris var.mongolica Litv.)plantation in Northeastern China.In August 2011,four plots(20 × 20 m)were set up in the plantation.125 ml 5 at.%0.15 mol/LNHNOsolution was injected into soil at the center of each plot.Before and 2,6,30 and 215 days after theN application,needles(current year)of each pine were sampled along four 12 m sampling lines.Needle total N andN concentrations were analyzed.We observed needle N andN concentrations increased significantly over time afterN application,up to 31 and0.42%,respectively.There was no correlation between needle N concentration andN/N ratio(R2=0.40,n=5,P=0.156),while excess needle N concentration and excess needleN/N ratio were positively correlated across different time intervals(R~2=0.89,n=4,P\0.05),but deceased with time interval lengthening.NeedleN/N ratio increased with time,but it was not correlated with distance.NeedleN/N ratio was negative with distance before and 6th day and 30th day,positive with distance at 2nd day,but the trend was considerably weaker,their slop were close to zero.These results demonstrated that EM networks were ubiquitous and uniformly distributed in the Mongolian scotch pine plantation and a random network.We found N transfer efficiency was very high,absorbed N by EM network was transferred as wide as possible,we observed N uptake of plant had strong bias forN andN,namely N fractionation.Understanding the structure and function of EM networks in ecosystems may lead to a deeper understanding of ecological stability and evolution,and thus provide new theoretical approaches to improve conservation practices for the management of the Earth’s ecosystems.
文摘91 noteworthy ectomycorrhizal fungi associated with Larix sibirica Ledeb.etc.from Xing jiang are discussed.Hydnellum caeruleum(Horn.:Pers.)Karst.,H.peckii Banker apud Peck,Cortinarius azureovelatus Orton,C.pinicola Orton,C.rickenianus Maire are new record to China.Among which 66 species are edible,14 species are poisonous,13 species are pharmaceutical,22 species are probably anticancer.
文摘Ectomycorrhizal fungus Laccaria bicolor S238N, isolated from a forest soil in central France in 1990s,has demonstrated unequivocally an ability to promote pine growth. In the present nursery bed experiment,the ability of this ectomycorrhizal fungus to increase growth and P and K uptake of Douglas Fir seedlings(Zone 22) was examined. Growth of inoculated seedlings was over twice (plant height) and three times(biomass) that of non-inoculated ones. Similarly, both the concentrations and the amounts of P and Kuptake by seedlings were significantly increased by fungal inoculation, indicating the improvement of P and Knutrition in mycorrhizal seedlings. In contrast, Al-p in the soils was decreased obviously by plants, especiallyby mycorrhizas, suggesting utilization of this soil P pool by plants and more efficient Al-P mobilization bymycorrhizas than by nonmycorrhizas. Moreover, K extracted by 1 mol/L HCl following consecutive extractionof H<sub>2</sub>O and CH<sub>3</sub>COONH<sub>4</sub>, which may not be plant available, could be utilized by fungus colonized roots.This could be explained by the release of protons and oxalate by hypae which leads to replacement of interlayerK in nonexpanded 2:1 clay minerals and bio-weathering of phyllosilicates.
文摘The aim of this study was to investigate the phenolic compounds content, HPLC-profiles of phenolic compounds and organic acids, and also antioxidant activities via the ability to scavenge DPPH radical of three wild edible mushrooms belonging to Russula genus and being collected in center of Côte d’Ivoire. Total phenolic compounds, flavonoids and tannins contents of methanolic extracts were assessed by colorimetric assays. So, the obtained values of these chemical parameters ranged from 394.05 to 513.50 mg/100 g DW, 94.50 to 139.95 mg/100 g DW and from 124.20 to 165 ± 0.54 mg/100 g DW, respectively. Otherwise, HPLC-profiles of the methanolic extracts revealed that quercetin, salicylic acid and tannin ol were the main phenolic compounds in R. delica whereas R. lepida contained gallic acid, catechin and protocatechuic acid as main phenolic compounds. Besides, it showed that the phenolic compounds such as salicylic acid, tannin ol and catechin were observed in R. mustelina. As for HPLC-profiles of organic acid, the fumaric and malic acid were recorded as the main organic acids in the three species of wild edible mushrooms. However, citric acid content was found to be highest in R. lepida. The methanolic extracts of the three mushrooms exhibited high DPPH radical scavenging activities ranging from 74.92% to 58.92%. These wild edible mushrooms could be considered a potential supply source of adequate natural antioxidant for local population.
基金supported by CGIAR-FTA Program and Key Research Program of the Ministry of Sciences and Technology(Grant No.2017YFC0505101)Samantha C.Karunarathna would like to thank the CAS President’s International Fellowship Initiative(PIFI)young staff under the grant number:2020FYC0002the National Science Foundation of China(NSFC)under the project code 31851110759.
文摘Vegetation,elevation gradient and soil temperature are considered as major drivers of ECM fungi species richness.ECM sporocarps were collected during rainy seasons for two years to study the link between the distribution of ECM mushrooms with Castonopsis echinocarpa,Parashorea chinensis,and Pittosporopsis kerrii with varying elevations and soil temperatures,in a tropical rain forest Xishuangbanna,Yunnan,China.For each tree species,60 trees of approximately the same size were selected,where half of them were growing at higher elevation levels and the rest at lower levels.The highest total counts of ECM fungi,as well as the highest species richness were produced by P.chinensis followed by C.echinocarpa and P.kerrii.Highest species richness was shown in September by P.chinensis,while P.kerrii trees had the lowest count of mushrooms across rainy seasons.Species of Boletales were recorded with highest species richness followed by species of order Agaricales around both C.echinocarpa and P.chinensis.ECM fungi count declined with increased elevation.Furthermore,fungi species richness increased positively with increased soil temperature in a tropical seasonal rainforest.