In present work,blue carbon dots(b-CDs)were derived from ammonium citrate and guanidine hydrochloride,and red carbon dots(r-CDs)were stemmed from malonate,ethylenediamine and meso-tetra(4-carboxyphenyl)porphin based o...In present work,blue carbon dots(b-CDs)were derived from ammonium citrate and guanidine hydrochloride,and red carbon dots(r-CDs)were stemmed from malonate,ethylenediamine and meso-tetra(4-carboxyphenyl)porphin based on facile hydrothermal method.Eco-friendly ratiometric fluorescence probe was innovatively constructed to effectively measure Hg2+utilizing b-CDs and r-CDs.The developed probe displayed two typical emission peaks at 450 nm from b-CDs and 650 nm from r-CDs under the excitation at 360 nm.Mercury ion has strong quenching effect on the fluorescence intensity at 450 nm due to the electron transfer process and the fluorescence change at 450 nm was used as the response signal,whereas the fluorescence intensity at 650 nm kept unchangeable which resulted from the chemical inertness between Hg^(2+)and r-CDs,serving as the reference signal in the sensing system.Under optimal circumstances,this probe exhibited an excellent linearity between the fluorescence response values of F450/F650 and Hg^(2+)concentrations over range of 0.01-10μmol/L,and the limit of detectionwas down to 5.3 nmol/L.Furthermore,this probe was successfully employed for sensing Hg^(2+)in practical environmental water samples with satisfied recoveries of 98.5%-105.0%.The constructed ratiometric fluorescent probe provided a rapid,environmental-friendly,reliable,and efficient platform for measuring trace Hg^(2+)in environmental field.展开更多
The global reliance on phosphate rock for agriculture and other industries,coupled with chemical regulations in developed countries,has driven the search for green alternatives in apatite flotation.This review investi...The global reliance on phosphate rock for agriculture and other industries,coupled with chemical regulations in developed countries,has driven the search for green alternatives in apatite flotation.This review investigates eco-friendly collectors’effectiveness in promoting sustainable mineral processing,guiding future alternatives to traditional reagents.The manuscript discussed the surface properties of apatite and its interaction with eco-friendly collectors,assessing existing fundamental studies.This study sought to:(1)define,organize,and classify“eco-friendly”collectors;(2)evaluate their effect in IEP and contact angle;(3)provide a better understanding of the adsorption behavior of the different fatty acid chains into apatite surface;(4)assess their ability to reversely and directly float apatite;(5)address gaps to achieve selectivity and process optimization.Outcomes demonstrated that fatty acids are largely applied,but other renewable sources of these reagents have been promisingly evaluated.In addition,other natural reagents have been tested,and new green synthetics have demonstrated synergistic effects when combined with fatty acids,yielding significant improvements in grade and recovery.However,collector effectiveness varies with ore characteristics,like particle size and surface properties,which remain underexplored.Future research should design tailored collectors that align with mineralogical differences to enhance selectivity.展开更多
In light of the growing urgency to address environmental degradation and improve carbon sequestration strategies,this study rigorously investigates the potential of Cistus ladaniferus as a viable feedstock for biochar...In light of the growing urgency to address environmental degradation and improve carbon sequestration strategies,this study rigorously investigates the potential of Cistus ladaniferus as a viable feedstock for biochar and activated carbon production.The influence of pyrolysis temperature,heating rate and particle size on biochar yield was systematically examined.The results demonstrate that increasing pyrolysis temperature and heating rate significantly reduces biochar yield,while particle size plays a crucial role in thermal degradation and biochar retention.To evaluate the structural and chemical properties of the materials,various characterization techniques were employed,including Fourier-transform infrared spectroscopy(FTIR),scanning electron microscopy(SEM),and energy-dispersive X-ray analysis(EDXA).FTIR identified key functional groups,while SEM and EDXA provided valuable insights into the morphology and elemental composition of the materials.Activated carbons exhibited enhanced porosity and carbon content compared to their biochar counterparts,achieving specific surface areas of up to 1210 m^(2) g^(-1) for acidactivated shells(AC-Sha).The Brunauer-Emmett-Teller(BET)method confirmed the mesoporous characteristics of these materials,with AC-Sa displaying a surface area of 678.74 m^(2) g^(-1) and an average pore size of 2.73 nm.Elemental analysis revealed that activated carbons possessed a higher carbon content(96.40 wt.%for AC-Sha)and lower oxygen content(2.37 wt.%),highlighting their suitability for applications in adsorption and catalysis.These findings underscore the significant impact of activation processes on the stability and adsorption capabilities of Cistus-derived biochars and activated carbons,paving the way for future research and practical applications in pollution control,carbon sequestration,and bioenergy.展开更多
Nowadays,the development of effective bioplastics aims to combine traditional plastics’functionality with environmentally friendly properties.The most effective and durable modern bioplastics are made from the edible...Nowadays,the development of effective bioplastics aims to combine traditional plastics’functionality with environmentally friendly properties.The most effective and durable modern bioplastics are made from the edible part of crops.This forces bioplastics to competewith food production because the crops that produce bioplastics can also be used for human nutrition.That is why the article’s main focus is on creating bioplastics using renewable,non-food raw materials(cellulose,lignin,etc.).Eco-friendly composites based on a renewable bioplastic blend of polybutylene adipate-co-terephthalate,corn starch,and poly(lactic acid)with reed and hemp waste as a filler.The physic-chemical features of the structure and surface,as well as the technological characteristics of reed and hemp waste as the organic fillers for renewable bioplastic blend of polybutylene adipate-co-terephthalate,corn starch,and poly(lactic acid),were studied.Theeffect of the fractional composition analysis,morphology,and nature of reed and hempwaste on the quality of the design of eco-friendly biodegradable composites and their ability to disperse in the matrix of renewable bioplastic blend of polybutylene adipate-co-terephthalate,corn starch and poly(lactic acid)was carried out.The influence of different content and morphology of reed and hemp waste on the composite characteristics was investigated.It is shown that the most optimal direction for obtaining strong eco-friendly biodegradable composites based on a renewable bioplastic blend of polybutylene adipate-co-terephthalate,corn starch,and poly(lactic acid)is associated with the use of waste reed stalks,with its optimal content at the level of 50 wt.%.展开更多
All maritime industries are plagued by marine biofouling pollution,which causes large economic and environmental costs.Therefore,there is an urgent need for ecofriendly alternatives that can effectively reduce the neg...All maritime industries are plagued by marine biofouling pollution,which causes large economic and environmental costs.Therefore,there is an urgent need for ecofriendly alternatives that can effectively reduce the negative consequences of biofouling pollution.This study aimed to produce novel capsaicin-inspired amide derivatives(CIADs)with multifunctional antifouling features by introducing amide compounds to aromatic compounds via a Friedel-Crafts alkylation reaction.The structure of the CIADs was characterized using FTIR,1H NMR,13C NMR,and HRMS,and the comprehensive antifouling capacity was determined by thermal stability,anti-ultraviolet,antibacterial,anti-algal,and marine field experiments.CIADs showed good thermal stability and did not show obvious weight loss before 226°C.2,4-dihydroxy-3,5-diphenylimidemet-hylbenzophenone(DDB)had an excellent ultraviolet absorption effect,which was even better than that of 2-hydroxy-4-(octyloxy)benzophenone.The antibacterial and anti-algal rates of N-(2,4-dimethyl-3-chloro-5-benzamide-methyl-6-hydroxybenzyl)benzamide(NDCBHB)were more than 99.5%and 64.0%,respectively,and the surface of antifouling coating with NDCBHB(NDCBHB-AC)was covered with only a small amount of sludge and biofilm,its antifouling effect was better than that of chlorothalonil.The above work provides a reference for preparing green and multifunctional antifouling agents.展开更多
Eco-friendly quantum-dot light-emitting diodes(QLEDs),which employ colloidal quantum dots(QDs)such as InP,and ZnSe,stand out due to their low toxicity,color purity,and high efficiency.Currently,significant advancement...Eco-friendly quantum-dot light-emitting diodes(QLEDs),which employ colloidal quantum dots(QDs)such as InP,and ZnSe,stand out due to their low toxicity,color purity,and high efficiency.Currently,significant advancements have been made in the performance of cadmium-free QLEDs.However,several challenges persist in the industrialization of ecofriendly QLED displays.For instance,(1)the poor performance,characterized by low photoluminescence quantum yield(PLQY),unstable ligand,and charge imbalance,cannot be effectively addressed with a solitary strategy;(2)the degradation mechanism,involving emission quenching,morphological inhomogeneity,and field-enhanced electron delocalization remains unclear;(3)the lack of techniques for color patterning,such as optical lithography and transfer printing.Herein,we undertake a specific review of all technological breakthroughs that endeavor to tackle the above challenges associated with cadmium-free QLED displays.We begin by reviewing the evolution,architecture,and operational characteristics of eco-friendly QLEDs,highlighting the photoelectric properties of QDs,carrier transport layer stability,and device lifetime.Subsequently,we focus our attention not only on the latest insights into device degradation mechanisms,particularly,but also on the remarkable technological progress in color patterning techniques.To conclude,we provide a synthesis of the promising prospects,current challenges,potential solutions,and emerging research trends for QLED displays.展开更多
The use of agricultural residues in biocomposite production has gained increasing attention,driven by several benefits.Converting agricultural by-products into bio-based materials within a circular economy represents ...The use of agricultural residues in biocomposite production has gained increasing attention,driven by several benefits.Converting agricultural by-products into bio-based materials within a circular economy represents a sustainable strategy to mitigate lignocellulosic waste,reduce reliance on fossil resources,and lower environmental pollution.This approach also creates economic opportunities for rural African communities by generating diverse income sources for workers in collection,processing,and manufacturing.As a result,the integration of agricultural residues into biocomposites production not only addresses environmental concerns but also fosters economic growth and supports rural development.In this review,five biomasses from West Africa are examined,focusing on their production,chemical composition,physical and mechanical properties,and potential applications in biocomposites.The five biomasses listed are cocoa pod husks,oil palm empty fruit bunches,rice husks,millet stalks,and typha stalks.Key parameters,such as the type of binder,fiber dimensions,fiber-to-binder ratio,and the strength of fiber-binder adhesion,are systematically studied to assess their influence on the overall performance of the resulting composites.Special attention is given to understanding how these factors affect mechanical properties(e.g.,strength and flexibility),thermal behavior(e.g.,insulation capacity and heat resistance),and physico-chemical characteristics(e.g.,moisture absorption,density,and chemical stability).This comprehensive analysis provides insights into optimizing composite formulations for enhanced functionality and sustainability.This study is essential to optimize the use of agricultural residues inWest Africa for biocomposites,tackling waste issues,promoting sustainability,and filling research gaps on their properties.展开更多
Even the sulfur cathode in lithium-sulfur(Li-S)battery has the advantages of high theoretical energy density,wide source of raw materials,no pollution to the environment,and so on.It still suffers the sore points of e...Even the sulfur cathode in lithium-sulfur(Li-S)battery has the advantages of high theoretical energy density,wide source of raw materials,no pollution to the environment,and so on.It still suffers the sore points of easy electrode collapse due to large volume expansion during charge and discharge and low active materials utilization caused by the severe shuttle effect of lithium polysulfides(LiPSs).Therefore,in this work,ramie gum(RG)was extracted from ramie fiber degumming liquid and used as the functional binder to address the above problems and improve the Li-S battery’s performance for the first time.Surprisingly,the sulfur cathode using RG binder illustrates a high initial capacity of 1152.2 mAh/g,and a reversible capacity of 644.6 mAh/g after 500 cycles at 0.5 C,far better than the sulfur cathode using polyvinylidene fluoride(PVDF)and sodium carboxymethyl cellulose(CMC)binder.More importantly,even if the active materials loading increased to as high as 4.30 mg/cm^(2),the area capacity is still around 3.1 mAh/cm^(2)after 200 cycles.Such excellent performances could be attributed to the abundant oxygen-and nitrogen-containing functional groups of RG that can effectively inhibit the shuttle effect of LiPSs,as well as the excellent viscosity and mechanical properties that can maintain electrode integrity during long-term charging/discharging.This work verifies the feasibility of RG as an eco-friendly and high-performance Li-S battery binder and provides a new idea for the utilization of agricultural biomass resources.展开更多
This study evaluates the performance of advanced machine learning(ML)models in predicting the mechanical properties of eco-friendly self-compacting concrete(SCC),with a focus on compressive strength,V-funnel time,Lbox...This study evaluates the performance of advanced machine learning(ML)models in predicting the mechanical properties of eco-friendly self-compacting concrete(SCC),with a focus on compressive strength,V-funnel time,Lbox ratio,and slump flow.The motivation for this study stems from the increasing need to optimize concrete mix designs while minimizing environmental impact and reducing the reliance on costly physical testing.Six ML models-backpropagation neural network(BPNN),random forest regression(RFR),K-nearest neighbors(KNN),stacking,bagging,and eXtreme gradient boosting(XGBoost)-were trained and validated using a comprehensive dataset of 239 mix design parameters.The models'predictive accuracies were assessed using the coefficient of determination,mean squared error,root mean squared error,and mean absolute error.XGBoost consistently outperformed other models,achieving the coefficient of determination values of 0.999,0.933,and 0.935 for compressive strength in the training,validation,and testing datasets,respectively.Sensitivity analysis revealed that cement,silica fume,coarse aggregate,and superplasticizer positively influenced compressive strength,while water content had a negative impact.These findings highlight the potential of ML models,particularly XGBoost and RFR,in optimizing SCC mix designs,reducing reliance on physical testing,and enhancing sustainability in construction.The application of these models can lead to more efficient and eco-friendly concrete mix designs,benefiting real-world construction projects by improving quality control and reducing costs.展开更多
This study explores the influence of Green Logistics Management(GLM)on Sustainable Logistics Performance(SLP),emphasizing the pivotal role of Green Innovation(GI)in promoting sustainability and enhancing logistics eff...This study explores the influence of Green Logistics Management(GLM)on Sustainable Logistics Performance(SLP),emphasizing the pivotal role of Green Innovation(GI)in promoting sustainability and enhancing logistics efficiency(LE).As organizations increasingly seek to align operational efficiency with environmental goals,GLM has emerged as a strategic approach to achieving this balance.The research evaluates the impact of GLM on SLP,examines GI’s contribution to improving LE,and validates the relationship between green logistics practices and SLP.Survey-based data analysis employing reliable scales(AVE and Cronbach’s alpha>0.70)reveals that GI significantly advances LE.Firms demonstrate a strong commitment to sustainability,with high scores for eco-friendly packaging(5.35)and clean technologies(5.14).Despite this,variability in adoption rates highlights differences in implementation across organizations.The findings confirm that GLM positively influences SLP,underscoring the importance of integrating green practices into logistics operations.This study provides actionable insights for organizations and policymakers by addressing inconsistencies in green logistics practices and proposing strategies to enhance sustainability and operational efficiency.It presents a practical framework for improving environmental and business performance,offering valuable guidance for firms striving to achieve sustainable growth while meeting environmental objectives.The research contributes to advancing the logistics sector’s sustainability and innovation-driven performance.展开更多
As the manufacturing industry shifts toward environmentally sustainable practices,grinding—a high-precision pro-cessing method—is commonly used to ensure final workpiece dimensions and surface quality.The greening o...As the manufacturing industry shifts toward environmentally sustainable practices,grinding—a high-precision pro-cessing method—is commonly used to ensure final workpiece dimensions and surface quality.The greening of grind-ing processes has emerged as an important challenge for both academia and industry.Numerous studies proposing different methods for sustainable grinding have increased rapidly;however,the technical mechanisms and develop-ment trends remain unclear.This paper applies bibliometric methods to analyze relevant articles published on WOS from 2008 to 2023.Results show that China has the highest number of publications(45.38%),with research institu-tions primarily located in China,India,and Brazil.Among publishing journals,70%are classified as Q2 or above.Addi-tionally,popular authors and influential articles in this field are identified.Keyword frequency and hotspot literature analysis reveal that research focuses primarily on minimal quantity lubrication(MQL)grinding,especially using biolubricants and nanoparticles to improve grinding performance.This article reviews the mechanisms and effects of biolubricants and nanoparticles in MQL.It further examines how multi-energy field applications enhance MQL by influencing droplet atomization,wettability,and machining performance.A low-temperature field improves the heat exchange capacity of MQL droplets,while an electrostatic field enhances droplet contact angles and disper-sion.Ultrasonic energy enhances the atomization of biolubricants,and magnetic fields facilitate nanoparticle penetra-tion into the grinding zone,reducing grinding forces.Additionally,innovations in grinding wheel structures and solid lubrication grinding can reduce grinding temperatures and forces.This paper presents a comprehensive review of eco-friendly grinding development hotspots,providing technical support and theoretical guidance for academia and industry.展开更多
An eco-friendly method for the extracellular synthesis of silver nanoparticles(AgNPs) using aqueous Araza fruit extract and their antioxidant activity was investigated. It was observed that UV–Vis absorption peak i...An eco-friendly method for the extracellular synthesis of silver nanoparticles(AgNPs) using aqueous Araza fruit extract and their antioxidant activity was investigated. It was observed that UV–Vis absorption peak is dependent on various parameters such as pH, temperature, and change of time. The initial appearance of the yellow color with intense surface plasmon bands at 430-450 nm, then transmission electron microscopy, scanning electron microscopy and X-ray diffraction analysis revealed the formation of 15-45 nm sized, spherical and crystalline Ag NPs. Fourier transform infrared spectroscopy depicted that malic acid, citric acid, and carotenoids of Araza fruit involved in the synthesis of Ag NPs. In addition, the surface modified AgNPs(77.42%, 1mL) showed nearly double antioxidant efficiency than Araza fruit extract(35.30%, 1 mL) against 1, 1-diphenyl-2-picrylhydrazyl. The present study highlights the possibility of using the Araza fruit to synthesize AgNPs, which could be used effectively in the present and future antioxidant agent.展开更多
This study examined the effects of soil and switchgrass variety on sustainability and eco-friendliness of switchgrass-based ethanol production. Using the Agricultural Land Management Alternatives with Numerical Assess...This study examined the effects of soil and switchgrass variety on sustainability and eco-friendliness of switchgrass-based ethanol production. Using the Agricultural Land Management Alternatives with Numerical Assessment Criteria (ALMANAC) model, switchgrass biomass yields were simulated for several scenarios of soils and varieties. The yields were fed to the Integrated Biomass Supply Analysis and Logistics (IBSAL) model to compute energy use and carbon emissions in the biomass supply chain, which then were used to compute Net Energy Value (NEV) and Carbon Credit Balance (CCB), the indicators of sustainability and eco-friendliness, respectively. The results showed that the values of these indicators increased in the direction of heavier to lighter soils and on the order of north-upland, south-upland, north-lowland, and south-lowland varieties. The values of NEV and CCB increased in the direction of dry to wet year. Gaps among the varieties were smaller in a dry year than in a wet year. From south to north, NEV and CCB decreased for lowland varieties but increased for upland ones. Thus, the differences among the varieties decreased in the direction of lower to higher latitudes. The study demonstrated that the sustainability and eco-friendliness of switchgrass-based ethanol production could be increased with alternative soil and variety options.展开更多
Accompanying the development of social economy,the land use model of mountainous area,typically eco-weak area,is changing gradually. Here the establishment of eco-friendly land use model in mountainous area,will pione...Accompanying the development of social economy,the land use model of mountainous area,typically eco-weak area,is changing gradually. Here the establishment of eco-friendly land use model in mountainous area,will pioneer the model of sustainable development in that area. Concerning Qianjiang District of Chongqing Municipality,huge change of land use model,mainly embodied in the unceasing increase of construction land and gradual decrease of agricultural use land,has taken place in recent years. To explore the eco-friendly land use model in mountainous area,Qianjiang District was chosen as the study object in the present study. Via analyzing the changes in land use model,we found that related eco-environment restrictive factors mainly regional climatic change,soil texture,hydrological environment as well as soil erosion and land degradation,etc. And based on these results,we further analyzed the effect of land use change on eco-environment and the factors restricting the maintenance of eco-environment and regional development,finally put forward the counter measures for balancing land use and co-environment in mountainous area. The results will be important for the development of social economy and eco-system construction in Qianjiang District.展开更多
Triboelectric nanogenerators(TENGs)are promising electric energy harvesting devices as they can produce renewable clean energy using mechanical excitations from the environment.Several designs of triboelectric energy ...Triboelectric nanogenerators(TENGs)are promising electric energy harvesting devices as they can produce renewable clean energy using mechanical excitations from the environment.Several designs of triboelectric energy harvesters relying on biocompatible and eco-friendly natural materials have been introduced in recent years.Their ability to provide customizable self-powering for a wide range of applications,including biomedical devices,pressure and chemical sensors,and battery charging appliances,has been demonstrated.This review summarizes major advances already achieved in the field of triboelectric energy harvesting using biocompatible and eco-friendly natural materials.A rigorous,comparative,and critical analysis of preparation and testing methods is also presented.Electric power up to 14 mW was already achieved for the dry leaf/polyvinylidene fluoride-based TENG devices.These findings highlight the potential of eco-friendly self-powering systems and demonstrate the unique properties of the plants to generate electric energy for multiple applications.展开更多
Minimum quantity Lubrication(MQL)is a sustainable lubrication system that is famous in many machining systems.It involve the spray of an infinitesimal amount of mist-like lubricants during machining processes.The MQL ...Minimum quantity Lubrication(MQL)is a sustainable lubrication system that is famous in many machining systems.It involve the spray of an infinitesimal amount of mist-like lubricants during machining processes.The MQL system is affirmed to exhibit an excellent machining performance,and it is highly economical.The nanofluids are understood to exhibit excellent lubricity and heat evacuation capability,compared to pure oil-based MQL system.Studies have shown that the surface quality and amount of energy expended in the grinding operations can be reduced considerably due to the positive effect of these nanofluids.This work presents an experimental study on the tribological performance of SiO_(2)nanofluid during grinding of Si_(3)N_(4)ceramic.The effect different grinding modes and lubrication systems during the grinding operation was also analyzed.Different concentrations of the SiO_(2)nanofluid was manufactured using canola,corn and sunflower oils.The quantitative evaluation of the grinding process was done based on the amount of grinding forces,specific grinding energy,frictional coefficient,and surface integrity.It was found that the canola oil exhibits optimal lubrication performance compared to corn oil,sunflower oil,and traditional lubrication systems.Additionally,the introduction of ultrasonic vibrations with the SiO_(2)nanofluid in MQL system was found to reduce the specific grinding energy,normal grinding forces,tangential grinding forces,and surface roughness by 65%,57%,65%,and 18%respectively.Finally,regression analysis was used to obtain an optimum parameter combinations.The observations from this work will aid the smooth transition towards ecofriendly and sustainable machining of engineering ceramics.展开更多
Coal is the dominant energy source in China,and coal-fired power accounts for about half of coal consumption.However,air pollutant emissions from coal-fired power plants cause severe ecological and environmental probl...Coal is the dominant energy source in China,and coal-fired power accounts for about half of coal consumption.However,air pollutant emissions from coal-fired power plants cause severe ecological and environmental problems.This paper focuses on near-zero emission technologies and applications for clean coal-fired power.The long-term operation states of near-zero emission units were evaluated,and synergistic and special mercury(Hg)control technologies were researched.The results show that the principle technical route of near-zero emission,which was applied to 101 of China’s coal-fired units,has good adaptability to coal properties.The emission concentrations of particulate matter(PM),SO2,and NOx were below the emission limits of gas-fired power plants and the compliance rates of the hourly average emission concentrations reaching near-zero emission in long-term operation exceeded 99%.With the application of near-zero emission technologies,the generating costs increased by about 0.01 CNY∙(kW∙h)-1.However,the total emissions of air pollutants decreased by about 90%,resulting in effective improvement of the ambient air quality.Furthermore,while the Hg emission concentrations of the near-zero emission units ranged from 0.51 to 2.89μg∙m^-3,after the modified fly ash(MFA)special Hg removal system was applied,Hg emission concentration reached as low as 0.29μg∙m^-3.The operating cost of this system was only 10%-15%of the cost of mainstream Hg removal technology using activated carbon injection.Based on experimental studies carried out in a 50000 m^3∙h^-1 coal-fired flue gas pollutant control pilot platform,the interaction relationships of multi-pollutant removal were obtained and solutions were developed for emissions reaching different limits.A combined demonstration application for clean coal-fired power,with the new“1123”eco-friendly emission limits of 1,10,20 mg∙m^-3,and 3μg∙m^-3,respectively,for PM,SO2,NOx,and Hg from near-zero emission coal-fired power were put forward and realized,providing engineering and technical support for the national enhanced pollution emission standards.展开更多
This research was conducted to study the performances of the heat and multilayer reflection insulators used for buildings in South Korea to realize eco-friendly, low-energy-consumption, green construction, and to cont...This research was conducted to study the performances of the heat and multilayer reflection insulators used for buildings in South Korea to realize eco-friendly, low-energy-consumption, green construction, and to contribute to energy consumption reduction in buildings and to the nation's greenhouse gas emission reduction policy (targeting 30% reduction compared to BAUCousiness as usual) by 2020). The heat insulation performance test is about the temperatures on surfaces of test piece. The high air temperature and the low air temperature were measured to determine the overall heat transfer coefficient and thermal conductivity. The conclusions are drawn that the heat transmission coefficients for each type of existing reflection insulator are: A-1 (0.045 W/(m-K)), A-2 (0.031 W/(m.K)), A-3 (0.042 W/(m.K)), A-4 (0.078 W/(m.K)), and the average heat conductivity is 0.049 W/(m-K); The heat conductivity for each type of Styrofoam insulator are 0.030 W/(m.K) for B-l, 0.032 W/(m-K) for B-2, 0.037 W/(m'K) for B-3, 0.037 W/(m.K) for B-4, and the average heat conductivity is 0.035 W/(m'K) regardless of the thickness of the insulator; The heat conductivity values of the multilayer reflection insulators are converted based on the thickness and type C-1 (0.020 W/(m.K)), C-2 (0.018 W/(m.K)), C-3 (0.016 W/(m.K)), and C-4 (0.012 W/(m.K)); The multilayer reflection insulator keeps the indoor-side surface temperature high (during winter) or low (in summer), enhances the comfort of the building occupants, and conducts heating and moisture resistance to prevent dew condensation on the glass-outer-wall surface.展开更多
Aiming to investigate the mix design of eco-friendly UHPC with supplementary cementitious materials and coarser aggregates, we comprehensively studied the workability, microstructure, porosity, compressive strength, f...Aiming to investigate the mix design of eco-friendly UHPC with supplementary cementitious materials and coarser aggregates, we comprehensively studied the workability, microstructure, porosity, compressive strength, flexural strength, and Young’s modulus of UHPC. Relationship between compressive strength and Young’s modulus was obtained eventually. It is found that the compressive strength, flexural strength, and Young’s modulus of UHPC increase by 19.01%, 10.81%, and 5.99%, respectively, when 40 wt% cement is replaced with supplementary cementitious materials. The relationship between compressive strength and Young’s modulus of UHPC is an exponential form.展开更多
基金supported by the National Natural Science Foundation of China (Nos.22106039,21976211,and 42007204)the Science Foundation of Henan Normal University (No.2021PL23)+1 种基金the Excellent Science and Technology Innovation Team of Henan Normal University (No.2021TD06)the Program for Innovative Research Team in Science and Technology in the University of Henan Province (No.20IRTSTHN011).
文摘In present work,blue carbon dots(b-CDs)were derived from ammonium citrate and guanidine hydrochloride,and red carbon dots(r-CDs)were stemmed from malonate,ethylenediamine and meso-tetra(4-carboxyphenyl)porphin based on facile hydrothermal method.Eco-friendly ratiometric fluorescence probe was innovatively constructed to effectively measure Hg2+utilizing b-CDs and r-CDs.The developed probe displayed two typical emission peaks at 450 nm from b-CDs and 650 nm from r-CDs under the excitation at 360 nm.Mercury ion has strong quenching effect on the fluorescence intensity at 450 nm due to the electron transfer process and the fluorescence change at 450 nm was used as the response signal,whereas the fluorescence intensity at 650 nm kept unchangeable which resulted from the chemical inertness between Hg^(2+)and r-CDs,serving as the reference signal in the sensing system.Under optimal circumstances,this probe exhibited an excellent linearity between the fluorescence response values of F450/F650 and Hg^(2+)concentrations over range of 0.01-10μmol/L,and the limit of detectionwas down to 5.3 nmol/L.Furthermore,this probe was successfully employed for sensing Hg^(2+)in practical environmental water samples with satisfied recoveries of 98.5%-105.0%.The constructed ratiometric fluorescent probe provided a rapid,environmental-friendly,reliable,and efficient platform for measuring trace Hg^(2+)in environmental field.
基金financially supported by CAMM(Center of Advanced Mining and Metallurgy/Green Flotation),as a center of excellence at the Luleå University of Technology.
文摘The global reliance on phosphate rock for agriculture and other industries,coupled with chemical regulations in developed countries,has driven the search for green alternatives in apatite flotation.This review investigates eco-friendly collectors’effectiveness in promoting sustainable mineral processing,guiding future alternatives to traditional reagents.The manuscript discussed the surface properties of apatite and its interaction with eco-friendly collectors,assessing existing fundamental studies.This study sought to:(1)define,organize,and classify“eco-friendly”collectors;(2)evaluate their effect in IEP and contact angle;(3)provide a better understanding of the adsorption behavior of the different fatty acid chains into apatite surface;(4)assess their ability to reversely and directly float apatite;(5)address gaps to achieve selectivity and process optimization.Outcomes demonstrated that fatty acids are largely applied,but other renewable sources of these reagents have been promisingly evaluated.In addition,other natural reagents have been tested,and new green synthetics have demonstrated synergistic effects when combined with fatty acids,yielding significant improvements in grade and recovery.However,collector effectiveness varies with ore characteristics,like particle size and surface properties,which remain underexplored.Future research should design tailored collectors that align with mineralogical differences to enhance selectivity.
文摘In light of the growing urgency to address environmental degradation and improve carbon sequestration strategies,this study rigorously investigates the potential of Cistus ladaniferus as a viable feedstock for biochar and activated carbon production.The influence of pyrolysis temperature,heating rate and particle size on biochar yield was systematically examined.The results demonstrate that increasing pyrolysis temperature and heating rate significantly reduces biochar yield,while particle size plays a crucial role in thermal degradation and biochar retention.To evaluate the structural and chemical properties of the materials,various characterization techniques were employed,including Fourier-transform infrared spectroscopy(FTIR),scanning electron microscopy(SEM),and energy-dispersive X-ray analysis(EDXA).FTIR identified key functional groups,while SEM and EDXA provided valuable insights into the morphology and elemental composition of the materials.Activated carbons exhibited enhanced porosity and carbon content compared to their biochar counterparts,achieving specific surface areas of up to 1210 m^(2) g^(-1) for acidactivated shells(AC-Sha).The Brunauer-Emmett-Teller(BET)method confirmed the mesoporous characteristics of these materials,with AC-Sa displaying a surface area of 678.74 m^(2) g^(-1) and an average pore size of 2.73 nm.Elemental analysis revealed that activated carbons possessed a higher carbon content(96.40 wt.%for AC-Sha)and lower oxygen content(2.37 wt.%),highlighting their suitability for applications in adsorption and catalysis.These findings underscore the significant impact of activation processes on the stability and adsorption capabilities of Cistus-derived biochars and activated carbons,paving the way for future research and practical applications in pollution control,carbon sequestration,and bioenergy.
文摘Nowadays,the development of effective bioplastics aims to combine traditional plastics’functionality with environmentally friendly properties.The most effective and durable modern bioplastics are made from the edible part of crops.This forces bioplastics to competewith food production because the crops that produce bioplastics can also be used for human nutrition.That is why the article’s main focus is on creating bioplastics using renewable,non-food raw materials(cellulose,lignin,etc.).Eco-friendly composites based on a renewable bioplastic blend of polybutylene adipate-co-terephthalate,corn starch,and poly(lactic acid)with reed and hemp waste as a filler.The physic-chemical features of the structure and surface,as well as the technological characteristics of reed and hemp waste as the organic fillers for renewable bioplastic blend of polybutylene adipate-co-terephthalate,corn starch,and poly(lactic acid),were studied.Theeffect of the fractional composition analysis,morphology,and nature of reed and hempwaste on the quality of the design of eco-friendly biodegradable composites and their ability to disperse in the matrix of renewable bioplastic blend of polybutylene adipate-co-terephthalate,corn starch and poly(lactic acid)was carried out.The influence of different content and morphology of reed and hemp waste on the composite characteristics was investigated.It is shown that the most optimal direction for obtaining strong eco-friendly biodegradable composites based on a renewable bioplastic blend of polybutylene adipate-co-terephthalate,corn starch,and poly(lactic acid)is associated with the use of waste reed stalks,with its optimal content at the level of 50 wt.%.
基金supported by the Scientific Research Project funded by the Qingdao Postdoctoral Science Foundation(No.QDBSH20230102075)the China Postdoctoral Science Foundation(No.2023M733337)the National Natural Science Foundation of China(No.U2141251).
文摘All maritime industries are plagued by marine biofouling pollution,which causes large economic and environmental costs.Therefore,there is an urgent need for ecofriendly alternatives that can effectively reduce the negative consequences of biofouling pollution.This study aimed to produce novel capsaicin-inspired amide derivatives(CIADs)with multifunctional antifouling features by introducing amide compounds to aromatic compounds via a Friedel-Crafts alkylation reaction.The structure of the CIADs was characterized using FTIR,1H NMR,13C NMR,and HRMS,and the comprehensive antifouling capacity was determined by thermal stability,anti-ultraviolet,antibacterial,anti-algal,and marine field experiments.CIADs showed good thermal stability and did not show obvious weight loss before 226°C.2,4-dihydroxy-3,5-diphenylimidemet-hylbenzophenone(DDB)had an excellent ultraviolet absorption effect,which was even better than that of 2-hydroxy-4-(octyloxy)benzophenone.The antibacterial and anti-algal rates of N-(2,4-dimethyl-3-chloro-5-benzamide-methyl-6-hydroxybenzyl)benzamide(NDCBHB)were more than 99.5%and 64.0%,respectively,and the surface of antifouling coating with NDCBHB(NDCBHB-AC)was covered with only a small amount of sludge and biofilm,its antifouling effect was better than that of chlorothalonil.The above work provides a reference for preparing green and multifunctional antifouling agents.
基金supported by the Research Projects of Department of Education of Guangdong Province-024CJPT002Special Project of Guangdong Provincial Department of Education in Key Areas (No. 6021210075K)Shenzhen Polytechnic University Research Fund. (No. 6024310006K)
文摘Eco-friendly quantum-dot light-emitting diodes(QLEDs),which employ colloidal quantum dots(QDs)such as InP,and ZnSe,stand out due to their low toxicity,color purity,and high efficiency.Currently,significant advancements have been made in the performance of cadmium-free QLEDs.However,several challenges persist in the industrialization of ecofriendly QLED displays.For instance,(1)the poor performance,characterized by low photoluminescence quantum yield(PLQY),unstable ligand,and charge imbalance,cannot be effectively addressed with a solitary strategy;(2)the degradation mechanism,involving emission quenching,morphological inhomogeneity,and field-enhanced electron delocalization remains unclear;(3)the lack of techniques for color patterning,such as optical lithography and transfer printing.Herein,we undertake a specific review of all technological breakthroughs that endeavor to tackle the above challenges associated with cadmium-free QLED displays.We begin by reviewing the evolution,architecture,and operational characteristics of eco-friendly QLEDs,highlighting the photoelectric properties of QDs,carrier transport layer stability,and device lifetime.Subsequently,we focus our attention not only on the latest insights into device degradation mechanisms,particularly,but also on the remarkable technological progress in color patterning techniques.To conclude,we provide a synthesis of the promising prospects,current challenges,potential solutions,and emerging research trends for QLED displays.
基金BIO4Africa Project which is funded by the European Union(Horizon 2020-No.101000762).
文摘The use of agricultural residues in biocomposite production has gained increasing attention,driven by several benefits.Converting agricultural by-products into bio-based materials within a circular economy represents a sustainable strategy to mitigate lignocellulosic waste,reduce reliance on fossil resources,and lower environmental pollution.This approach also creates economic opportunities for rural African communities by generating diverse income sources for workers in collection,processing,and manufacturing.As a result,the integration of agricultural residues into biocomposites production not only addresses environmental concerns but also fosters economic growth and supports rural development.In this review,five biomasses from West Africa are examined,focusing on their production,chemical composition,physical and mechanical properties,and potential applications in biocomposites.The five biomasses listed are cocoa pod husks,oil palm empty fruit bunches,rice husks,millet stalks,and typha stalks.Key parameters,such as the type of binder,fiber dimensions,fiber-to-binder ratio,and the strength of fiber-binder adhesion,are systematically studied to assess their influence on the overall performance of the resulting composites.Special attention is given to understanding how these factors affect mechanical properties(e.g.,strength and flexibility),thermal behavior(e.g.,insulation capacity and heat resistance),and physico-chemical characteristics(e.g.,moisture absorption,density,and chemical stability).This comprehensive analysis provides insights into optimizing composite formulations for enhanced functionality and sustainability.This study is essential to optimize the use of agricultural residues inWest Africa for biocomposites,tackling waste issues,promoting sustainability,and filling research gaps on their properties.
基金supported by the National Natural Science Foundation of China(Nos.51902036,52071295,52002352)Natural Science Foundation of Chongqing Science&Technology Commission(Nos.cstc2019jcyj-msxm1407 and CSTB2022NSCQ-MSX0828)+2 种基金the Venture&Innovation Support Program for Chongqing Overseas Returnees(No.CX2021046)the Science and Technology Research Program of Chongqing Municipal Education Commission(No.KJZDK202300802)Research Project of Innovative Talent Training Engineering Program of Chongqing Primary and Secondary School(No.CY230801).
文摘Even the sulfur cathode in lithium-sulfur(Li-S)battery has the advantages of high theoretical energy density,wide source of raw materials,no pollution to the environment,and so on.It still suffers the sore points of easy electrode collapse due to large volume expansion during charge and discharge and low active materials utilization caused by the severe shuttle effect of lithium polysulfides(LiPSs).Therefore,in this work,ramie gum(RG)was extracted from ramie fiber degumming liquid and used as the functional binder to address the above problems and improve the Li-S battery’s performance for the first time.Surprisingly,the sulfur cathode using RG binder illustrates a high initial capacity of 1152.2 mAh/g,and a reversible capacity of 644.6 mAh/g after 500 cycles at 0.5 C,far better than the sulfur cathode using polyvinylidene fluoride(PVDF)and sodium carboxymethyl cellulose(CMC)binder.More importantly,even if the active materials loading increased to as high as 4.30 mg/cm^(2),the area capacity is still around 3.1 mAh/cm^(2)after 200 cycles.Such excellent performances could be attributed to the abundant oxygen-and nitrogen-containing functional groups of RG that can effectively inhibit the shuttle effect of LiPSs,as well as the excellent viscosity and mechanical properties that can maintain electrode integrity during long-term charging/discharging.This work verifies the feasibility of RG as an eco-friendly and high-performance Li-S battery binder and provides a new idea for the utilization of agricultural biomass resources.
文摘This study evaluates the performance of advanced machine learning(ML)models in predicting the mechanical properties of eco-friendly self-compacting concrete(SCC),with a focus on compressive strength,V-funnel time,Lbox ratio,and slump flow.The motivation for this study stems from the increasing need to optimize concrete mix designs while minimizing environmental impact and reducing the reliance on costly physical testing.Six ML models-backpropagation neural network(BPNN),random forest regression(RFR),K-nearest neighbors(KNN),stacking,bagging,and eXtreme gradient boosting(XGBoost)-were trained and validated using a comprehensive dataset of 239 mix design parameters.The models'predictive accuracies were assessed using the coefficient of determination,mean squared error,root mean squared error,and mean absolute error.XGBoost consistently outperformed other models,achieving the coefficient of determination values of 0.999,0.933,and 0.935 for compressive strength in the training,validation,and testing datasets,respectively.Sensitivity analysis revealed that cement,silica fume,coarse aggregate,and superplasticizer positively influenced compressive strength,while water content had a negative impact.These findings highlight the potential of ML models,particularly XGBoost and RFR,in optimizing SCC mix designs,reducing reliance on physical testing,and enhancing sustainability in construction.The application of these models can lead to more efficient and eco-friendly concrete mix designs,benefiting real-world construction projects by improving quality control and reducing costs.
文摘This study explores the influence of Green Logistics Management(GLM)on Sustainable Logistics Performance(SLP),emphasizing the pivotal role of Green Innovation(GI)in promoting sustainability and enhancing logistics efficiency(LE).As organizations increasingly seek to align operational efficiency with environmental goals,GLM has emerged as a strategic approach to achieving this balance.The research evaluates the impact of GLM on SLP,examines GI’s contribution to improving LE,and validates the relationship between green logistics practices and SLP.Survey-based data analysis employing reliable scales(AVE and Cronbach’s alpha>0.70)reveals that GI significantly advances LE.Firms demonstrate a strong commitment to sustainability,with high scores for eco-friendly packaging(5.35)and clean technologies(5.14).Despite this,variability in adoption rates highlights differences in implementation across organizations.The findings confirm that GLM positively influences SLP,underscoring the importance of integrating green practices into logistics operations.This study provides actionable insights for organizations and policymakers by addressing inconsistencies in green logistics practices and proposing strategies to enhance sustainability and operational efficiency.It presents a practical framework for improving environmental and business performance,offering valuable guidance for firms striving to achieve sustainable growth while meeting environmental objectives.The research contributes to advancing the logistics sector’s sustainability and innovation-driven performance.
基金Supported by National Natural Science Foundation of China(Grant Nos.52375447,52305477 and 52105457)Shandong Provincial Natural Science Foundation(Grant Nos.ZR2023QE057,ZR2024QE100 and ZR2024ME255)+2 种基金Qingdao Municipal Science and Technology Planning Park Cultivation Plan(Grant No.23-1-5-yqpy-17-qy)Shandong Provincial Science and Technology SMEs Innovation Capacity Improvement Project(Grant No.2022TSGC1115)the Special Fund of Taishan Scholars。
文摘As the manufacturing industry shifts toward environmentally sustainable practices,grinding—a high-precision pro-cessing method—is commonly used to ensure final workpiece dimensions and surface quality.The greening of grind-ing processes has emerged as an important challenge for both academia and industry.Numerous studies proposing different methods for sustainable grinding have increased rapidly;however,the technical mechanisms and develop-ment trends remain unclear.This paper applies bibliometric methods to analyze relevant articles published on WOS from 2008 to 2023.Results show that China has the highest number of publications(45.38%),with research institu-tions primarily located in China,India,and Brazil.Among publishing journals,70%are classified as Q2 or above.Addi-tionally,popular authors and influential articles in this field are identified.Keyword frequency and hotspot literature analysis reveal that research focuses primarily on minimal quantity lubrication(MQL)grinding,especially using biolubricants and nanoparticles to improve grinding performance.This article reviews the mechanisms and effects of biolubricants and nanoparticles in MQL.It further examines how multi-energy field applications enhance MQL by influencing droplet atomization,wettability,and machining performance.A low-temperature field improves the heat exchange capacity of MQL droplets,while an electrostatic field enhances droplet contact angles and disper-sion.Ultrasonic energy enhances the atomization of biolubricants,and magnetic fields facilitate nanoparticle penetra-tion into the grinding zone,reducing grinding forces.Additionally,innovations in grinding wheel structures and solid lubrication grinding can reduce grinding temperatures and forces.This paper presents a comprehensive review of eco-friendly grinding development hotspots,providing technical support and theoretical guidance for academia and industry.
基金funded by the Prometeo Project of the National Secretariat of Higher Education, Science, Technology and Innovation (SENESCYT), Ecuador
文摘An eco-friendly method for the extracellular synthesis of silver nanoparticles(AgNPs) using aqueous Araza fruit extract and their antioxidant activity was investigated. It was observed that UV–Vis absorption peak is dependent on various parameters such as pH, temperature, and change of time. The initial appearance of the yellow color with intense surface plasmon bands at 430-450 nm, then transmission electron microscopy, scanning electron microscopy and X-ray diffraction analysis revealed the formation of 15-45 nm sized, spherical and crystalline Ag NPs. Fourier transform infrared spectroscopy depicted that malic acid, citric acid, and carotenoids of Araza fruit involved in the synthesis of Ag NPs. In addition, the surface modified AgNPs(77.42%, 1mL) showed nearly double antioxidant efficiency than Araza fruit extract(35.30%, 1 mL) against 1, 1-diphenyl-2-picrylhydrazyl. The present study highlights the possibility of using the Araza fruit to synthesize AgNPs, which could be used effectively in the present and future antioxidant agent.
文摘This study examined the effects of soil and switchgrass variety on sustainability and eco-friendliness of switchgrass-based ethanol production. Using the Agricultural Land Management Alternatives with Numerical Assessment Criteria (ALMANAC) model, switchgrass biomass yields were simulated for several scenarios of soils and varieties. The yields were fed to the Integrated Biomass Supply Analysis and Logistics (IBSAL) model to compute energy use and carbon emissions in the biomass supply chain, which then were used to compute Net Energy Value (NEV) and Carbon Credit Balance (CCB), the indicators of sustainability and eco-friendliness, respectively. The results showed that the values of these indicators increased in the direction of heavier to lighter soils and on the order of north-upland, south-upland, north-lowland, and south-lowland varieties. The values of NEV and CCB increased in the direction of dry to wet year. Gaps among the varieties were smaller in a dry year than in a wet year. From south to north, NEV and CCB decreased for lowland varieties but increased for upland ones. Thus, the differences among the varieties decreased in the direction of lower to higher latitudes. The study demonstrated that the sustainability and eco-friendliness of switchgrass-based ethanol production could be increased with alternative soil and variety options.
文摘Accompanying the development of social economy,the land use model of mountainous area,typically eco-weak area,is changing gradually. Here the establishment of eco-friendly land use model in mountainous area,will pioneer the model of sustainable development in that area. Concerning Qianjiang District of Chongqing Municipality,huge change of land use model,mainly embodied in the unceasing increase of construction land and gradual decrease of agricultural use land,has taken place in recent years. To explore the eco-friendly land use model in mountainous area,Qianjiang District was chosen as the study object in the present study. Via analyzing the changes in land use model,we found that related eco-environment restrictive factors mainly regional climatic change,soil texture,hydrological environment as well as soil erosion and land degradation,etc. And based on these results,we further analyzed the effect of land use change on eco-environment and the factors restricting the maintenance of eco-environment and regional development,finally put forward the counter measures for balancing land use and co-environment in mountainous area. The results will be important for the development of social economy and eco-system construction in Qianjiang District.
基金project CICECO-Aveiro Institute of Materials,refs. UIDB/50011/2020 & UIDP/50011/2020financed by national funds through the FCT/MEC.S.K.and A.K.were partly supported by FCT (Portugal) through the project "BioPiezo"-PTDC/ CTM-CTM/31679/2017(CENTRO-01-0145-FEDER-031679)+3 种基金supported by FCT,through the grant reference SFRH/BPD/117475/2016partly supported by FCT through the project "SelfMED" (POCI-01-0145FEDER-031132)funded by national funds (OE),through FCT-Fundagao para a Ciencia e a Tecnologia,I.P., in the scope of the framework contract foreseen in the numbers 4, 5,and 6 of the article 23,of the Decree-Law 57/2016,of August 29,changed by Law 57/2017,of July 19.supported by the Ministry of Education and Science of the Russian Federation in the framework of the Increase Competitiveness Program of NUST 《MISiS》 (No.K2-2019-015)
文摘Triboelectric nanogenerators(TENGs)are promising electric energy harvesting devices as they can produce renewable clean energy using mechanical excitations from the environment.Several designs of triboelectric energy harvesters relying on biocompatible and eco-friendly natural materials have been introduced in recent years.Their ability to provide customizable self-powering for a wide range of applications,including biomedical devices,pressure and chemical sensors,and battery charging appliances,has been demonstrated.This review summarizes major advances already achieved in the field of triboelectric energy harvesting using biocompatible and eco-friendly natural materials.A rigorous,comparative,and critical analysis of preparation and testing methods is also presented.Electric power up to 14 mW was already achieved for the dry leaf/polyvinylidene fluoride-based TENG devices.These findings highlight the potential of eco-friendly self-powering systems and demonstrate the unique properties of the plants to generate electric energy for multiple applications.
基金This work was supported by the Yellow River Engineering Consulting Co.,Ltd.(Grant No.2019GS007-WW03/20)the State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin(Grant No.SKL2020ZY10).
文摘Minimum quantity Lubrication(MQL)is a sustainable lubrication system that is famous in many machining systems.It involve the spray of an infinitesimal amount of mist-like lubricants during machining processes.The MQL system is affirmed to exhibit an excellent machining performance,and it is highly economical.The nanofluids are understood to exhibit excellent lubricity and heat evacuation capability,compared to pure oil-based MQL system.Studies have shown that the surface quality and amount of energy expended in the grinding operations can be reduced considerably due to the positive effect of these nanofluids.This work presents an experimental study on the tribological performance of SiO_(2)nanofluid during grinding of Si_(3)N_(4)ceramic.The effect different grinding modes and lubrication systems during the grinding operation was also analyzed.Different concentrations of the SiO_(2)nanofluid was manufactured using canola,corn and sunflower oils.The quantitative evaluation of the grinding process was done based on the amount of grinding forces,specific grinding energy,frictional coefficient,and surface integrity.It was found that the canola oil exhibits optimal lubrication performance compared to corn oil,sunflower oil,and traditional lubrication systems.Additionally,the introduction of ultrasonic vibrations with the SiO_(2)nanofluid in MQL system was found to reduce the specific grinding energy,normal grinding forces,tangential grinding forces,and surface roughness by 65%,57%,65%,and 18%respectively.Finally,regression analysis was used to obtain an optimum parameter combinations.The observations from this work will aid the smooth transition towards ecofriendly and sustainable machining of engineering ceramics.
基金the National Science and Technology Support Program of China(2015BAA05B02).
文摘Coal is the dominant energy source in China,and coal-fired power accounts for about half of coal consumption.However,air pollutant emissions from coal-fired power plants cause severe ecological and environmental problems.This paper focuses on near-zero emission technologies and applications for clean coal-fired power.The long-term operation states of near-zero emission units were evaluated,and synergistic and special mercury(Hg)control technologies were researched.The results show that the principle technical route of near-zero emission,which was applied to 101 of China’s coal-fired units,has good adaptability to coal properties.The emission concentrations of particulate matter(PM),SO2,and NOx were below the emission limits of gas-fired power plants and the compliance rates of the hourly average emission concentrations reaching near-zero emission in long-term operation exceeded 99%.With the application of near-zero emission technologies,the generating costs increased by about 0.01 CNY∙(kW∙h)-1.However,the total emissions of air pollutants decreased by about 90%,resulting in effective improvement of the ambient air quality.Furthermore,while the Hg emission concentrations of the near-zero emission units ranged from 0.51 to 2.89μg∙m^-3,after the modified fly ash(MFA)special Hg removal system was applied,Hg emission concentration reached as low as 0.29μg∙m^-3.The operating cost of this system was only 10%-15%of the cost of mainstream Hg removal technology using activated carbon injection.Based on experimental studies carried out in a 50000 m^3∙h^-1 coal-fired flue gas pollutant control pilot platform,the interaction relationships of multi-pollutant removal were obtained and solutions were developed for emissions reaching different limits.A combined demonstration application for clean coal-fired power,with the new“1123”eco-friendly emission limits of 1,10,20 mg∙m^-3,and 3μg∙m^-3,respectively,for PM,SO2,NOx,and Hg from near-zero emission coal-fired power were put forward and realized,providing engineering and technical support for the national enhanced pollution emission standards.
基金Project(NRF-2010-0024155) supported by the National Research Foundation of Korea
文摘This research was conducted to study the performances of the heat and multilayer reflection insulators used for buildings in South Korea to realize eco-friendly, low-energy-consumption, green construction, and to contribute to energy consumption reduction in buildings and to the nation's greenhouse gas emission reduction policy (targeting 30% reduction compared to BAUCousiness as usual) by 2020). The heat insulation performance test is about the temperatures on surfaces of test piece. The high air temperature and the low air temperature were measured to determine the overall heat transfer coefficient and thermal conductivity. The conclusions are drawn that the heat transmission coefficients for each type of existing reflection insulator are: A-1 (0.045 W/(m-K)), A-2 (0.031 W/(m.K)), A-3 (0.042 W/(m.K)), A-4 (0.078 W/(m.K)), and the average heat conductivity is 0.049 W/(m-K); The heat conductivity for each type of Styrofoam insulator are 0.030 W/(m.K) for B-l, 0.032 W/(m-K) for B-2, 0.037 W/(m'K) for B-3, 0.037 W/(m.K) for B-4, and the average heat conductivity is 0.035 W/(m'K) regardless of the thickness of the insulator; The heat conductivity values of the multilayer reflection insulators are converted based on the thickness and type C-1 (0.020 W/(m.K)), C-2 (0.018 W/(m.K)), C-3 (0.016 W/(m.K)), and C-4 (0.012 W/(m.K)); The multilayer reflection insulator keeps the indoor-side surface temperature high (during winter) or low (in summer), enhances the comfort of the building occupants, and conducts heating and moisture resistance to prevent dew condensation on the glass-outer-wall surface.
基金Funded by the National Natural Science Foundation of China,China(No.51438003)the National Key R&D Program of China,China(2018YFC0705400)
文摘Aiming to investigate the mix design of eco-friendly UHPC with supplementary cementitious materials and coarser aggregates, we comprehensively studied the workability, microstructure, porosity, compressive strength, flexural strength, and Young’s modulus of UHPC. Relationship between compressive strength and Young’s modulus was obtained eventually. It is found that the compressive strength, flexural strength, and Young’s modulus of UHPC increase by 19.01%, 10.81%, and 5.99%, respectively, when 40 wt% cement is replaced with supplementary cementitious materials. The relationship between compressive strength and Young’s modulus of UHPC is an exponential form.