期刊文献+
共找到114篇文章
< 1 2 6 >
每页显示 20 50 100
Construction of eco-friendly dual carbon dots ratiometric fluorescence probe for highly selective and efficient sensing mercury ion 被引量:1
1
作者 Yongli Liu Xiaoyan Su +5 位作者 Huanjia Liu Guifen Zhu Guobei Ge Yuxin Wang Penghui Zhou Qingxiang Zhou 《Journal of Environmental Sciences》 2025年第2期1-12,共12页
In present work,blue carbon dots(b-CDs)were derived from ammonium citrate and guanidine hydrochloride,and red carbon dots(r-CDs)were stemmed from malonate,ethylenediamine and meso-tetra(4-carboxyphenyl)porphin based o... In present work,blue carbon dots(b-CDs)were derived from ammonium citrate and guanidine hydrochloride,and red carbon dots(r-CDs)were stemmed from malonate,ethylenediamine and meso-tetra(4-carboxyphenyl)porphin based on facile hydrothermal method.Eco-friendly ratiometric fluorescence probe was innovatively constructed to effectively measure Hg2+utilizing b-CDs and r-CDs.The developed probe displayed two typical emission peaks at 450 nm from b-CDs and 650 nm from r-CDs under the excitation at 360 nm.Mercury ion has strong quenching effect on the fluorescence intensity at 450 nm due to the electron transfer process and the fluorescence change at 450 nm was used as the response signal,whereas the fluorescence intensity at 650 nm kept unchangeable which resulted from the chemical inertness between Hg^(2+)and r-CDs,serving as the reference signal in the sensing system.Under optimal circumstances,this probe exhibited an excellent linearity between the fluorescence response values of F450/F650 and Hg^(2+)concentrations over range of 0.01-10μmol/L,and the limit of detectionwas down to 5.3 nmol/L.Furthermore,this probe was successfully employed for sensing Hg^(2+)in practical environmental water samples with satisfied recoveries of 98.5%-105.0%.The constructed ratiometric fluorescent probe provided a rapid,environmental-friendly,reliable,and efficient platform for measuring trace Hg^(2+)in environmental field. 展开更多
关键词 Blue carbon dots Red carbon dots Electron transfer Hg^(2+) eco-friendliness
原文传递
Eco-friendly collectors in apatite froth flotation:A review 被引量:1
2
作者 Gabriela Budemberg Rickard Jolsterå Saeed Chehreh Chelgani 《International Journal of Mining Science and Technology》 2025年第4期539-551,共13页
The global reliance on phosphate rock for agriculture and other industries,coupled with chemical regulations in developed countries,has driven the search for green alternatives in apatite flotation.This review investi... The global reliance on phosphate rock for agriculture and other industries,coupled with chemical regulations in developed countries,has driven the search for green alternatives in apatite flotation.This review investigates eco-friendly collectors’effectiveness in promoting sustainable mineral processing,guiding future alternatives to traditional reagents.The manuscript discussed the surface properties of apatite and its interaction with eco-friendly collectors,assessing existing fundamental studies.This study sought to:(1)define,organize,and classify“eco-friendly”collectors;(2)evaluate their effect in IEP and contact angle;(3)provide a better understanding of the adsorption behavior of the different fatty acid chains into apatite surface;(4)assess their ability to reversely and directly float apatite;(5)address gaps to achieve selectivity and process optimization.Outcomes demonstrated that fatty acids are largely applied,but other renewable sources of these reagents have been promisingly evaluated.In addition,other natural reagents have been tested,and new green synthetics have demonstrated synergistic effects when combined with fatty acids,yielding significant improvements in grade and recovery.However,collector effectiveness varies with ore characteristics,like particle size and surface properties,which remain underexplored.Future research should design tailored collectors that align with mineralogical differences to enhance selectivity. 展开更多
关键词 APATITE FLOTATION Eco-friendly collectors ADSORPTION Synergic interactions
在线阅读 下载PDF
Impact of Pyrolysis Parameters on Biochar and Activated Carbon Properties from Cistus ladaniferus for Environmental Applications
3
作者 Hammadi El Farissi Anass Choukoud +2 位作者 Bouchaib Manoun Mohamed El Massaoudi Abdelmonaem Talhaoui 《Journal of Renewable Materials》 2025年第6期1251-1266,共16页
In light of the growing urgency to address environmental degradation and improve carbon sequestration strategies,this study rigorously investigates the potential of Cistus ladaniferus as a viable feedstock for biochar... In light of the growing urgency to address environmental degradation and improve carbon sequestration strategies,this study rigorously investigates the potential of Cistus ladaniferus as a viable feedstock for biochar and activated carbon production.The influence of pyrolysis temperature,heating rate and particle size on biochar yield was systematically examined.The results demonstrate that increasing pyrolysis temperature and heating rate significantly reduces biochar yield,while particle size plays a crucial role in thermal degradation and biochar retention.To evaluate the structural and chemical properties of the materials,various characterization techniques were employed,including Fourier-transform infrared spectroscopy(FTIR),scanning electron microscopy(SEM),and energy-dispersive X-ray analysis(EDXA).FTIR identified key functional groups,while SEM and EDXA provided valuable insights into the morphology and elemental composition of the materials.Activated carbons exhibited enhanced porosity and carbon content compared to their biochar counterparts,achieving specific surface areas of up to 1210 m^(2) g^(-1) for acidactivated shells(AC-Sha).The Brunauer-Emmett-Teller(BET)method confirmed the mesoporous characteristics of these materials,with AC-Sa displaying a surface area of 678.74 m^(2) g^(-1) and an average pore size of 2.73 nm.Elemental analysis revealed that activated carbons possessed a higher carbon content(96.40 wt.%for AC-Sha)and lower oxygen content(2.37 wt.%),highlighting their suitability for applications in adsorption and catalysis.These findings underscore the significant impact of activation processes on the stability and adsorption capabilities of Cistus-derived biochars and activated carbons,paving the way for future research and practical applications in pollution control,carbon sequestration,and bioenergy. 展开更多
关键词 Biomass conversion thermal process heating rate SHELLS SEEDS BET adsorption ECO-FRIENDLY
在线阅读 下载PDF
Design and Research of Eco-Friendly Biodegradable Composites Based on Renewable Biopolymer Materials,Reed,and Hemp Waste
4
作者 Artem Kariev Vladimir Lebedev +5 位作者 Denis Miroshnichenko Yevgen Sokol Magomediemin Gasanov Anna Cherkashina Yuriy Lutsenko Serhiy Pyshyev 《Journal of Renewable Materials》 2025年第8期1645-1660,共16页
Nowadays,the development of effective bioplastics aims to combine traditional plastics’functionality with environmentally friendly properties.The most effective and durable modern bioplastics are made from the edible... Nowadays,the development of effective bioplastics aims to combine traditional plastics’functionality with environmentally friendly properties.The most effective and durable modern bioplastics are made from the edible part of crops.This forces bioplastics to competewith food production because the crops that produce bioplastics can also be used for human nutrition.That is why the article’s main focus is on creating bioplastics using renewable,non-food raw materials(cellulose,lignin,etc.).Eco-friendly composites based on a renewable bioplastic blend of polybutylene adipate-co-terephthalate,corn starch,and poly(lactic acid)with reed and hemp waste as a filler.The physic-chemical features of the structure and surface,as well as the technological characteristics of reed and hemp waste as the organic fillers for renewable bioplastic blend of polybutylene adipate-co-terephthalate,corn starch,and poly(lactic acid),were studied.Theeffect of the fractional composition analysis,morphology,and nature of reed and hempwaste on the quality of the design of eco-friendly biodegradable composites and their ability to disperse in the matrix of renewable bioplastic blend of polybutylene adipate-co-terephthalate,corn starch and poly(lactic acid)was carried out.The influence of different content and morphology of reed and hemp waste on the composite characteristics was investigated.It is shown that the most optimal direction for obtaining strong eco-friendly biodegradable composites based on a renewable bioplastic blend of polybutylene adipate-co-terephthalate,corn starch,and poly(lactic acid)is associated with the use of waste reed stalks,with its optimal content at the level of 50 wt.%. 展开更多
关键词 ECO-FRIENDLY BIODEGRADABLE composites renewable biopolymers organic waste REED HEMP
在线阅读 下载PDF
Towards Eco-Friendly and Multifunctional Marine Antifouling Agents-Natural Capsaicin-Inspired Amide Derivatives
5
作者 WANG Xuan MO Weijun +3 位作者 ZHANG Guanglong JIANG Xiaohui CHEN Guobo YU Liangmin 《Journal of Ocean University of China》 2025年第3期695-706,共12页
All maritime industries are plagued by marine biofouling pollution,which causes large economic and environmental costs.Therefore,there is an urgent need for ecofriendly alternatives that can effectively reduce the neg... All maritime industries are plagued by marine biofouling pollution,which causes large economic and environmental costs.Therefore,there is an urgent need for ecofriendly alternatives that can effectively reduce the negative consequences of biofouling pollution.This study aimed to produce novel capsaicin-inspired amide derivatives(CIADs)with multifunctional antifouling features by introducing amide compounds to aromatic compounds via a Friedel-Crafts alkylation reaction.The structure of the CIADs was characterized using FTIR,1H NMR,13C NMR,and HRMS,and the comprehensive antifouling capacity was determined by thermal stability,anti-ultraviolet,antibacterial,anti-algal,and marine field experiments.CIADs showed good thermal stability and did not show obvious weight loss before 226°C.2,4-dihydroxy-3,5-diphenylimidemet-hylbenzophenone(DDB)had an excellent ultraviolet absorption effect,which was even better than that of 2-hydroxy-4-(octyloxy)benzophenone.The antibacterial and anti-algal rates of N-(2,4-dimethyl-3-chloro-5-benzamide-methyl-6-hydroxybenzyl)benzamide(NDCBHB)were more than 99.5%and 64.0%,respectively,and the surface of antifouling coating with NDCBHB(NDCBHB-AC)was covered with only a small amount of sludge and biofilm,its antifouling effect was better than that of chlorothalonil.The above work provides a reference for preparing green and multifunctional antifouling agents. 展开更多
关键词 CAPSAICIN green product antifouling agent ECO-FRIENDLY MULTIFUNCTION
在线阅读 下载PDF
Eco-friendly quantum-dot light-emitting diode display technologies:prospects and challenges
6
作者 Peili Gao Chan Li +4 位作者 Hao Zhou Songhua He Zhen Yin Kar Wei Ng Shuangpeng Wang 《Opto-Electronic Science》 2025年第6期11-33,共23页
Eco-friendly quantum-dot light-emitting diodes(QLEDs),which employ colloidal quantum dots(QDs)such as InP,and ZnSe,stand out due to their low toxicity,color purity,and high efficiency.Currently,significant advancement... Eco-friendly quantum-dot light-emitting diodes(QLEDs),which employ colloidal quantum dots(QDs)such as InP,and ZnSe,stand out due to their low toxicity,color purity,and high efficiency.Currently,significant advancements have been made in the performance of cadmium-free QLEDs.However,several challenges persist in the industrialization of ecofriendly QLED displays.For instance,(1)the poor performance,characterized by low photoluminescence quantum yield(PLQY),unstable ligand,and charge imbalance,cannot be effectively addressed with a solitary strategy;(2)the degradation mechanism,involving emission quenching,morphological inhomogeneity,and field-enhanced electron delocalization remains unclear;(3)the lack of techniques for color patterning,such as optical lithography and transfer printing.Herein,we undertake a specific review of all technological breakthroughs that endeavor to tackle the above challenges associated with cadmium-free QLED displays.We begin by reviewing the evolution,architecture,and operational characteristics of eco-friendly QLEDs,highlighting the photoelectric properties of QDs,carrier transport layer stability,and device lifetime.Subsequently,we focus our attention not only on the latest insights into device degradation mechanisms,particularly,but also on the remarkable technological progress in color patterning techniques.To conclude,we provide a synthesis of the promising prospects,current challenges,potential solutions,and emerging research trends for QLED displays. 展开更多
关键词 quantum dots ECO-FRIENDLY light-emitting diodes degradation mechanisms DISPLAYS
在线阅读 下载PDF
Sustainable Biocomposites from Renewable Resources in West Africa:A Review
7
作者 Souha Mansour Amandine Viretto +1 位作者 Marie-France Thevenon Loic Brancheriau 《Journal of Renewable Materials》 2025年第8期1547-1586,共40页
The use of agricultural residues in biocomposite production has gained increasing attention,driven by several benefits.Converting agricultural by-products into bio-based materials within a circular economy represents ... The use of agricultural residues in biocomposite production has gained increasing attention,driven by several benefits.Converting agricultural by-products into bio-based materials within a circular economy represents a sustainable strategy to mitigate lignocellulosic waste,reduce reliance on fossil resources,and lower environmental pollution.This approach also creates economic opportunities for rural African communities by generating diverse income sources for workers in collection,processing,and manufacturing.As a result,the integration of agricultural residues into biocomposites production not only addresses environmental concerns but also fosters economic growth and supports rural development.In this review,five biomasses from West Africa are examined,focusing on their production,chemical composition,physical and mechanical properties,and potential applications in biocomposites.The five biomasses listed are cocoa pod husks,oil palm empty fruit bunches,rice husks,millet stalks,and typha stalks.Key parameters,such as the type of binder,fiber dimensions,fiber-to-binder ratio,and the strength of fiber-binder adhesion,are systematically studied to assess their influence on the overall performance of the resulting composites.Special attention is given to understanding how these factors affect mechanical properties(e.g.,strength and flexibility),thermal behavior(e.g.,insulation capacity and heat resistance),and physico-chemical characteristics(e.g.,moisture absorption,density,and chemical stability).This comprehensive analysis provides insights into optimizing composite formulations for enhanced functionality and sustainability.This study is essential to optimize the use of agricultural residues inWest Africa for biocomposites,tackling waste issues,promoting sustainability,and filling research gaps on their properties. 展开更多
关键词 BIOCOMPOSITES natural fibers agricultural residues West African biomasses sustainable materials eco-friendly composites
在线阅读 下载PDF
Eco-friendly aqueous binder derived from waste ramie for high-performance Li-S battery
8
作者 Shuang Ma Guangying Wan +7 位作者 Zhuoying Yan Xuecheng Liu Tiezhu Chen Xinmin Wang Jinhang Dai Juan Lin Tiefeng Liu Xingxing Gu 《Chinese Chemical Letters》 2025年第5期685-690,共6页
Even the sulfur cathode in lithium-sulfur(Li-S)battery has the advantages of high theoretical energy density,wide source of raw materials,no pollution to the environment,and so on.It still suffers the sore points of e... Even the sulfur cathode in lithium-sulfur(Li-S)battery has the advantages of high theoretical energy density,wide source of raw materials,no pollution to the environment,and so on.It still suffers the sore points of easy electrode collapse due to large volume expansion during charge and discharge and low active materials utilization caused by the severe shuttle effect of lithium polysulfides(LiPSs).Therefore,in this work,ramie gum(RG)was extracted from ramie fiber degumming liquid and used as the functional binder to address the above problems and improve the Li-S battery’s performance for the first time.Surprisingly,the sulfur cathode using RG binder illustrates a high initial capacity of 1152.2 mAh/g,and a reversible capacity of 644.6 mAh/g after 500 cycles at 0.5 C,far better than the sulfur cathode using polyvinylidene fluoride(PVDF)and sodium carboxymethyl cellulose(CMC)binder.More importantly,even if the active materials loading increased to as high as 4.30 mg/cm^(2),the area capacity is still around 3.1 mAh/cm^(2)after 200 cycles.Such excellent performances could be attributed to the abundant oxygen-and nitrogen-containing functional groups of RG that can effectively inhibit the shuttle effect of LiPSs,as well as the excellent viscosity and mechanical properties that can maintain electrode integrity during long-term charging/discharging.This work verifies the feasibility of RG as an eco-friendly and high-performance Li-S battery binder and provides a new idea for the utilization of agricultural biomass resources. 展开更多
关键词 Li-S battery Ramie gum ECO-FRIENDLY Sulfur cathode POLYSULFIDES
原文传递
Advanced machine learning techniques for predicting mechanical properties of eco-friendly self-compacting concrete
9
作者 Arslan Qayyum Khan Syed Ghulam Muhammad +1 位作者 Ali Raza Amorn Pimanmas 《Journal of Road Engineering》 2025年第2期213-229,共17页
This study evaluates the performance of advanced machine learning(ML)models in predicting the mechanical properties of eco-friendly self-compacting concrete(SCC),with a focus on compressive strength,V-funnel time,Lbox... This study evaluates the performance of advanced machine learning(ML)models in predicting the mechanical properties of eco-friendly self-compacting concrete(SCC),with a focus on compressive strength,V-funnel time,Lbox ratio,and slump flow.The motivation for this study stems from the increasing need to optimize concrete mix designs while minimizing environmental impact and reducing the reliance on costly physical testing.Six ML models-backpropagation neural network(BPNN),random forest regression(RFR),K-nearest neighbors(KNN),stacking,bagging,and eXtreme gradient boosting(XGBoost)-were trained and validated using a comprehensive dataset of 239 mix design parameters.The models'predictive accuracies were assessed using the coefficient of determination,mean squared error,root mean squared error,and mean absolute error.XGBoost consistently outperformed other models,achieving the coefficient of determination values of 0.999,0.933,and 0.935 for compressive strength in the training,validation,and testing datasets,respectively.Sensitivity analysis revealed that cement,silica fume,coarse aggregate,and superplasticizer positively influenced compressive strength,while water content had a negative impact.These findings highlight the potential of ML models,particularly XGBoost and RFR,in optimizing SCC mix designs,reducing reliance on physical testing,and enhancing sustainability in construction.The application of these models can lead to more efficient and eco-friendly concrete mix designs,benefiting real-world construction projects by improving quality control and reducing costs. 展开更多
关键词 Self-compacting concrete Eco-friendly concrete Machine learning model Compressive strength WORKABILITY
在线阅读 下载PDF
Green Logistics Management Effect on Sustainable Logistics Performance
10
作者 Apeksha Garg Sudha Vemaraju 《Journal of Environmental & Earth Sciences》 2025年第2期175-186,共12页
This study explores the influence of Green Logistics Management(GLM)on Sustainable Logistics Performance(SLP),emphasizing the pivotal role of Green Innovation(GI)in promoting sustainability and enhancing logistics eff... This study explores the influence of Green Logistics Management(GLM)on Sustainable Logistics Performance(SLP),emphasizing the pivotal role of Green Innovation(GI)in promoting sustainability and enhancing logistics efficiency(LE).As organizations increasingly seek to align operational efficiency with environmental goals,GLM has emerged as a strategic approach to achieving this balance.The research evaluates the impact of GLM on SLP,examines GI’s contribution to improving LE,and validates the relationship between green logistics practices and SLP.Survey-based data analysis employing reliable scales(AVE and Cronbach’s alpha>0.70)reveals that GI significantly advances LE.Firms demonstrate a strong commitment to sustainability,with high scores for eco-friendly packaging(5.35)and clean technologies(5.14).Despite this,variability in adoption rates highlights differences in implementation across organizations.The findings confirm that GLM positively influences SLP,underscoring the importance of integrating green practices into logistics operations.This study provides actionable insights for organizations and policymakers by addressing inconsistencies in green logistics practices and proposing strategies to enhance sustainability and operational efficiency.It presents a practical framework for improving environmental and business performance,offering valuable guidance for firms striving to achieve sustainable growth while meeting environmental objectives.The research contributes to advancing the logistics sector’s sustainability and innovation-driven performance. 展开更多
关键词 Green Innovation Sustainable Practices Logistics Efficiency Resource Optimization Eco-Friendly Initiatives
在线阅读 下载PDF
Eco-friendly Grinding:A Bibliometric and Knowledge Map Analysis
11
作者 Hao Wu Jixin Liu +8 位作者 Changhe Ji Rui Sheng Zongming Zhou Xu Yan Xuelei Song Guang Wang Lan Dong Yusuf Suleiman Dambatta Changhe Li 《Chinese Journal of Mechanical Engineering》 2025年第2期1-40,共40页
As the manufacturing industry shifts toward environmentally sustainable practices,grinding—a high-precision pro-cessing method—is commonly used to ensure final workpiece dimensions and surface quality.The greening o... As the manufacturing industry shifts toward environmentally sustainable practices,grinding—a high-precision pro-cessing method—is commonly used to ensure final workpiece dimensions and surface quality.The greening of grind-ing processes has emerged as an important challenge for both academia and industry.Numerous studies proposing different methods for sustainable grinding have increased rapidly;however,the technical mechanisms and develop-ment trends remain unclear.This paper applies bibliometric methods to analyze relevant articles published on WOS from 2008 to 2023.Results show that China has the highest number of publications(45.38%),with research institu-tions primarily located in China,India,and Brazil.Among publishing journals,70%are classified as Q2 or above.Addi-tionally,popular authors and influential articles in this field are identified.Keyword frequency and hotspot literature analysis reveal that research focuses primarily on minimal quantity lubrication(MQL)grinding,especially using biolubricants and nanoparticles to improve grinding performance.This article reviews the mechanisms and effects of biolubricants and nanoparticles in MQL.It further examines how multi-energy field applications enhance MQL by influencing droplet atomization,wettability,and machining performance.A low-temperature field improves the heat exchange capacity of MQL droplets,while an electrostatic field enhances droplet contact angles and disper-sion.Ultrasonic energy enhances the atomization of biolubricants,and magnetic fields facilitate nanoparticle penetra-tion into the grinding zone,reducing grinding forces.Additionally,innovations in grinding wheel structures and solid lubrication grinding can reduce grinding temperatures and forces.This paper presents a comprehensive review of eco-friendly grinding development hotspots,providing technical support and theoretical guidance for academia and industry. 展开更多
关键词 GRINDING Biolubricants Eco-friendly grinding Dry grinding Minimum quantity lubrication(MQL) Nanobiological enhanced lubricant minimum quantity lubrication(NMQL) Energy field empowerment
在线阅读 下载PDF
Extracellular green synthesis of silver nanoparticles using Amazonian fruit Araza(Eugenia stipitata McVaugh)
12
作者 Brajesh KUMAR Kumari SMITA +1 位作者 Alexis DEBUT Luis CUMBAL 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第9期2363-2371,共9页
An eco-friendly method for the extracellular synthesis of silver nanoparticles(AgNPs) using aqueous Araza fruit extract and their antioxidant activity was investigated. It was observed that UV–Vis absorption peak i... An eco-friendly method for the extracellular synthesis of silver nanoparticles(AgNPs) using aqueous Araza fruit extract and their antioxidant activity was investigated. It was observed that UV–Vis absorption peak is dependent on various parameters such as pH, temperature, and change of time. The initial appearance of the yellow color with intense surface plasmon bands at 430-450 nm, then transmission electron microscopy, scanning electron microscopy and X-ray diffraction analysis revealed the formation of 15-45 nm sized, spherical and crystalline Ag NPs. Fourier transform infrared spectroscopy depicted that malic acid, citric acid, and carotenoids of Araza fruit involved in the synthesis of Ag NPs. In addition, the surface modified AgNPs(77.42%, 1mL) showed nearly double antioxidant efficiency than Araza fruit extract(35.30%, 1 mL) against 1, 1-diphenyl-2-picrylhydrazyl. The present study highlights the possibility of using the Araza fruit to synthesize AgNPs, which could be used effectively in the present and future antioxidant agent. 展开更多
关键词 extracellular synthesis silver nanoparticles ANTIOXIDANT eco-friendliness
在线阅读 下载PDF
Soil and Variety Effects on the Energy and Carbon Balances of Switchgrass-Derived Ethanol
13
作者 Prem Woli Joel O. Paz +2 位作者 David J. Lang Brian S. Baldwin James R. Kiniry 《Journal of Sustainable Bioenergy Systems》 2012年第4期65-74,共10页
This study examined the effects of soil and switchgrass variety on sustainability and eco-friendliness of switchgrass-based ethanol production. Using the Agricultural Land Management Alternatives with Numerical Assess... This study examined the effects of soil and switchgrass variety on sustainability and eco-friendliness of switchgrass-based ethanol production. Using the Agricultural Land Management Alternatives with Numerical Assessment Criteria (ALMANAC) model, switchgrass biomass yields were simulated for several scenarios of soils and varieties. The yields were fed to the Integrated Biomass Supply Analysis and Logistics (IBSAL) model to compute energy use and carbon emissions in the biomass supply chain, which then were used to compute Net Energy Value (NEV) and Carbon Credit Balance (CCB), the indicators of sustainability and eco-friendliness, respectively. The results showed that the values of these indicators increased in the direction of heavier to lighter soils and on the order of north-upland, south-upland, north-lowland, and south-lowland varieties. The values of NEV and CCB increased in the direction of dry to wet year. Gaps among the varieties were smaller in a dry year than in a wet year. From south to north, NEV and CCB decreased for lowland varieties but increased for upland ones. Thus, the differences among the varieties decreased in the direction of lower to higher latitudes. The study demonstrated that the sustainability and eco-friendliness of switchgrass-based ethanol production could be increased with alternative soil and variety options. 展开更多
关键词 eco-friendliness Emissions ETHANOL Net ENERGY SUSTAINABILITY SWITCHGRASS VARIETY
暂未订购
A Study on the Counter Measures for Eco-friendly Land Use Model in Mountainous Area——a Case of Qianjiang District of Chongqing Municipality 被引量:8
14
作者 谭伟 张安明 An-ming 《Agricultural Science & Technology》 CAS 2010年第5期182-186,共5页
Accompanying the development of social economy,the land use model of mountainous area,typically eco-weak area,is changing gradually. Here the establishment of eco-friendly land use model in mountainous area,will pione... Accompanying the development of social economy,the land use model of mountainous area,typically eco-weak area,is changing gradually. Here the establishment of eco-friendly land use model in mountainous area,will pioneer the model of sustainable development in that area. Concerning Qianjiang District of Chongqing Municipality,huge change of land use model,mainly embodied in the unceasing increase of construction land and gradual decrease of agricultural use land,has taken place in recent years. To explore the eco-friendly land use model in mountainous area,Qianjiang District was chosen as the study object in the present study. Via analyzing the changes in land use model,we found that related eco-environment restrictive factors mainly regional climatic change,soil texture,hydrological environment as well as soil erosion and land degradation,etc. And based on these results,we further analyzed the effect of land use change on eco-environment and the factors restricting the maintenance of eco-environment and regional development,finally put forward the counter measures for balancing land use and co-environment in mountainous area. The results will be important for the development of social economy and eco-system construction in Qianjiang District. 展开更多
关键词 Mountainous area Eco-friendly Land use Qianjiang District
在线阅读 下载PDF
Natural and Eco-Friendly Materials for Triboelectric Energy Harvesting 被引量:8
15
作者 Vladislav Slabov Svitlana Kopyl +1 位作者 Marco PSoares dos Santos Andrei L.Kholkin 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第3期179-196,共18页
Triboelectric nanogenerators(TENGs)are promising electric energy harvesting devices as they can produce renewable clean energy using mechanical excitations from the environment.Several designs of triboelectric energy ... Triboelectric nanogenerators(TENGs)are promising electric energy harvesting devices as they can produce renewable clean energy using mechanical excitations from the environment.Several designs of triboelectric energy harvesters relying on biocompatible and eco-friendly natural materials have been introduced in recent years.Their ability to provide customizable self-powering for a wide range of applications,including biomedical devices,pressure and chemical sensors,and battery charging appliances,has been demonstrated.This review summarizes major advances already achieved in the field of triboelectric energy harvesting using biocompatible and eco-friendly natural materials.A rigorous,comparative,and critical analysis of preparation and testing methods is also presented.Electric power up to 14 mW was already achieved for the dry leaf/polyvinylidene fluoride-based TENG devices.These findings highlight the potential of eco-friendly self-powering systems and demonstrate the unique properties of the plants to generate electric energy for multiple applications. 展开更多
关键词 Natural and eco-friendly materials Energy harvesting Triboelectric nanogenerators BIOCOMPATIBILITY
在线阅读 下载PDF
Improved ecological development model for lower Yellow River floodplain,China 被引量:5
16
作者 Jin-liang Zhang Yi-zi Shang +2 位作者 Ji-xiang Liu Jian Fu Meng Cui 《Water Science and Engineering》 EI CAS CSCD 2020年第4期275-285,共11页
In this study,a model for the development of the wide floodplain in the lower Yellow River Basin,in China was developed.This model includes flood control schemes using grading criteria,enables sediment deposition in p... In this study,a model for the development of the wide floodplain in the lower Yellow River Basin,in China was developed.This model includes flood control schemes using grading criteria,enables sediment deposition in partitioned zones,and allows free exchange between channel runoff and sediment.The wide floodplain located between the main channel and levees is divided into three typical regions:the tender,low,and high floodplains.Different ecological models should be applied when these floodplains are constructed.This paper describes the associated research ideas and methodology,and clarifies several key issues,including sediment prediction and regulation,land planning,land use,and a multi-dimensional framework of safeguard measures for industries on the lower Yellow River floodplain.A refined ecological development model is proposed for the lower Yellow River floodplain,and future work on ecological and sustainable development of the lower floodplain is suggested.To establish a comprehensive system integrating runoff and sediment resource regulation in the Yellow River Basin,future work should focus on runoff and sediment exchange mechanisms in the wandering lower reaches.Furthermore,it is necessary to improve theories on floodplain planning and ecological construction,and these theories should be integrated with the research findings on land development across the lower Yellow River floodplain.©2020 Hohai University.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/). 展开更多
关键词 Ecological development Lower Yellow River FLOODPLAIN SEDIMENT Eco-friendly construction model
在线阅读 下载PDF
Grindability Evaluation of Ultrasonic Assisted Grinding of Silicon Nitride Ceramic Using Minimum Quantity Lubrication Based SiO_(2)Nanofluid 被引量:5
17
作者 Yusuf Suleiman Dambatta Changhe Li +8 位作者 Mohd Sayuti Ahmed A D Sarhan Min Yang Benkai Li Anxue Chu Mingzheng Liu Yanbin Zhang Zafar Said Zongming Zhou 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第2期115-136,共22页
Minimum quantity Lubrication(MQL)is a sustainable lubrication system that is famous in many machining systems.It involve the spray of an infinitesimal amount of mist-like lubricants during machining processes.The MQL ... Minimum quantity Lubrication(MQL)is a sustainable lubrication system that is famous in many machining systems.It involve the spray of an infinitesimal amount of mist-like lubricants during machining processes.The MQL system is affirmed to exhibit an excellent machining performance,and it is highly economical.The nanofluids are understood to exhibit excellent lubricity and heat evacuation capability,compared to pure oil-based MQL system.Studies have shown that the surface quality and amount of energy expended in the grinding operations can be reduced considerably due to the positive effect of these nanofluids.This work presents an experimental study on the tribological performance of SiO_(2)nanofluid during grinding of Si_(3)N_(4)ceramic.The effect different grinding modes and lubrication systems during the grinding operation was also analyzed.Different concentrations of the SiO_(2)nanofluid was manufactured using canola,corn and sunflower oils.The quantitative evaluation of the grinding process was done based on the amount of grinding forces,specific grinding energy,frictional coefficient,and surface integrity.It was found that the canola oil exhibits optimal lubrication performance compared to corn oil,sunflower oil,and traditional lubrication systems.Additionally,the introduction of ultrasonic vibrations with the SiO_(2)nanofluid in MQL system was found to reduce the specific grinding energy,normal grinding forces,tangential grinding forces,and surface roughness by 65%,57%,65%,and 18%respectively.Finally,regression analysis was used to obtain an optimum parameter combinations.The observations from this work will aid the smooth transition towards ecofriendly and sustainable machining of engineering ceramics. 展开更多
关键词 Minimum quantity lubrication(MQL) Ultrasonic assisted grinding(UAG) Eco-friendly lubricants NANOFLUID GRINDING CERAMIC
在线阅读 下载PDF
Near-Zero Air Pollutant Emission Technologies and Applications for Clean Coal-Fired Power 被引量:7
18
作者 Shumin Wang 《Engineering》 SCIE EI 2020年第12期1408-1422,共15页
Coal is the dominant energy source in China,and coal-fired power accounts for about half of coal consumption.However,air pollutant emissions from coal-fired power plants cause severe ecological and environmental probl... Coal is the dominant energy source in China,and coal-fired power accounts for about half of coal consumption.However,air pollutant emissions from coal-fired power plants cause severe ecological and environmental problems.This paper focuses on near-zero emission technologies and applications for clean coal-fired power.The long-term operation states of near-zero emission units were evaluated,and synergistic and special mercury(Hg)control technologies were researched.The results show that the principle technical route of near-zero emission,which was applied to 101 of China’s coal-fired units,has good adaptability to coal properties.The emission concentrations of particulate matter(PM),SO2,and NOx were below the emission limits of gas-fired power plants and the compliance rates of the hourly average emission concentrations reaching near-zero emission in long-term operation exceeded 99%.With the application of near-zero emission technologies,the generating costs increased by about 0.01 CNY∙(kW∙h)-1.However,the total emissions of air pollutants decreased by about 90%,resulting in effective improvement of the ambient air quality.Furthermore,while the Hg emission concentrations of the near-zero emission units ranged from 0.51 to 2.89μg∙m^-3,after the modified fly ash(MFA)special Hg removal system was applied,Hg emission concentration reached as low as 0.29μg∙m^-3.The operating cost of this system was only 10%-15%of the cost of mainstream Hg removal technology using activated carbon injection.Based on experimental studies carried out in a 50000 m^3∙h^-1 coal-fired flue gas pollutant control pilot platform,the interaction relationships of multi-pollutant removal were obtained and solutions were developed for emissions reaching different limits.A combined demonstration application for clean coal-fired power,with the new“1123”eco-friendly emission limits of 1,10,20 mg∙m^-3,and 3μg∙m^-3,respectively,for PM,SO2,NOx,and Hg from near-zero emission coal-fired power were put forward and realized,providing engineering and technical support for the national enhanced pollution emission standards. 展开更多
关键词 Clean coal-fired power Air pollutants Near-zero emission Pilot platform New“1123”eco-friendly emission limits
在线阅读 下载PDF
Analyses on performances of heat and multilayer reflection insulators 被引量:4
19
作者 LEE Moo-jin LEE Kang-guk SEO Won-duck 《Journal of Central South University》 SCIE EI CAS 2012年第6期1645-1656,共12页
This research was conducted to study the performances of the heat and multilayer reflection insulators used for buildings in South Korea to realize eco-friendly, low-energy-consumption, green construction, and to cont... This research was conducted to study the performances of the heat and multilayer reflection insulators used for buildings in South Korea to realize eco-friendly, low-energy-consumption, green construction, and to contribute to energy consumption reduction in buildings and to the nation's greenhouse gas emission reduction policy (targeting 30% reduction compared to BAUCousiness as usual) by 2020). The heat insulation performance test is about the temperatures on surfaces of test piece. The high air temperature and the low air temperature were measured to determine the overall heat transfer coefficient and thermal conductivity. The conclusions are drawn that the heat transmission coefficients for each type of existing reflection insulator are: A-1 (0.045 W/(m-K)), A-2 (0.031 W/(m.K)), A-3 (0.042 W/(m.K)), A-4 (0.078 W/(m.K)), and the average heat conductivity is 0.049 W/(m-K); The heat conductivity for each type of Styrofoam insulator are 0.030 W/(m.K) for B-l, 0.032 W/(m-K) for B-2, 0.037 W/(m'K) for B-3, 0.037 W/(m.K) for B-4, and the average heat conductivity is 0.035 W/(m'K) regardless of the thickness of the insulator; The heat conductivity values of the multilayer reflection insulators are converted based on the thickness and type C-1 (0.020 W/(m.K)), C-2 (0.018 W/(m.K)), C-3 (0.016 W/(m.K)), and C-4 (0.012 W/(m.K)); The multilayer reflection insulator keeps the indoor-side surface temperature high (during winter) or low (in summer), enhances the comfort of the building occupants, and conducts heating and moisture resistance to prevent dew condensation on the glass-outer-wall surface. 展开更多
关键词 heat reflection insulator multilayer reflection insulator overall heat transfer coefficient thermal conductivity nonflammability vapor permeability eco-friendly construction
在线阅读 下载PDF
Design of Eco-friendly Ultra-high Performance Concrete with Supplementary Cementitious Materials and Coarse Aggregate 被引量:4
20
作者 JIANG Jinyang ZHOU Wenjing +4 位作者 CHU Hongyan WANG Fengjuan WANG Liguo FENG Taotao GUO Dong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2019年第6期1350-1359,共10页
Aiming to investigate the mix design of eco-friendly UHPC with supplementary cementitious materials and coarser aggregates, we comprehensively studied the workability, microstructure, porosity, compressive strength, f... Aiming to investigate the mix design of eco-friendly UHPC with supplementary cementitious materials and coarser aggregates, we comprehensively studied the workability, microstructure, porosity, compressive strength, flexural strength, and Young’s modulus of UHPC. Relationship between compressive strength and Young’s modulus was obtained eventually. It is found that the compressive strength, flexural strength, and Young’s modulus of UHPC increase by 19.01%, 10.81%, and 5.99%, respectively, when 40 wt% cement is replaced with supplementary cementitious materials. The relationship between compressive strength and Young’s modulus of UHPC is an exponential form. 展开更多
关键词 ultra-high perform ance concrete ECO-FRIENDLY POROSITY compressive strength flexural strength Young’s modulus
原文传递
上一页 1 2 6 下一页 到第
使用帮助 返回顶部