Electrochemical discharge machining is considered to be a hybrid machining process that combines with EDM and ECM (electro chemical machining), called ECDM. The material removal is based on two phenomena: electroch...Electrochemical discharge machining is considered to be a hybrid machining process that combines with EDM and ECM (electro chemical machining), called ECDM. The material removal is based on two phenomena: electrochemical dissolution of the material and thermal erosion of electrical discharges that occur between the cathode & anode electrodes. This process is better used for machining of non conducting materials efficiently. In this research paper shows that a brief literature review study of various measuring instruments used for analysis of various parameters of the electrochemical discharge machining process on various types of materials, tool material, input & output parameters such as surface roughness, surface texture, material removal, tool wear etc..展开更多
This work demonstrates the viability of the powder-mixed micro-electrochemical discharge machining(PMECDM) process to fabricate micro-holes on C103 niobium-based alloy for high temperature applications.Three processes...This work demonstrates the viability of the powder-mixed micro-electrochemical discharge machining(PMECDM) process to fabricate micro-holes on C103 niobium-based alloy for high temperature applications.Three processes are involved simultaneously i.e.spark erosion,chemical etching,and abrasive grinding for removal of material while the classical electrochemical discharge machining process involves double actions i.e.spark erosion,and chemical etching.The powder-mixed electrolyte process resulted in rapid material removal along with a better surface finish as compared to the classical microelectrochemical discharge machining(MECDM).Further,the results are optimized through a multiobjective optimization approach and study of the surface topography of the hole wall surface obtained at optimized parameters.In the selected range of experimental parameters,PMECDM shows a higher material removal rate(MRR) and lower surface roughness(R_(a))(MRR:2.8 mg/min and R_(a) of 0.61 μm) as compared to the MECDM process(MRR:2.01 mg/min and corresponding Raof 1.11 μm).A detailed analysis of the results is presented in this paper.展开更多
Electrochemical Discharge Machining(ECDM)is potentially applicable for the fabrication of film-cooling holes.However,It is extremely difficult for the holes to achieve higher precision and machining quality owing to t...Electrochemical Discharge Machining(ECDM)is potentially applicable for the fabrication of film-cooling holes.However,It is extremely difficult for the holes to achieve higher precision and machining quality owing to the working liquid diminish in the lateral machining gap.In this study,a non-metallic backing layer was proposed to overcome the diminish of working liquid,and the electrochemical reaming,as a post-processing method for ECDM,was used to further improve the machining accuracy and quality of the holes.First,the three-dimensional morphology of the melted pit of a paraffin backing layer was scanned to obtain the geometric parameters.Then,simulation analysis and experimental verification of auxiliary flushing by using the non-metallic backing layer were performed.The machining performance of the holes machined with electrochemical reaming based on non-metallic backing layer was confirmed by the observations of the surface topography of the hole wall and orifice,measurement of the orifice precision,and analysis of the element composition on the surface of the orifice wall.Finally,an optimum combination of machining parameters for electrochemical reaming is obtained through a process parameter optimization experiment.展开更多
文摘Electrochemical discharge machining is considered to be a hybrid machining process that combines with EDM and ECM (electro chemical machining), called ECDM. The material removal is based on two phenomena: electrochemical dissolution of the material and thermal erosion of electrical discharges that occur between the cathode & anode electrodes. This process is better used for machining of non conducting materials efficiently. In this research paper shows that a brief literature review study of various measuring instruments used for analysis of various parameters of the electrochemical discharge machining process on various types of materials, tool material, input & output parameters such as surface roughness, surface texture, material removal, tool wear etc..
文摘This work demonstrates the viability of the powder-mixed micro-electrochemical discharge machining(PMECDM) process to fabricate micro-holes on C103 niobium-based alloy for high temperature applications.Three processes are involved simultaneously i.e.spark erosion,chemical etching,and abrasive grinding for removal of material while the classical electrochemical discharge machining process involves double actions i.e.spark erosion,and chemical etching.The powder-mixed electrolyte process resulted in rapid material removal along with a better surface finish as compared to the classical microelectrochemical discharge machining(MECDM).Further,the results are optimized through a multiobjective optimization approach and study of the surface topography of the hole wall surface obtained at optimized parameters.In the selected range of experimental parameters,PMECDM shows a higher material removal rate(MRR) and lower surface roughness(R_(a))(MRR:2.8 mg/min and R_(a) of 0.61 μm) as compared to the MECDM process(MRR:2.01 mg/min and corresponding Raof 1.11 μm).A detailed analysis of the results is presented in this paper.
基金supported by the National Natural Science Foundation of China(No.51705239)。
文摘Electrochemical Discharge Machining(ECDM)is potentially applicable for the fabrication of film-cooling holes.However,It is extremely difficult for the holes to achieve higher precision and machining quality owing to the working liquid diminish in the lateral machining gap.In this study,a non-metallic backing layer was proposed to overcome the diminish of working liquid,and the electrochemical reaming,as a post-processing method for ECDM,was used to further improve the machining accuracy and quality of the holes.First,the three-dimensional morphology of the melted pit of a paraffin backing layer was scanned to obtain the geometric parameters.Then,simulation analysis and experimental verification of auxiliary flushing by using the non-metallic backing layer were performed.The machining performance of the holes machined with electrochemical reaming based on non-metallic backing layer was confirmed by the observations of the surface topography of the hole wall and orifice,measurement of the orifice precision,and analysis of the element composition on the surface of the orifice wall.Finally,an optimum combination of machining parameters for electrochemical reaming is obtained through a process parameter optimization experiment.