期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A Network Traffic Prediction Algorithm Based on Prophet-EALSTM-GPR 被引量:1
1
作者 Guoqing Xu Changsen Xia +2 位作者 Jun Qian Guo Ran Zilong Jin 《Journal on Internet of Things》 2022年第2期113-125,共13页
Huge networks and increasing network traffic will consume more and more resources.It is critical to predict network traffic accurately and timely for network planning,and resource allocation,etc.In this paper,a combin... Huge networks and increasing network traffic will consume more and more resources.It is critical to predict network traffic accurately and timely for network planning,and resource allocation,etc.In this paper,a combined network traffic prediction model is proposed,which is based on Prophet,evolutionary attention-based LSTM(EALSTM)network,and Gaussian process regression(GPR).According to the non-smooth,sudden,periodic,and long correlation characteristics of network traffic,the prediction procedure is divided into three steps to predict network traffic accurately.In the first step,the Prophetmodel decomposes network traffic data into periodic and non-periodic parts.The periodic term is predicted by the Prophet model for different granularity periods.In the second step,the non-periodic term is fed to an EALSTM network to extract the importance of the different features in the sequence and learn their long correlation,which effectively avoids the long-term dependence problem caused by long step length.Finally,GPR is used to predict the residual term to boost the predictability even further.Experimental results indicate that the proposed scheme is more applicable and can significantly improve prediction accuracy compared with traditional linear and nonlinear models. 展开更多
关键词 Network traffic prediction PROPHET ealstm gaussian process regression
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部