As a byproduct of the steelmaking process,significant amounts of hazardous electric arc furnace dust(EAFD)are produced.Utilizing the solidification/stabilization technology with asphalt mix is one way to safeguard the...As a byproduct of the steelmaking process,significant amounts of hazardous electric arc furnace dust(EAFD)are produced.Utilizing the solidification/stabilization technology with asphalt mix is one way to safeguard the environment from its negative effects.Rutting was used as an indicator to assess the asphalt mixture with EAFD since it is an important factor in pavement design.This study’s major goal is to ascertain how EAFD affects the rutting of asphalt-concrete mixtures.To evaluate the ideal asphalt content,the Marshall test method was applied to asphalt-concrete mixtures.EAFD was added to the asphalt cement in four different volume percentages as a binder addition.Then,using the Universal Testing Machine,participants were exposed to a replica of the rutting test(UTM).Experiments were conducted at 25℃,40℃ and 55℃,and at frequencies of 1 Hz,4 Hz and 8 Hz.Rutting was measured for each specimen.Test results showed that rut depth has a negative correlation with EAFD%and a positive correlation with temperature.The use of EAFD has dual advantages,protecting the environment from the adverse impact of EAFD and reducing the cost of asphalt mix without jeopardizing pavement performance.展开更多
The aim of this work is to investigate and optimize the effects of the leaching parameters on the selective leaching of zinc from electric arc furnace steelmaking dust (EAFD). The response surface method was applied...The aim of this work is to investigate and optimize the effects of the leaching parameters on the selective leaching of zinc from electric arc furnace steelmaking dust (EAFD). The response surface method was applied on the basis of a three-level Box–Behnken experimental design method for optimization of selective leaching parameters of zinc from EAFD. The leaching recoveries of zinc (YZn) and iron (YFe) were taken as the response variables, where the concentration of sulphuric acid (X1, mol/L), leaching temperature (X2, °C), leaching time (X3, min), and liquid/solid ratio (X4, mL/g) were considered as the independent variables (factors). The mathematical model was proposed. Statistical ANOVA analysis and confirmation tests were applied. A maximum of 79.09% of zinc was recovered while the minimum iron recovery was 4.08% under the optimum conditions of leaching time 56.42 min, H2SO4 concentration 2.35 mol/L, leaching temperature 25 °C and liquid/solid ratios. By using ANOVA, the most influential factors on leaching of zinc and iron were determined as H2SO4 concentration and leaching temperature, respectively. The proposed model equations using response surface methodology show good agreement with the experimental data, with correlation coefficients (R2) of 0.98 for zinc recovery and 0.97 for iron recovery.展开更多
文摘As a byproduct of the steelmaking process,significant amounts of hazardous electric arc furnace dust(EAFD)are produced.Utilizing the solidification/stabilization technology with asphalt mix is one way to safeguard the environment from its negative effects.Rutting was used as an indicator to assess the asphalt mixture with EAFD since it is an important factor in pavement design.This study’s major goal is to ascertain how EAFD affects the rutting of asphalt-concrete mixtures.To evaluate the ideal asphalt content,the Marshall test method was applied to asphalt-concrete mixtures.EAFD was added to the asphalt cement in four different volume percentages as a binder addition.Then,using the Universal Testing Machine,participants were exposed to a replica of the rutting test(UTM).Experiments were conducted at 25℃,40℃ and 55℃,and at frequencies of 1 Hz,4 Hz and 8 Hz.Rutting was measured for each specimen.Test results showed that rut depth has a negative correlation with EAFD%and a positive correlation with temperature.The use of EAFD has dual advantages,protecting the environment from the adverse impact of EAFD and reducing the cost of asphalt mix without jeopardizing pavement performance.
文摘The aim of this work is to investigate and optimize the effects of the leaching parameters on the selective leaching of zinc from electric arc furnace steelmaking dust (EAFD). The response surface method was applied on the basis of a three-level Box–Behnken experimental design method for optimization of selective leaching parameters of zinc from EAFD. The leaching recoveries of zinc (YZn) and iron (YFe) were taken as the response variables, where the concentration of sulphuric acid (X1, mol/L), leaching temperature (X2, °C), leaching time (X3, min), and liquid/solid ratio (X4, mL/g) were considered as the independent variables (factors). The mathematical model was proposed. Statistical ANOVA analysis and confirmation tests were applied. A maximum of 79.09% of zinc was recovered while the minimum iron recovery was 4.08% under the optimum conditions of leaching time 56.42 min, H2SO4 concentration 2.35 mol/L, leaching temperature 25 °C and liquid/solid ratios. By using ANOVA, the most influential factors on leaching of zinc and iron were determined as H2SO4 concentration and leaching temperature, respectively. The proposed model equations using response surface methodology show good agreement with the experimental data, with correlation coefficients (R2) of 0.98 for zinc recovery and 0.97 for iron recovery.