The majority of multinational enterprises (MNEs) traditionally originate from developed countries. In the last ten years, however, there has been dramatic growth in foreign direct investment (FDI) from China. It i...The majority of multinational enterprises (MNEs) traditionally originate from developed countries. In the last ten years, however, there has been dramatic growth in foreign direct investment (FDI) from China. It is a comparatively new phenomenon that challenges the classic FDI theories. In this paper, we review the pros and cons of two important theories, known as the Owner- ship-Location-Internalization (0LI) model and Linkage-Leverage-Learning (LLL) model, and use the statistical data and company case studies from China to test the plausibility of these two models. We believe that neither of them suits totally: the OLI model is quite use- fill for understanding FDI from China to developing economies, while the LLL model is more powerful for explaining the FDI to de- veloped economies. We argue that the companies from China attain a very advantageous position as intermediates in the global economy They may catch up with the first movers if they integrate OLI-led and LLL-led FDI within one firm. This combination can bring to- gether the most advanced knowledge acquired in developed economies with the knowledge about adaptation needs and the needs for cost reduction in production as expressed in developing economies. It may also accelerate the knowledge transfer globally. We thus fill a gap in research into the geographical pattern of Chinese FDI and offer a deeper understanding of the internationalization of Chinese MNEs and revolving knowledge transfer.展开更多
Nowcasting and forecasting solar irradiance are vital for the optimal prediction of grid-connected solar photovoltaic(PV)power plants.These plants face operational challenges and scheduling dispatch difficulties due t...Nowcasting and forecasting solar irradiance are vital for the optimal prediction of grid-connected solar photovoltaic(PV)power plants.These plants face operational challenges and scheduling dispatch difficulties due to the fluctuating nature of their power output.As the generation capacity within the electric grid increases,accurately predicting this output becomes increasingly essential,especially given the random and non-linear characteristics of solar irradiance under variable weather conditions.This study presents a novel prediction method for solar irradiance,which is directly in correlation with PV power output,targeting both short-term and medium-term forecast horizons.Our proposed hybrid framework employs a fast trainable statistical learning technique based on the truncated-regularized kernel ridge regression model.The proposed method excels in forecasting solar irradiance,especially during highly intermittent weather periods.A key strength of our model is the incorporation of multiple historical weather parameters as inputs to generate accurate predictions of future solar irradiance values in its scalable framework.We evaluated the performance of our model using data sets from both cloudy and sunny days in Seattle and Medford,USA and compared it against three forecasting models:persistence,modified 24-hour persistence and least squares.Based on three widely accepted statistical performance metrics(root mean squared error,mean absolute error and coefficient of determination),our hybrid model demonstrated superior predictive accuracy in varying weather conditions and forecast horizons.展开更多
After the spread of COVID-19,e-learning systems have become crucial tools in educational systems worldwide,spanning all levels of education.This widespread use of e-learning platforms has resulted in the accumulation ...After the spread of COVID-19,e-learning systems have become crucial tools in educational systems worldwide,spanning all levels of education.This widespread use of e-learning platforms has resulted in the accumulation of vast amounts of valuable data,making it an attractive resource for predicting student performance.In this study,we aimed to predict student performance based on the analysis of data collected from the OULAD and Deeds datasets.The stacking method was employed for modeling in this research.The proposed model utilized weak learners,including nearest neighbor,decision tree,random forest,enhanced gradient,simple Bayes,and logistic regression algorithms.After a trial-and-error process,the logistic regression algorithm was selected as the final learner for the proposed model.The results of experiments with the above algorithms are reported separately for the pass and fail classes.The findings indicate that the accuracy of the proposed model on the OULAD dataset reached 98%.Overall,the proposed method improved accuracy by 4%on the OULAD dataset.展开更多
E-learning behavior data indicates several students’activities on the e-learning platform such as the number of accesses to a set of resources and number of participants in lectures.This article proposes a new analyt...E-learning behavior data indicates several students’activities on the e-learning platform such as the number of accesses to a set of resources and number of participants in lectures.This article proposes a new analytics systemto support academic evaluation for students via e-learning activities to overcome the challenges faced by traditional learning environments.The proposed e-learning analytics system includes a new deep forest model.It consists of multistage cascade random forests with minimal hyperparameters compared to traditional deep neural networks.The developed forest model can analyze each student’s activities during the use of an e-learning platform to give accurate expectations of the student’s performance before ending the semester and/or the final exam.Experiments have been conducted on the Open University Learning Analytics Dataset(OULAD)of 32,593 students.Our proposed deep model showed a competitive accuracy score of 98.0%compared to artificial intelligence-based models,such as ConvolutionalNeuralNetwork(CNN)and Long Short-TermMemory(LSTM)in previous studies.That allows academic advisors to support expected failed students significantly and improve their academic level at the right time.Consequently,the proposed analytics system can enhance the quality of educational services for students in an innovative e-learning framework.展开更多
Automatic detection of student engagement levels from videos,which is a spatio-temporal classification problem is crucial for enhancing the quality of online education.This paper addresses this challenge by proposing ...Automatic detection of student engagement levels from videos,which is a spatio-temporal classification problem is crucial for enhancing the quality of online education.This paper addresses this challenge by proposing four novel hybrid end-to-end deep learning models designed for the automatic detection of student engagement levels in e-learning videos.The evaluation of these models utilizes the DAiSEE dataset,a public repository capturing student affective states in e-learning scenarios.The initial model integrates EfficientNetV2-L with Gated Recurrent Unit(GRU)and attains an accuracy of 61.45%.Subsequently,the second model combines EfficientNetV2-L with bidirectional GRU(Bi-GRU),yielding an accuracy of 61.56%.The third and fourth models leverage a fusion of EfficientNetV2-L with Long Short-Term Memory(LSTM)and bidirectional LSTM(Bi-LSTM),achieving accuracies of 62.11%and 61.67%,respectively.Our findings demonstrate the viability of these models in effectively discerning student engagement levels,with the EfficientNetV2-L+LSTM model emerging as the most proficient,reaching an accuracy of 62.11%.This study underscores the potential of hybrid spatio-temporal networks in automating the detection of student engagement,thereby contributing to advancements in online education quality.展开更多
The safety assessment of high-level radioactive waste repositories requires a high predictive accuracy for radionuclide diffusion and a comprehensive understanding of the diffusion mechanism.In this study,a through-di...The safety assessment of high-level radioactive waste repositories requires a high predictive accuracy for radionuclide diffusion and a comprehensive understanding of the diffusion mechanism.In this study,a through-diffusion method and six machine-learning methods were employed to investigate the diffusion of ReO_(4)^(−),HCrO_(4)^(−),and I−in saturated compacted bentonite under different salinities and compacted dry densities.The machine-learning models were trained using two datasets.One dataset contained six input features and 293 instances obtained from the diffusion database system of the Japan Atomic Energy Agency(JAEA-DDB)and 15 publications.The other dataset,comprising 15,000 pseudo-instances,was produced using a multi-porosity model and contained eight input features.The results indicate that the former dataset yielded a higher predictive accuracy than the latter.Light gradient-boosting exhibited a higher prediction accuracy(R2=0.92)and lower error(MSE=0.01)than the other machine-learning algorithms.In addition,Shapley Additive Explanations,Feature Importance,and Partial Dependence Plot analysis results indicate that the rock capacity factor and compacted dry density had the two most significant effects on predicting the effective diffusion coefficient,thereby offering valuable insights.展开更多
BACKGROUND Rebleeding after recovery from esophagogastric variceal bleeding(EGVB)is a severe complication that is associated with high rates of both incidence and mortality.Despite its clinical importance,recognized p...BACKGROUND Rebleeding after recovery from esophagogastric variceal bleeding(EGVB)is a severe complication that is associated with high rates of both incidence and mortality.Despite its clinical importance,recognized prognostic models that can effectively predict esophagogastric variceal rebleeding in patients with liver cirrhosis are lacking.AIM To construct and externally validate a reliable prognostic model for predicting the occurrence of esophagogastric variceal rebleeding.METHODS This study included 477 EGVB patients across 2 cohorts:The derivation cohort(n=322)and the validation cohort(n=155).The primary outcome was rebleeding events within 1 year.The least absolute shrinkage and selection operator was applied for predictor selection,and multivariate Cox regression analysis was used to construct the prognostic model.Internal validation was performed with bootstrap resampling.We assessed the discrimination,calibration and accuracy of the model,and performed patient risk stratification.RESULTS Six predictors,including albumin and aspartate aminotransferase concentrations,white blood cell count,and the presence of ascites,portal vein thrombosis,and bleeding signs,were selected for the rebleeding event prediction following endoscopic treatment(REPET)model.In predicting rebleeding within 1 year,the REPET model ex-hibited a concordance index of 0.775 and a Brier score of 0.143 in the derivation cohort,alongside 0.862 and 0.127 in the validation cohort.Furthermore,the REPET model revealed a significant difference in rebleeding rates(P<0.01)between low-risk patients and intermediate-to high-risk patients in both cohorts.CONCLUSION We constructed and validated a new prognostic model for variceal rebleeding with excellent predictive per-formance,which will improve the clinical management of rebleeding in EGVB patients.展开更多
This study was aimed to prepare landslide susceptibility maps for the Pithoragarh district in Uttarakhand,India,using advanced ensemble models that combined Radial Basis Function Networks(RBFN)with three ensemble lear...This study was aimed to prepare landslide susceptibility maps for the Pithoragarh district in Uttarakhand,India,using advanced ensemble models that combined Radial Basis Function Networks(RBFN)with three ensemble learning techniques:DAGGING(DG),MULTIBOOST(MB),and ADABOOST(AB).This combination resulted in three distinct ensemble models:DG-RBFN,MB-RBFN,and AB-RBFN.Additionally,a traditional weighted method,Information Value(IV),and a benchmark machine learning(ML)model,Multilayer Perceptron Neural Network(MLP),were employed for comparison and validation.The models were developed using ten landslide conditioning factors,which included slope,aspect,elevation,curvature,land cover,geomorphology,overburden depth,lithology,distance to rivers and distance to roads.These factors were instrumental in predicting the output variable,which was the probability of landslide occurrence.Statistical analysis of the models’performance indicated that the DG-RBFN model,with an Area Under ROC Curve(AUC)of 0.931,outperformed the other models.The AB-RBFN model achieved an AUC of 0.929,the MB-RBFN model had an AUC of 0.913,and the MLP model recorded an AUC of 0.926.These results suggest that the advanced ensemble ML model DG-RBFN was more accurate than traditional statistical model,single MLP model,and other ensemble models in preparing trustworthy landslide susceptibility maps,thereby enhancing land use planning and decision-making.展开更多
Conducting predictability studies is essential for tracing the source of forecast errors,which not only leads to the improvement of observation and forecasting systems,but also enhances the understanding of weather an...Conducting predictability studies is essential for tracing the source of forecast errors,which not only leads to the improvement of observation and forecasting systems,but also enhances the understanding of weather and climate phenomena.In the past few decades,dynamical numerical models have been the primary tools for predictability studies,achieving significant progress.Nowadays,with the advances in artificial intelligence(AI)techniques and accumulations of vast meteorological data,modeling weather and climate events using modern data-driven approaches is becoming trendy,where FourCastNet,Pangu-Weather,and GraphCast are successful pioneers.In this perspective article,we suggest AI models should not be limited to forecasting but be expanded to predictability studies,leveraging AI's advantages of high efficiency and self-contained optimization modules.To this end,we first remark that AI models should possess high simulation capability with fine spatiotemporal resolution for two kinds of predictability studies.AI models with high simulation capabilities comparable to numerical models can be considered to provide solutions to partial differential equations in a data-driven way.Then,we highlight several specific predictability issues with well-determined nonlinear optimization formulizations,which can be well-studied using AI models,holding significant scientific value.In addition,we advocate for the incorporation of AI models into the synergistic cycle of the cognition–observation–model paradigm.Comprehensive predictability studies have the potential to transform“big data”to“big and better data”and shift the focus from“AI for forecasts”to“AI for science”,ultimately advancing the development of the atmospheric and oceanic sciences.展开更多
With the development of smart cities and smart technologies,parks,as functional units of the city,are facing smart transformation.The development of smart parks can help address challenges of technology integration wi...With the development of smart cities and smart technologies,parks,as functional units of the city,are facing smart transformation.The development of smart parks can help address challenges of technology integration within urban spaces and serve as testbeds for exploring smart city planning and governance models.Information models facilitate the effective integration of technology into space.Building Information Modeling(BIM)and City Information Modeling(CIM)have been widely used in urban construction.However,the existing information models have limitations in the application of the park,so it is necessary to develop an information model suitable for the park.This paper first traces the evolution of park smart transformation,reviews the global landscape of smart park development,and identifies key trends and persistent challenges.Addressing the particularities of parks,the concept of Park Information Modeling(PIM)is proposed.PIM leverages smart technologies such as artificial intelligence,digital twins,and collaborative sensing to help form a‘space-technology-system’smart structure,enabling systematic management of diverse park spaces,addressing the deficiency in park-level information models,and aiming to achieve scale articulation between BIM and CIM.Finally,through a detailed top-level design application case study of the Nanjing Smart Education Park in China,this paper illustrates the translation process of the PIM concept into practice,showcasing its potential to provide smart management tools for park managers and enhance services for park stakeholders,although further empirical validation is required.展开更多
To examine the similarities and differences in the evolution of cavity,wetting and dynamics of a highspeed,oblique water-entry projectile with different positive angles of attack,a comparative analysis has been conduc...To examine the similarities and differences in the evolution of cavity,wetting and dynamics of a highspeed,oblique water-entry projectile with different positive angles of attack,a comparative analysis has been conducted based on the numerical results of two mathematical models,the rigid-body model and fluid-structure interaction model.In addition,the applicable scope of the above two methods,and the structural response characteristics of the projectile have also been investigated.Our results demonstrate that:(1) The impact loads and angular motion of the projectile of the rigid-body method are more likely to exhibit periodic variations due to the periodic tail slap,its range of positive angles of attack is about α<2°.(2) When the projectile undergone significant wetting,a strong coupling effect is observed among wetting,structural deformation,and projectile motion.With the applied projectile shape,it is observed that,when the projectile bends,the final wetting position is that of Part B(cylinder of body).With the occu rrence of this phenomenon,the projectile ballistics beco me completely unstable.(3) The force exerted on the lower surface of the projectile induced by wetting is the primary reason of the destabilization of the projectile traj ectory and structu ral deformation failure.Bending deformation is most likely to appear at the junction of Part C(cone of body) and Part D(tail).The safe angles of attack of the projectile stability are found to be about α≤2°.展开更多
We propose an integrated method of data-driven and mechanism models for well logging formation evaluation,explicitly focusing on predicting reservoir parameters,such as porosity and water saturation.Accurately interpr...We propose an integrated method of data-driven and mechanism models for well logging formation evaluation,explicitly focusing on predicting reservoir parameters,such as porosity and water saturation.Accurately interpreting these parameters is crucial for effectively exploring and developing oil and gas.However,with the increasing complexity of geological conditions in this industry,there is a growing demand for improved accuracy in reservoir parameter prediction,leading to higher costs associated with manual interpretation.The conventional logging interpretation methods rely on empirical relationships between logging data and reservoir parameters,which suffer from low interpretation efficiency,intense subjectivity,and suitability for ideal conditions.The application of artificial intelligence in the interpretation of logging data provides a new solution to the problems existing in traditional methods.It is expected to improve the accuracy and efficiency of the interpretation.If large and high-quality datasets exist,data-driven models can reveal relationships of arbitrary complexity.Nevertheless,constructing sufficiently large logging datasets with reliable labels remains challenging,making it difficult to apply data-driven models effectively in logging data interpretation.Furthermore,data-driven models often act as“black boxes”without explaining their predictions or ensuring compliance with primary physical constraints.This paper proposes a machine learning method with strong physical constraints by integrating mechanism and data-driven models.Prior knowledge of logging data interpretation is embedded into machine learning regarding network structure,loss function,and optimization algorithm.We employ the Physically Informed Auto-Encoder(PIAE)to predict porosity and water saturation,which can be trained without labeled reservoir parameters using self-supervised learning techniques.This approach effectively achieves automated interpretation and facilitates generalization across diverse datasets.展开更多
Large language models(LLMs)have undergone significant expansion and have been increasingly integrated across various domains.Notably,in the realm of robot task planning,LLMs harness their advanced reasoning and langua...Large language models(LLMs)have undergone significant expansion and have been increasingly integrated across various domains.Notably,in the realm of robot task planning,LLMs harness their advanced reasoning and language comprehension capabilities to formulate precise and efficient action plans based on natural language instructions.However,for embodied tasks,where robots interact with complex environments,textonly LLMs often face challenges due to a lack of compatibility with robotic visual perception.This study provides a comprehensive overview of the emerging integration of LLMs and multimodal LLMs into various robotic tasks.Additionally,we propose a framework that utilizes multimodal GPT-4V to enhance embodied task planning through the combination of natural language instructions and robot visual perceptions.Our results,based on diverse datasets,indicate that GPT-4V effectively enhances robot performance in embodied tasks.This extensive survey and evaluation of LLMs and multimodal LLMs across a variety of robotic tasks enriches the understanding of LLM-centric embodied intelligence and provides forward-looking insights towards bridging the gap in Human-Robot-Environment interaction.展开更多
Developing sensorless techniques for estimating battery expansion is essential for effective mechanical state monitoring,improving the accuracy of digital twin simulation and abnormality detection.Therefore,this paper...Developing sensorless techniques for estimating battery expansion is essential for effective mechanical state monitoring,improving the accuracy of digital twin simulation and abnormality detection.Therefore,this paper presents a data-driven approach to expansion estimation using electromechanical coupled models with machine learning.The proposed method integrates reduced-order impedance models with data-driven mechanical models,coupling the electrochemical and mechanical states through the state of charge(SOC)and mechanical pressure within a state estimation framework.The coupling relationship was established through experimental insights into pressure-related impedance parameters and the nonlinear mechanical behavior with SOC and pressure.The data-driven model was interpreted by introducing a novel swelling coefficient defined by component stiffnesses to capture the nonlinear mechanical behavior across various mechanical constraints.Sensitivity analysis of the impedance model shows that updating model parameters with pressure can reduce the mean absolute error of simulated voltage by 20 mV and SOC estimation error by 2%.The results demonstrate the model's estimation capabilities,achieving a root mean square error of less than 1 kPa when the maximum expansion force is from 30 kPa to 120 kPa,outperforming calibrated stiffness models and other machine learning techniques.The model's robustness and generalizability are further supported by its effective handling of SOC estimation and pressure measurement errors.This work highlights the importance of the proposed framework in enhancing state estimation and fault diagnosis for lithium-ion batteries.展开更多
As a key node of modern transportation network,the informationization management of road tunnels is crucial to ensure the operation safety and traffic efficiency.However,the existing tunnel vehicle modeling methods ge...As a key node of modern transportation network,the informationization management of road tunnels is crucial to ensure the operation safety and traffic efficiency.However,the existing tunnel vehicle modeling methods generally have problems such as insufficient 3D scene description capability and low dynamic update efficiency,which are difficult to meet the demand of real-time accurate management.For this reason,this paper proposes a vehicle twin modeling method for road tunnels.This approach starts from the actual management needs,and supports multi-level dynamic modeling from vehicle type,size to color by constructing a vehicle model library that can be flexibly invoked;at the same time,semantic constraint rules with geometric layout,behavioral attributes,and spatial relationships are designed to ensure that the virtual model matches with the real model with a high degree of similarity;ultimately,the prototype system is constructed and the case region is selected for the case study,and the dynamic vehicle status in the tunnel is realized by integrating real-time monitoring data with semantic constraints for precise virtual-real mapping.Finally,the prototype system is constructed and case experiments are conducted in selected case areas,which are combined with real-time monitoring data to realize dynamic updating and three-dimensional visualization of vehicle states in tunnels.The experiments show that the proposed method can run smoothly with an average rendering efficiency of 17.70 ms while guaranteeing the modeling accuracy(composite similarity of 0.867),which significantly improves the real-time and intuitive tunnel management.The research results provide reliable technical support for intelligent operation and emergency response of road tunnels,and offer new ideas for digital twin modeling of complex scenes.展开更多
With the advent of computing and communication technologies,it has become possible for a learner to expand his or her knowledge irrespective of the place and time.Web-based learning promotes active and independent lea...With the advent of computing and communication technologies,it has become possible for a learner to expand his or her knowledge irrespective of the place and time.Web-based learning promotes active and independent learning.Large scale e-learning platforms revolutionized the concept of studying and it also paved the way for innovative and effective teaching-learning process.This digital learning improves the quality of teaching and also promotes educational equity.However,the challenges in e-learning platforms include dissimilarities in learner’s ability and needs,lack of student motivation towards learning activities and provision for adaptive learning environment.The quality of learning can be enhanced by analyzing the online learner’s behavioral characteristics and their application of intelligent instructional strategy.It is not possible to identify the difficulties faced during the process through evaluation after the completion of e-learning course.It is thus essential for an e-learning system to include component offering adaptive control of learning and maintain user’s interest level.In this research work,a framework is proposed to analyze the behavior of online learners and motivate the students towards the learning process accordingly so as to increase the rate of learner’s objective attainment.Catering to the demands of e-learner,an intelligent model is presented in this study for e-learning system that apply supervised machine learning algorithm.An adaptive e-learning system suits every category of learner,improves the learner’s performance and paves way for offering personalized learning experiences.展开更多
The purposes of this research were to 1) develop of an e-learning benchmarking model for higher education institutions;2) analyze and synthesize e-learning indicators for e-learning benchmarking model. The research wa...The purposes of this research were to 1) develop of an e-learning benchmarking model for higher education institutions;2) analyze and synthesize e-learning indicators for e-learning benchmarking model. The research was conducted using the research and development methods. The result shows that there are eight elements of e-learning benchmarking model: 1) team/staffs 2) benchmarking’s title 3) comparative companies 4) benchmarking indicators 5) data collection method 6) analysis data and results 7) report of results and 8) action plan development. Moreover, four steps of benchmarking model will be used in this research. “Plan” is the step of setting team for benchmarking title and choosing the company to collect the benchmarking while “Do” is a field study in order to analyze and collect each indicator. The step “Check” presents the data to stakeholders and set the purposes of action plan. Finally, “Act” which is the development of action plan leads to the practice or implementation which related to auditing and evaluating.展开更多
基金Under the auspices of National Natural Science Foundation of China(No.4097106941101120)+1 种基金State Scholarship Fund by China Scholaship CouncilMinistry of Education of the people's Republic of China(No.2009614028)
文摘The majority of multinational enterprises (MNEs) traditionally originate from developed countries. In the last ten years, however, there has been dramatic growth in foreign direct investment (FDI) from China. It is a comparatively new phenomenon that challenges the classic FDI theories. In this paper, we review the pros and cons of two important theories, known as the Owner- ship-Location-Internalization (0LI) model and Linkage-Leverage-Learning (LLL) model, and use the statistical data and company case studies from China to test the plausibility of these two models. We believe that neither of them suits totally: the OLI model is quite use- fill for understanding FDI from China to developing economies, while the LLL model is more powerful for explaining the FDI to de- veloped economies. We argue that the companies from China attain a very advantageous position as intermediates in the global economy They may catch up with the first movers if they integrate OLI-led and LLL-led FDI within one firm. This combination can bring to- gether the most advanced knowledge acquired in developed economies with the knowledge about adaptation needs and the needs for cost reduction in production as expressed in developing economies. It may also accelerate the knowledge transfer globally. We thus fill a gap in research into the geographical pattern of Chinese FDI and offer a deeper understanding of the internationalization of Chinese MNEs and revolving knowledge transfer.
基金supported by the Khalifa University of Science and Technology under Award No.RC2 DSO and the Advanced Power and Energy Center.
文摘Nowcasting and forecasting solar irradiance are vital for the optimal prediction of grid-connected solar photovoltaic(PV)power plants.These plants face operational challenges and scheduling dispatch difficulties due to the fluctuating nature of their power output.As the generation capacity within the electric grid increases,accurately predicting this output becomes increasingly essential,especially given the random and non-linear characteristics of solar irradiance under variable weather conditions.This study presents a novel prediction method for solar irradiance,which is directly in correlation with PV power output,targeting both short-term and medium-term forecast horizons.Our proposed hybrid framework employs a fast trainable statistical learning technique based on the truncated-regularized kernel ridge regression model.The proposed method excels in forecasting solar irradiance,especially during highly intermittent weather periods.A key strength of our model is the incorporation of multiple historical weather parameters as inputs to generate accurate predictions of future solar irradiance values in its scalable framework.We evaluated the performance of our model using data sets from both cloudy and sunny days in Seattle and Medford,USA and compared it against three forecasting models:persistence,modified 24-hour persistence and least squares.Based on three widely accepted statistical performance metrics(root mean squared error,mean absolute error and coefficient of determination),our hybrid model demonstrated superior predictive accuracy in varying weather conditions and forecast horizons.
文摘After the spread of COVID-19,e-learning systems have become crucial tools in educational systems worldwide,spanning all levels of education.This widespread use of e-learning platforms has resulted in the accumulation of vast amounts of valuable data,making it an attractive resource for predicting student performance.In this study,we aimed to predict student performance based on the analysis of data collected from the OULAD and Deeds datasets.The stacking method was employed for modeling in this research.The proposed model utilized weak learners,including nearest neighbor,decision tree,random forest,enhanced gradient,simple Bayes,and logistic regression algorithms.After a trial-and-error process,the logistic regression algorithm was selected as the final learner for the proposed model.The results of experiments with the above algorithms are reported separately for the pass and fail classes.The findings indicate that the accuracy of the proposed model on the OULAD dataset reached 98%.Overall,the proposed method improved accuracy by 4%on the OULAD dataset.
基金The authors thank to the deanship of scientific research at Shaqra University for funding this research work through the Project Number(SU-ANN-2023017).
文摘E-learning behavior data indicates several students’activities on the e-learning platform such as the number of accesses to a set of resources and number of participants in lectures.This article proposes a new analytics systemto support academic evaluation for students via e-learning activities to overcome the challenges faced by traditional learning environments.The proposed e-learning analytics system includes a new deep forest model.It consists of multistage cascade random forests with minimal hyperparameters compared to traditional deep neural networks.The developed forest model can analyze each student’s activities during the use of an e-learning platform to give accurate expectations of the student’s performance before ending the semester and/or the final exam.Experiments have been conducted on the Open University Learning Analytics Dataset(OULAD)of 32,593 students.Our proposed deep model showed a competitive accuracy score of 98.0%compared to artificial intelligence-based models,such as ConvolutionalNeuralNetwork(CNN)and Long Short-TermMemory(LSTM)in previous studies.That allows academic advisors to support expected failed students significantly and improve their academic level at the right time.Consequently,the proposed analytics system can enhance the quality of educational services for students in an innovative e-learning framework.
文摘Automatic detection of student engagement levels from videos,which is a spatio-temporal classification problem is crucial for enhancing the quality of online education.This paper addresses this challenge by proposing four novel hybrid end-to-end deep learning models designed for the automatic detection of student engagement levels in e-learning videos.The evaluation of these models utilizes the DAiSEE dataset,a public repository capturing student affective states in e-learning scenarios.The initial model integrates EfficientNetV2-L with Gated Recurrent Unit(GRU)and attains an accuracy of 61.45%.Subsequently,the second model combines EfficientNetV2-L with bidirectional GRU(Bi-GRU),yielding an accuracy of 61.56%.The third and fourth models leverage a fusion of EfficientNetV2-L with Long Short-Term Memory(LSTM)and bidirectional LSTM(Bi-LSTM),achieving accuracies of 62.11%and 61.67%,respectively.Our findings demonstrate the viability of these models in effectively discerning student engagement levels,with the EfficientNetV2-L+LSTM model emerging as the most proficient,reaching an accuracy of 62.11%.This study underscores the potential of hybrid spatio-temporal networks in automating the detection of student engagement,thereby contributing to advancements in online education quality.
基金the Key Program of National Natural Science Foundation of China(No.12335008),the Postgraduate Research and Innovation Project of Huzhou University(No.2023KYCX62)the Scientific Research Fund of Zhejiang Provincial Education Department(No.Y202352712)the Huzhou science and technology planning project(No.2021GZ60)。
文摘The safety assessment of high-level radioactive waste repositories requires a high predictive accuracy for radionuclide diffusion and a comprehensive understanding of the diffusion mechanism.In this study,a through-diffusion method and six machine-learning methods were employed to investigate the diffusion of ReO_(4)^(−),HCrO_(4)^(−),and I−in saturated compacted bentonite under different salinities and compacted dry densities.The machine-learning models were trained using two datasets.One dataset contained six input features and 293 instances obtained from the diffusion database system of the Japan Atomic Energy Agency(JAEA-DDB)and 15 publications.The other dataset,comprising 15,000 pseudo-instances,was produced using a multi-porosity model and contained eight input features.The results indicate that the former dataset yielded a higher predictive accuracy than the latter.Light gradient-boosting exhibited a higher prediction accuracy(R2=0.92)and lower error(MSE=0.01)than the other machine-learning algorithms.In addition,Shapley Additive Explanations,Feature Importance,and Partial Dependence Plot analysis results indicate that the rock capacity factor and compacted dry density had the two most significant effects on predicting the effective diffusion coefficient,thereby offering valuable insights.
基金Supported by National Natural Science Foundation of China,No.81874390 and No.81573948Shanghai Natural Science Foundation,No.21ZR1464100+1 种基金Science and Technology Innovation Action Plan of Shanghai Science and Technology Commission,No.22S11901700the Shanghai Key Specialty of Traditional Chinese Clinical Medicine,No.shslczdzk01201.
文摘BACKGROUND Rebleeding after recovery from esophagogastric variceal bleeding(EGVB)is a severe complication that is associated with high rates of both incidence and mortality.Despite its clinical importance,recognized prognostic models that can effectively predict esophagogastric variceal rebleeding in patients with liver cirrhosis are lacking.AIM To construct and externally validate a reliable prognostic model for predicting the occurrence of esophagogastric variceal rebleeding.METHODS This study included 477 EGVB patients across 2 cohorts:The derivation cohort(n=322)and the validation cohort(n=155).The primary outcome was rebleeding events within 1 year.The least absolute shrinkage and selection operator was applied for predictor selection,and multivariate Cox regression analysis was used to construct the prognostic model.Internal validation was performed with bootstrap resampling.We assessed the discrimination,calibration and accuracy of the model,and performed patient risk stratification.RESULTS Six predictors,including albumin and aspartate aminotransferase concentrations,white blood cell count,and the presence of ascites,portal vein thrombosis,and bleeding signs,were selected for the rebleeding event prediction following endoscopic treatment(REPET)model.In predicting rebleeding within 1 year,the REPET model ex-hibited a concordance index of 0.775 and a Brier score of 0.143 in the derivation cohort,alongside 0.862 and 0.127 in the validation cohort.Furthermore,the REPET model revealed a significant difference in rebleeding rates(P<0.01)between low-risk patients and intermediate-to high-risk patients in both cohorts.CONCLUSION We constructed and validated a new prognostic model for variceal rebleeding with excellent predictive per-formance,which will improve the clinical management of rebleeding in EGVB patients.
基金the University of Transport Technology under the project entitled“Application of Machine Learning Algorithms in Landslide Susceptibility Mapping in Mountainous Areas”with grant number DTTD2022-16.
文摘This study was aimed to prepare landslide susceptibility maps for the Pithoragarh district in Uttarakhand,India,using advanced ensemble models that combined Radial Basis Function Networks(RBFN)with three ensemble learning techniques:DAGGING(DG),MULTIBOOST(MB),and ADABOOST(AB).This combination resulted in three distinct ensemble models:DG-RBFN,MB-RBFN,and AB-RBFN.Additionally,a traditional weighted method,Information Value(IV),and a benchmark machine learning(ML)model,Multilayer Perceptron Neural Network(MLP),were employed for comparison and validation.The models were developed using ten landslide conditioning factors,which included slope,aspect,elevation,curvature,land cover,geomorphology,overburden depth,lithology,distance to rivers and distance to roads.These factors were instrumental in predicting the output variable,which was the probability of landslide occurrence.Statistical analysis of the models’performance indicated that the DG-RBFN model,with an Area Under ROC Curve(AUC)of 0.931,outperformed the other models.The AB-RBFN model achieved an AUC of 0.929,the MB-RBFN model had an AUC of 0.913,and the MLP model recorded an AUC of 0.926.These results suggest that the advanced ensemble ML model DG-RBFN was more accurate than traditional statistical model,single MLP model,and other ensemble models in preparing trustworthy landslide susceptibility maps,thereby enhancing land use planning and decision-making.
基金in part supported by the National Natural Science Foundation of China(Grant Nos.42288101,42405147 and 42475054)in part by the China National Postdoctoral Program for Innovative Talents(Grant No.BX20230071)。
文摘Conducting predictability studies is essential for tracing the source of forecast errors,which not only leads to the improvement of observation and forecasting systems,but also enhances the understanding of weather and climate phenomena.In the past few decades,dynamical numerical models have been the primary tools for predictability studies,achieving significant progress.Nowadays,with the advances in artificial intelligence(AI)techniques and accumulations of vast meteorological data,modeling weather and climate events using modern data-driven approaches is becoming trendy,where FourCastNet,Pangu-Weather,and GraphCast are successful pioneers.In this perspective article,we suggest AI models should not be limited to forecasting but be expanded to predictability studies,leveraging AI's advantages of high efficiency and self-contained optimization modules.To this end,we first remark that AI models should possess high simulation capability with fine spatiotemporal resolution for two kinds of predictability studies.AI models with high simulation capabilities comparable to numerical models can be considered to provide solutions to partial differential equations in a data-driven way.Then,we highlight several specific predictability issues with well-determined nonlinear optimization formulizations,which can be well-studied using AI models,holding significant scientific value.In addition,we advocate for the incorporation of AI models into the synergistic cycle of the cognition–observation–model paradigm.Comprehensive predictability studies have the potential to transform“big data”to“big and better data”and shift the focus from“AI for forecasts”to“AI for science”,ultimately advancing the development of the atmospheric and oceanic sciences.
基金Under the auspices of National Natural Science Foundation of China(No.42330510)。
文摘With the development of smart cities and smart technologies,parks,as functional units of the city,are facing smart transformation.The development of smart parks can help address challenges of technology integration within urban spaces and serve as testbeds for exploring smart city planning and governance models.Information models facilitate the effective integration of technology into space.Building Information Modeling(BIM)and City Information Modeling(CIM)have been widely used in urban construction.However,the existing information models have limitations in the application of the park,so it is necessary to develop an information model suitable for the park.This paper first traces the evolution of park smart transformation,reviews the global landscape of smart park development,and identifies key trends and persistent challenges.Addressing the particularities of parks,the concept of Park Information Modeling(PIM)is proposed.PIM leverages smart technologies such as artificial intelligence,digital twins,and collaborative sensing to help form a‘space-technology-system’smart structure,enabling systematic management of diverse park spaces,addressing the deficiency in park-level information models,and aiming to achieve scale articulation between BIM and CIM.Finally,through a detailed top-level design application case study of the Nanjing Smart Education Park in China,this paper illustrates the translation process of the PIM concept into practice,showcasing its potential to provide smart management tools for park managers and enhance services for park stakeholders,although further empirical validation is required.
基金supported by the Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX24_0714).
文摘To examine the similarities and differences in the evolution of cavity,wetting and dynamics of a highspeed,oblique water-entry projectile with different positive angles of attack,a comparative analysis has been conducted based on the numerical results of two mathematical models,the rigid-body model and fluid-structure interaction model.In addition,the applicable scope of the above two methods,and the structural response characteristics of the projectile have also been investigated.Our results demonstrate that:(1) The impact loads and angular motion of the projectile of the rigid-body method are more likely to exhibit periodic variations due to the periodic tail slap,its range of positive angles of attack is about α<2°.(2) When the projectile undergone significant wetting,a strong coupling effect is observed among wetting,structural deformation,and projectile motion.With the applied projectile shape,it is observed that,when the projectile bends,the final wetting position is that of Part B(cylinder of body).With the occu rrence of this phenomenon,the projectile ballistics beco me completely unstable.(3) The force exerted on the lower surface of the projectile induced by wetting is the primary reason of the destabilization of the projectile traj ectory and structu ral deformation failure.Bending deformation is most likely to appear at the junction of Part C(cone of body) and Part D(tail).The safe angles of attack of the projectile stability are found to be about α≤2°.
基金supported by National Key Research and Development Program (2019YFA0708301)National Natural Science Foundation of China (51974337)+2 种基金the Strategic Cooperation Projects of CNPC and CUPB (ZLZX2020-03)Science and Technology Innovation Fund of CNPC (2021DQ02-0403)Open Fund of Petroleum Exploration and Development Research Institute of CNPC (2022-KFKT-09)
文摘We propose an integrated method of data-driven and mechanism models for well logging formation evaluation,explicitly focusing on predicting reservoir parameters,such as porosity and water saturation.Accurately interpreting these parameters is crucial for effectively exploring and developing oil and gas.However,with the increasing complexity of geological conditions in this industry,there is a growing demand for improved accuracy in reservoir parameter prediction,leading to higher costs associated with manual interpretation.The conventional logging interpretation methods rely on empirical relationships between logging data and reservoir parameters,which suffer from low interpretation efficiency,intense subjectivity,and suitability for ideal conditions.The application of artificial intelligence in the interpretation of logging data provides a new solution to the problems existing in traditional methods.It is expected to improve the accuracy and efficiency of the interpretation.If large and high-quality datasets exist,data-driven models can reveal relationships of arbitrary complexity.Nevertheless,constructing sufficiently large logging datasets with reliable labels remains challenging,making it difficult to apply data-driven models effectively in logging data interpretation.Furthermore,data-driven models often act as“black boxes”without explaining their predictions or ensuring compliance with primary physical constraints.This paper proposes a machine learning method with strong physical constraints by integrating mechanism and data-driven models.Prior knowledge of logging data interpretation is embedded into machine learning regarding network structure,loss function,and optimization algorithm.We employ the Physically Informed Auto-Encoder(PIAE)to predict porosity and water saturation,which can be trained without labeled reservoir parameters using self-supervised learning techniques.This approach effectively achieves automated interpretation and facilitates generalization across diverse datasets.
基金supported by National Natural Science Foundation of China(62376219 and 62006194)Foundational Research Project in Specialized Discipline(Grant No.G2024WD0146)Faculty Construction Project(Grant No.24GH0201148).
文摘Large language models(LLMs)have undergone significant expansion and have been increasingly integrated across various domains.Notably,in the realm of robot task planning,LLMs harness their advanced reasoning and language comprehension capabilities to formulate precise and efficient action plans based on natural language instructions.However,for embodied tasks,where robots interact with complex environments,textonly LLMs often face challenges due to a lack of compatibility with robotic visual perception.This study provides a comprehensive overview of the emerging integration of LLMs and multimodal LLMs into various robotic tasks.Additionally,we propose a framework that utilizes multimodal GPT-4V to enhance embodied task planning through the combination of natural language instructions and robot visual perceptions.Our results,based on diverse datasets,indicate that GPT-4V effectively enhances robot performance in embodied tasks.This extensive survey and evaluation of LLMs and multimodal LLMs across a variety of robotic tasks enriches the understanding of LLM-centric embodied intelligence and provides forward-looking insights towards bridging the gap in Human-Robot-Environment interaction.
基金Fund supported this work for Excellent Youth Scholars of China(Grant No.52222708)the National Natural Science Foundation of China(Grant No.51977007)+1 种基金Part of this work is supported by the research project“SPEED”(03XP0585)at RWTH Aachen Universityfunded by the German Federal Ministry of Education and Research(BMBF)。
文摘Developing sensorless techniques for estimating battery expansion is essential for effective mechanical state monitoring,improving the accuracy of digital twin simulation and abnormality detection.Therefore,this paper presents a data-driven approach to expansion estimation using electromechanical coupled models with machine learning.The proposed method integrates reduced-order impedance models with data-driven mechanical models,coupling the electrochemical and mechanical states through the state of charge(SOC)and mechanical pressure within a state estimation framework.The coupling relationship was established through experimental insights into pressure-related impedance parameters and the nonlinear mechanical behavior with SOC and pressure.The data-driven model was interpreted by introducing a novel swelling coefficient defined by component stiffnesses to capture the nonlinear mechanical behavior across various mechanical constraints.Sensitivity analysis of the impedance model shows that updating model parameters with pressure can reduce the mean absolute error of simulated voltage by 20 mV and SOC estimation error by 2%.The results demonstrate the model's estimation capabilities,achieving a root mean square error of less than 1 kPa when the maximum expansion force is from 30 kPa to 120 kPa,outperforming calibrated stiffness models and other machine learning techniques.The model's robustness and generalizability are further supported by its effective handling of SOC estimation and pressure measurement errors.This work highlights the importance of the proposed framework in enhancing state estimation and fault diagnosis for lithium-ion batteries.
基金National Natural Science Foundation of China(Nos.42301473,42271424,42171397)Chinese Postdoctoral Innovation Talents Support Program(No.BX20230299)+2 种基金China Postdoctoral Science Foundation(No.2023M742884)Natural Science Foundation of Sichuan Province(Nos.24NSFSC2264,2025ZNSFSC0322)Key Research and Development Project of Sichuan Province(No.24ZDYF0633).
文摘As a key node of modern transportation network,the informationization management of road tunnels is crucial to ensure the operation safety and traffic efficiency.However,the existing tunnel vehicle modeling methods generally have problems such as insufficient 3D scene description capability and low dynamic update efficiency,which are difficult to meet the demand of real-time accurate management.For this reason,this paper proposes a vehicle twin modeling method for road tunnels.This approach starts from the actual management needs,and supports multi-level dynamic modeling from vehicle type,size to color by constructing a vehicle model library that can be flexibly invoked;at the same time,semantic constraint rules with geometric layout,behavioral attributes,and spatial relationships are designed to ensure that the virtual model matches with the real model with a high degree of similarity;ultimately,the prototype system is constructed and the case region is selected for the case study,and the dynamic vehicle status in the tunnel is realized by integrating real-time monitoring data with semantic constraints for precise virtual-real mapping.Finally,the prototype system is constructed and case experiments are conducted in selected case areas,which are combined with real-time monitoring data to realize dynamic updating and three-dimensional visualization of vehicle states in tunnels.The experiments show that the proposed method can run smoothly with an average rendering efficiency of 17.70 ms while guaranteeing the modeling accuracy(composite similarity of 0.867),which significantly improves the real-time and intuitive tunnel management.The research results provide reliable technical support for intelligent operation and emergency response of road tunnels,and offer new ideas for digital twin modeling of complex scenes.
文摘With the advent of computing and communication technologies,it has become possible for a learner to expand his or her knowledge irrespective of the place and time.Web-based learning promotes active and independent learning.Large scale e-learning platforms revolutionized the concept of studying and it also paved the way for innovative and effective teaching-learning process.This digital learning improves the quality of teaching and also promotes educational equity.However,the challenges in e-learning platforms include dissimilarities in learner’s ability and needs,lack of student motivation towards learning activities and provision for adaptive learning environment.The quality of learning can be enhanced by analyzing the online learner’s behavioral characteristics and their application of intelligent instructional strategy.It is not possible to identify the difficulties faced during the process through evaluation after the completion of e-learning course.It is thus essential for an e-learning system to include component offering adaptive control of learning and maintain user’s interest level.In this research work,a framework is proposed to analyze the behavior of online learners and motivate the students towards the learning process accordingly so as to increase the rate of learner’s objective attainment.Catering to the demands of e-learner,an intelligent model is presented in this study for e-learning system that apply supervised machine learning algorithm.An adaptive e-learning system suits every category of learner,improves the learner’s performance and paves way for offering personalized learning experiences.
文摘The purposes of this research were to 1) develop of an e-learning benchmarking model for higher education institutions;2) analyze and synthesize e-learning indicators for e-learning benchmarking model. The research was conducted using the research and development methods. The result shows that there are eight elements of e-learning benchmarking model: 1) team/staffs 2) benchmarking’s title 3) comparative companies 4) benchmarking indicators 5) data collection method 6) analysis data and results 7) report of results and 8) action plan development. Moreover, four steps of benchmarking model will be used in this research. “Plan” is the step of setting team for benchmarking title and choosing the company to collect the benchmarking while “Do” is a field study in order to analyze and collect each indicator. The step “Check” presents the data to stakeholders and set the purposes of action plan. Finally, “Act” which is the development of action plan leads to the practice or implementation which related to auditing and evaluating.