期刊文献+
共找到1,125篇文章
< 1 2 57 >
每页显示 20 50 100
Dynamical Simulation of Cornea Deformation in Laser Surgery
1
作者 GAO Mingxiang CHEN Dingfang YANG Yanfang 《Wuhan University Journal of Natural Sciences》 CAS 2011年第4期332-336,共5页
A dynamical simulation method is presented to model the cornea deformation in surgery of laser thermokeratoplasty. The virtual cornea is constructed as a mass-spring system. The corneal surface tension is simulated by... A dynamical simulation method is presented to model the cornea deformation in surgery of laser thermokeratoplasty. The virtual cornea is constructed as a mass-spring system. The corneal surface tension is simulated by damping spring stretch between mass points on the cornea model. The aqueous humor in the eyeball is modeled as ideal gas, and the intraocular pressure is simulated by gas pressure. The coagulation force is exerted on each photocoagulation spot to demonstrate its collapse caused by the condensation of corneal soft tissue irradiated by laser. An extra viscous drag force is added to each mass point to weaken the mass point oscillation. The use of the effective time-corrected Verlet integral method brings about flowing and stable dynamic simulation procedures. The simulation results show that, comparing to the undeformed model, the curvature of the region between the optical center and photocoagulation spot increases obviously. Moreover, the shape of the deformed virtual cornea is much similar to that of the real cornea after surgery. 展开更多
关键词 dynamical simulation cornea model mass-spring model laser thermokeratoplasty
原文传递
Lattice dynamical simulation of methane hydrate
2
作者 Lin Wang, Shunle Dong Physics Department, College of Information Science and Engineering, Ocean University of China, Qingdao 266100, Shandong, China 《Journal of Natural Gas Chemistry》 CSCD 2010年第1期43-46,共4页
INS (Inelastic Neutron Scattering) spectrum of methane hydrate was measured on MARI (a direct-geometry chopper spectrometer) at Ruther-ford Appleton Laboratory, UK. Compared with ice Ih, it is found that the whole... INS (Inelastic Neutron Scattering) spectrum of methane hydrate was measured on MARI (a direct-geometry chopper spectrometer) at Ruther-ford Appleton Laboratory, UK. Compared with ice Ih, it is found that the whole spectrum of methane hydrate moves toward high-energy by about 1.5 meV. Using lattice dynamical (LD) technique, computer simulations of methane hydrate were carried out. In the simulations, four potential models (BE TIP3P, TIP4P, MCY) were employed to calculate the phonon density of states (PDOS). Comparing the calculated PDOS spectrum with the experimental spectrum, it is found that BF, TIP4P, and TIP3P potential lattices give out well-separated translational and librational bands while MCY potential lattice is unstable to do so and this model is not suitable to describe hydrate system. 展开更多
关键词 methane hydrate inelastic neutron scattering lattice dynamical simulation
在线阅读 下载PDF
Development of new electromagnetic suspension-based high-speed Maglev vehicles in China:Historical and recent progress in the field of dynamical simulation 被引量:8
3
作者 Sansan Ding Peter Eberhard +9 位作者 Georg Schneider Patrick Schmid Arnim Kargl Yong Cui Ullrich Martin Xin Liang Chao Huang Markus Bauer Florian Dignath Qinghua Zheng 《International Journal of Mechanical System Dynamics》 2023年第2期97-118,共22页
High-speed Maglev is a cutting-edge technology brought back into the focus of research by plans of the Chinese government for the development of a new 600 km/h Maglev train.A Chinese‐German cooperation with industria... High-speed Maglev is a cutting-edge technology brought back into the focus of research by plans of the Chinese government for the development of a new 600 km/h Maglev train.A Chinese‐German cooperation with industrial and academic partners has been established to pursue this ambitious goal and bring together experts from multiple disciplines.This contribution presents the joint work and achievements of CRRC Qingdao Sifang,thyssenkrupp Transrapid,CDFEB,and the ITM of the University of Stuttgart,regarding research and development in the field of high‐speed Maglev systems.Furthermore,an overview is given of the historical development of the Transrapid in Germany,the associated development of dynamical simulation models,and recent developments regarding high-speed Maglev trains in China. 展开更多
关键词 MAGLEV high-speed Maglev vehicle magnetic levitation simulation models dynamic simulation vehicle dynamics
原文传递
Application and dynamical performance simulation of tooth surface measured data of hypoid gear 被引量:2
4
作者 XU Zhong-si FENG Lei LEI Hong-xia 《Journal of Measurement Science and Instrumentation》 CAS 2014年第2期1-8,共8页
The tooth surface shape of hypoid gear is very complicated, and tooth surface accuracy of hypoid gear can be measured by using the latticed measurement and scanning measurement. Advantages and disadvantages of the two... The tooth surface shape of hypoid gear is very complicated, and tooth surface accuracy of hypoid gear can be measured by using the latticed measurement and scanning measurement. Advantages and disadvantages of the two measurement patterns are compared and application of their measurement data on hypoid gear's quality management is analyzed. How to use these measurement data to simulate the dynamical performance of hypoid gear is researched, and the intelligent predicton of the dynamical performance indexes of contact spot, root stress, vibration exciting forces and load distribution and hertz contact stress on the tooth surface are carried out. This research work has an important guiding sense to design and ma- chine hypoid gear with low vibration and noise. 展开更多
关键词 hypoid gear latticed measurement scanning measurement tooth surface dynamical performance simulation
在线阅读 下载PDF
Numerical Simulation and Dynamical Analysis for Low Salinity Water Lens in the Expansion Area of the Changjiang Diluted Water 被引量:2
5
作者 张文静 朱首贤 +3 位作者 李训强 阮鲲 管卫兵 彭剑 《China Ocean Engineering》 SCIE EI CSCD 2014年第6期777-790,共14页
The low salinity water lenses(LSWLes) in the expansion area of the Changjiang diluted water(CDW) exist in a certain period of time in some years. The impact of realistic river runoff, ocean currents and weather co... The low salinity water lenses(LSWLes) in the expansion area of the Changjiang diluted water(CDW) exist in a certain period of time in some years. The impact of realistic river runoff, ocean currents and weather conditions need to be taken into account in the dynamical analysis of LSWL, which is in need of research. In this paper, the POM-σ-z model is used to set up the numerical model for the expansion of the CDW. Then LSWL in summer 1977 is simulated, and its dynamic mechanism driven by wind, tide, river runoff and the Taiwan Warm Current is also analyzed. The simulated results indicate that the isolated LSWL detaches itself from the CDW near the river mouth, and then moves towards the northeast region outside the Changjiang Estuary. Its maintaining period is from July 26 to August 11. Its formation and development is mainly driven by two factors. One is the strong southeasterly wind lasting for ten days. The other is the vertical tidal mixing during the transition from neap tide to spring tide. 展开更多
关键词 Changjiang diluted water low salinity water lens numerical simulation dynamic mechanism
在线阅读 下载PDF
Dynamic impact simulation tests of deep roadways affected by high stress and fault slip 被引量:1
6
作者 Qi Wang Yuncai Wang +3 位作者 Zhenhua Jiang Hongpu Kang Chong Zhang Bei Jiang 《International Journal of Mining Science and Technology》 2025年第4期519-537,共19页
As coal mining depth increases,the combined effects of high stress,mining stress,and fault structures make dynamic impact hazards more frequent.The reproduction of dynamic impact phenomena is basis for studying their ... As coal mining depth increases,the combined effects of high stress,mining stress,and fault structures make dynamic impact hazards more frequent.The reproduction of dynamic impact phenomena is basis for studying their occurrence patterns and control mechanisms.Physical simulation test represents an efficacious methodology.However,there is currently a lack of simulation devices that can effectively simulate two types of dynamic impact phenomena,including high stress and fault slip dynamic impact.To solve aforementioned issues,the physical simulation test system for dynamic impact in deep roadways developed by authors is employed to carry out comparative tests of high stress and fault slip dynamic impact.The phenomena of high stress and fault slip dynamic impact are reproduced successfully.A comparative analysis is conducted on dynamic phenomena,stress evolution,roadway deformation,and support force.The high stress dynamic impact roadway instability mode,which is characterized by the release of high energy accompanied by symmetric damage,and the fault slip dynamic impact roadway instability mode,which is characterized by the propagation of unilateral stress waves accompanied by asymmetric damage,are clarified.On the basis,the differentiated control concepts for different types of dynamic impact in deep roadways are proposed. 展开更多
关键词 Deep roadway Dynamic impact simulation High stress Fault slip Occurrence law
在线阅读 下载PDF
Analysis of Micromechanical Properties at the Interface of Pre-wet SBS Modified Asphalt Mixture Based on Molecular Simulation Technology
7
作者 CHEN Wuxing CHEN Shuang +3 位作者 YU Yan ZHANG Jiangyi XU Haiyang GUO Wei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期103-113,共11页
The pre-wetting of aggregate surface is a means to improve the interface performance of SBS modified asphalt and aggregate.The effect of pre-wetting technology on the interaction between SBS modified asphalt and aggre... The pre-wetting of aggregate surface is a means to improve the interface performance of SBS modified asphalt and aggregate.The effect of pre-wetting technology on the interaction between SBS modified asphalt and aggregate was analyzed by molecular dynamics simulation.The diffusion coefficient and concentration distribution of SBS modified asphalt on aggregate surface are included.The simulation results show that the diffusion coefficient of the aggregate surface of SBS modified asphalt is increased by 47.6%and 70.5%respectively after 110#asphalt and 130#asphalt are pre-wetted.The concentration distribution of SBS modified asphalt on the aggregate surface after pre-wetting is more uniform.According to the results of interface energy calculation,the interface energy of SBS modified bitumen and aggregate can be increased by about 5%after pre-wetting.According to the results of molecular dynamics simulation,the pre-wetting technology can effectively improve the interface workability of SBS modified bitumen and aggregate,so as to improve the interface performance. 展开更多
关键词 pre-wet oil-stone interface interface interaction interface mechanics molecular dynamics simulation
原文传递
A conductivity model for hydrogen based on ab initio simulations
8
作者 Uwe Kleinschmidt Ronald Redmer 《Matter and Radiation at Extremes》 2025年第4期58-69,共12页
We calculate the electrical and thermal conductivity of hydrogen for a wide range of densities and temperatures by using molecular dynamics simulations informed by density functional theory.On the basis of the corresp... We calculate the electrical and thermal conductivity of hydrogen for a wide range of densities and temperatures by using molecular dynamics simulations informed by density functional theory.On the basis of the corresponding extended ab initio data set,we construct interpolation formulas covering the range from low-density,high-temperature to high-density,low-temperature plasmas.Our conductivity model repro-duces the well-known limits of the Spitzer and Ziman theory.We compare with available experimental data andfind very good agreement.The new conductivity model can be applied,for example,in dynamo simulations for magneticfield generation in gas giant planets,brown dwarfs,and stellar envelopes. 展开更多
关键词 molecular dynamics simulations electrical thermal conductivity CONDUCTIVITY density functional theoryon interpolation formulas conductivity model extended ab initio data setwe spitzer ziman theorywe
在线阅读 下载PDF
Influence of Pressure on the Co-nonsolvency Effect of Homopolymer in Solutions:A Molecular Dynamics Simulation Study
9
作者 Zhi-Yuan Wang Xing-Ye Li +4 位作者 Zheng Wang Yu-Hua Yin Run Jiang Peng-Fei Zhang Bao-Hui Li 《Chinese Journal of Polymer Science》 2025年第10期1929-1938,共10页
Stimuli-responsive polymers capable of rapidly altering their chain conformation in response to external stimuli exhibit broad applica-tion prospects.Experiments have shown that pressure plays a pivotal role in regula... Stimuli-responsive polymers capable of rapidly altering their chain conformation in response to external stimuli exhibit broad applica-tion prospects.Experiments have shown that pressure plays a pivotal role in regulating the microscopic chain conformation of polymers in mixed solvents,and one notable finding is that increasing the pressure can lead to the vanishing of the co-nonsolvency effect.However,the mecha-nisms underlying this phenomenon remain unclear.In this study,we systematically investigated the influence of pressure on the co-nonsolvency effect of single-chain and multi-chain homopolymers in binary mixed good-solvent systems using molecular dynamics simulations.Our results show that the co-nonsolvency-induced chain conformation transition and aggregation behavior significantly depend on pressure in allsingle-chain and multi-chain systems.In single-chain systems,at low pressures,the polymer chain maintains a collapsed state over a wide range of co-solvent fractions(x-range)owing to the co-nonsolvency effect.As the pressure increases,the x-range of the collapsed state gradually narrows,ac-companied by a progressive expansion of the chain.In multichain systems,polymer chains assemble into approximately spherical aggregates over a broad x-range at low pressures owing to the co-nonsolvency effect.Increasing the pressure reduces the x-range for forming aggregates and leads to the formation of loose aggregates or even to a state of dispersed chains at some x-range.These findings indicate that increasing the pressure can weaken or even offset the co-nonsolvency effect in some x-range,which is in good agreement with the experimental observations.Quantitative analysis of the radial density distributions and radial distribution functions reveals that,with increasing pressure,(1)the densities of both polymers and co-solvent molecules within aggregates decrease,while that of the solvent molecule increases;and(2)the effective interac-tions between the polymer and the co-solvent weaken,whereas those between the polymer and solvent strengthen.This enhances the incorpo-ration of solvent molecules within the chains,thereby weakening or even suppressing the chain aggregation.Our study not only elucidates the regulatory mechanism of pressure on the microscopic chain conformations and aggregation behaviors of polymers,but also may provide theo-retical guidance for designing smart polymericmaterials based on mixed solvents. 展开更多
关键词 Molecular dynamics simulation Mixed solvent Co-nonsolvency PRESSURE Chain conformation
原文传递
Research Progress and Applications of Carbon Nanotubes,Black Phosphorus,and Graphene-Based Nanomaterials:Insights from Computational Simulations
10
作者 Qinghua Qin 《Computers, Materials & Continua》 2025年第10期1-39,共39页
Carbon nanotubes(CNTs),black phosphorus nanotubes(BPNTs),and graphene derivatives exhibit significant promise for applications in nano-electromechanical systems(NEMS),energy storage,and sensing technologies due to the... Carbon nanotubes(CNTs),black phosphorus nanotubes(BPNTs),and graphene derivatives exhibit significant promise for applications in nano-electromechanical systems(NEMS),energy storage,and sensing technologies due to their exceptional mechanical,electrical,and thermal properties.This review summarizes recent advances in understanding the dynamic behaviors of these nanomaterials,with a particular focus on insights gained from molecular dynamics(MD)simulations.Key areas discussed include the oscillatory and rotational dynamics of double-walled CNTs,fabrication and stability challenges associated with BPNTs,and the emerging potential of graphyne nanotubes(GNTs).The review also outlines design strategies for enhancing nanodevice performance and underscores the importance of future efforts in experimental validation,multi-scale coupling analyses,and the development of novel nanocomposites to accelerate practical deployment. 展开更多
关键词 Carbon nanotubes black phosphorus GRAPHENE NANOMATERIALS molecular dynamics simulations
在线阅读 下载PDF
A molecular dynamics simulation route towards Eu-doped multi-component transparent spectral conversion glass-ceramics
11
作者 Xiuxia Xu Chenhao Wang +7 位作者 Di Wang Wenyan Zheng Zhiyu Liu Jincheng Du Xusheng Qiao Xianping Fan Zhiyu Wang Guodong Qian 《Journal of Rare Earths》 2025年第1期146-152,I0006,共8页
Eu^(2+)doped fluorosilicate glass-ceramics containing BaF_(2) nanocrystals have high potential as spectral conversion materials for organic solar cells.However,it is difficult to realize the efficient design of BaF_(2... Eu^(2+)doped fluorosilicate glass-ceramics containing BaF_(2) nanocrystals have high potential as spectral conversion materials for organic solar cells.However,it is difficult to realize the efficient design of BaF_(2):Eu^(2+)doped fluorosilicate glass and to vividly observe the glass microstructure in experiment through traditional trial-and-error glass preparation method.BaF_(2):Eu^(2+)doped fluorosilicate glassceramics with high transparency,and high photoluminescence(PL)performance were predicted,designed and prepared via molecular dynamics(MD)simulation method.By MD simulation prediction,self-organized nanocrystallization was realized to inhibit the abnormal growth of nanocrystals due to[AlO_(4)]tetrahedra formed in the fluoride-oxide interface.The introduction of NaF reduces the effective phonon energy of the glass because Na+will prompt Al^(3+)to migrate from the fluoride phase to the silicate phase and interface.The local environment of Eu^(2+)is optimized by predicting the doping concentration of EuF_(3) and 2 mol%EuF3 is the best concentration in this work.Glass-ceramics sample GC2Eu as spectral conversion layer was successfully applied on organic solar cells to obtain more available visible phonons with a high photoelectric conversion efficiency(PCE).This work confirms the guidance of molecular dynamics simulation methods for fluorosilicate glasses design. 展开更多
关键词 Molecular dynamics simulation Fluorosilicateglass Spectral conversion Organic solarcell RAREEARTHS
原文传递
Influence of Intermolecular Forces and Spatial Effects on the Mechanical Properties of Silicone Sealant by Molecular Dynamics Simulation
12
作者 Wen Qi Yu-Fei Du +2 位作者 Bo-Han Chen Gui-Lei An Chun Lu 《Computers, Materials & Continua》 2025年第11期2763-2780,共18页
In the production process of silicone sealant,mineral oil is used to replace methyl silicone oil plasticizer in silicone sealant to reduce costs and increase efficiency.However,the silicone sealant content in mineral ... In the production process of silicone sealant,mineral oil is used to replace methyl silicone oil plasticizer in silicone sealant to reduce costs and increase efficiency.However,the silicone sealant content in mineral oil is prone to premature aging,which significantly reduces the mechanical properties of the silicone sealant and severely affects its service life.At the same time,there are few reports on the simulation research of the performance of silicone sealant.In this study,three mixed system models of crosslinking silicone sealant/plasticizer are constructed by the molecular dynamics simulationmethod,and the effect of three influencing factors,namely,crosslinking degree of silicone sealant,plasticizer content and external temperature on the mechanical properties of silicone sealant system is analyzed.The results show that at room temperature,the mechanical properties of the silicone sealant system are enhanced with the increase of its crosslinking degree;At a high crosslinking degree,with the increase of plasticizer content,themechanical properties of the silicone sealant system show an overall decreasing trend.When the methyl silicone oil in the range of 20%,themechanical properties of the silicone sealant appeared tobe a small degree of enhancement;As the temperature increases,the doped mineral oil mechanical properties of silicone sealant declined significantly,while doped with methyl silicone oil silicone sealant and doped with double-ended vinyl silicone oil silicone sealant mechanical properties have better heat resistance.It will provide scientific theoretical guidance for improving and predicting the mechanical properties of silicone sealant. 展开更多
关键词 Silicone sealant molecular dynamic simulation MICROSTRUCTURE mechanical property cross-linking
在线阅读 下载PDF
DNA-modulated Mo-Zn single-atom nanozymes: Insights from molecular dynamics simulations to smartphone-assisted biosensing
13
作者 Zhimin Song Zhe Tang +4 位作者 Yu Zhang Yanru Zhou Xiaozheng Duan Yan Du Chong-Bo Ma 《Chinese Chemical Letters》 2025年第10期453-458,共6页
Recent advancements in nanotechnology have spotlighted the catalytic potential of nanozymes, particularly single-atom nanozymes(SANs), which are pivotal for innovations in biosensing and medical diagnostics. Among oth... Recent advancements in nanotechnology have spotlighted the catalytic potential of nanozymes, particularly single-atom nanozymes(SANs), which are pivotal for innovations in biosensing and medical diagnostics. Among others, DNA stands out as an ideal biological regulator. Its inherent programmability and interaction capabilities allow it to significantly modulate nanozyme activity. This study delves into the dynamic interplay between DNA and molybdenum-zinc single-atom nanozymes(Mo-Zn SANs). Using molecular dynamics simulations, we uncover how DNA influences the peroxidase-like activities of Mo-Zn SANs, providing a foundational understanding that broadens the application scope of SANs in biosensing.With these insights as a foundation, we developed and demonstrated a model aptasensor for point-ofcare testing(POCT), utilizing a label-free colorimetric approach that leverages DNA-nanozyme interactions to achieve high-sensitivity detection of lysozyme. Our work elucidates the nuanced control DNA exerts over nanozyme functionality and illustrates the application of this molecular mechanism through a smartphone-assisted biosensing platform. This study not only underscores the practical implications of DNA-regulated Mo-Zn SANs in enhancing biosensing platforms, but also highlights the potential of single-atom nanozyme technology to revolutionize diagnostic tools through its inherent versatility and sensitivity. 展开更多
关键词 Single-atom nanozymes DNA-regulated biosensors Molecular dynamics simulations Colorimetric aptasensing Point-of-care diagnostics
原文传递
Design and start-to-end beam dynamics simulation of the first super-radiant THz free-electron laser source in Thailand
14
作者 Natthawut Chaisueb Sakhorn Rimjaem 《Nuclear Science and Techniques》 2025年第7期222-235,共14页
A super-radiant terahertz free-electron laser(THz-FEL)light source was developed for the first time in Thailand and Southeast Asia at the PBP-CMU Electron Linac Laboratory(PCELL)of Chiang Mai University.This radiation... A super-radiant terahertz free-electron laser(THz-FEL)light source was developed for the first time in Thailand and Southeast Asia at the PBP-CMU Electron Linac Laboratory(PCELL)of Chiang Mai University.This radiation source requires relatively ultrashort electron bunches to produce intense coherent THz pulses.Three electron bunch compression processes are utilized in the PCELL accelerator system comprising pre-bunch compression in an alpha magnet,velocity bunching in a radio-frequency(RF)linear accelerator(linac),and magnetic bunch compression in a 180°acromat system.Electron bunch compression in the magnetic compressor system poses considerable challenges,which are addressed through the use of three quadrupole doublets.The strengths of the quadrupole fields significantly influence the rotation of the beam line longitudinal phase space distribution along the bunch compressor.Start-to-end beam dynamics simulations using the ASTRA code were performed to optimize the electron beam properties for generating super-radiant THz-FEL radiation.The operational parameters considered in the simulations comprise the alpha magnet gradient,linac RF phase,and quadrupole field strengths.The optimization results show that 10-16MeV femtosecond electron bunches with a low energy spread(~0.2%),small normalized emittance(~15πmm·mrad),and high peak current(165-247A)can be produced by the PCELL accelerator system at the optimal parameters.A THz-FEL with sub-microjoule pulse energies can thus be obtained at the optimized electron beam parameters.The physical and conceptual design of the THz-FEL beamline were completed based on the beam dynamics simulation results.The construction and installation of this beamline are currently underway and expected to be completed by mid-2024.The commissioning of the beamline will then commence. 展开更多
关键词 THz radiation THz free-electron laser Super-radiant free-electron laser Pre-bunched free-electron laser Beam dynamic simulation Femtosecond electron bunches
在线阅读 下载PDF
Molecular Dynamics Simulations of Micromechanical Behaviours for AlCoCrFeNi_(2.1)High Entropy Alloy during Nanoindentation
15
作者 Ji-Peng Yang Hai-Feng Zhang +1 位作者 Hong-Chao Ji Nan Jia 《Acta Metallurgica Sinica(English Letters)》 2025年第2期218-232,共15页
Eutectic high entropy alloys are noted for their excellent castability and comprehensive mechanical properties.The excellent mechanical properties are closely related to the activation and evolution of deformation mec... Eutectic high entropy alloys are noted for their excellent castability and comprehensive mechanical properties.The excellent mechanical properties are closely related to the activation and evolution of deformation mechanisms at the atomic scale.In this work,AlCoCrFeNi2.1 alloy is taken as the research object.The mechanical behaviors and deformation mechanisms of the FCC and B2 single crystals with different orientations and the FCC/B2 composites with K-S orientation relationship during nanoindentation processes are systematically studied by molecular dynamics simulations.The results show that the mechanical behaviors of FCC single crystals are significantly orientation-dependent,meanwhile,the indentation force of[110]single crystal is the lowest at the elastic-plastic transition point,and that for[100]single crystal is the lowest in plastic deformation stage.Compared with FCC,the stress for B2 single crystals at the elastic-plastic transition point is higher.However,more deformation systems such as stacking faults,twins and dislocation loops are activated in FCC single crystal during the plastic deformation process,resulting in higher indentation force.For composites,the flow stress increases with the increase of B2 phase thickness during the initial stage of deformation.When indenter penetrates heterogeneous interface,the significantly increased deformation system in FCC phase leads to a significant increase in indentation force.The mechanical behaviors and deformation mechanisms depend on the component single crystal.When the thickness of the component layer is less than 15 nm,the heterogeneous interfaces fail to prevent the dislocation slip and improve the indentation force.The results will enrich the plastic deformation mechanisms of multi-principal eutectic alloys and provide guidance for the design of nanocrystalline metallic materials. 展开更多
关键词 High entropy alloy Mechanical behavior Plastic deformation mechanism NANOINDENTATION Molecular dynamics simulation
原文传递
Multi-target inhibition property of Persicaria hydropiper phytochemicals against gram-positive and gram-negative bacteria via molecular docking,dynamics simulation,and ADMET analysis
16
作者 Golak Majumdar Shyamapada Mandal 《Digital Chinese Medicine》 2025年第1期76-89,共14页
Objective To evaluate the antibacterial potential of bioactive compounds from Persicaria hydropiper(L.)(P.hydropiper)against bacterial virulence proteins through molecular docking(MD)and experimental validation.Method... Objective To evaluate the antibacterial potential of bioactive compounds from Persicaria hydropiper(L.)(P.hydropiper)against bacterial virulence proteins through molecular docking(MD)and experimental validation.Methods Six bioactive compounds from P.hydropiper were investigated:catechin(CAT1),hyperin(HYP1),ombuin(OMB1),pinosylvin(PSV1),quercetin 3-sulfate(QSF1),and scutellarein(SCR1).Their binding affinities and potential binding pockets were assessed through MD against four bacterial target proteins with Protein Data Bank identifiers(PDB IDs):topoisomerase IV from Escherichia coli(E.coli)(PDB ID:3FV5),Staphylococcus aureus(S.aureus)gyrase ATPase binding domain(PDB ID:3U2K),CviR from Chromobacterium violaceum(C.violaceum)(PDB ID:3QP1),and glycosyl hydrolase from Pseudomonas aeruginosa(P.aeruginosa)(PDB ID:5BX9).Molecular dynamics simulations(MDS)were performed on the most promising compound-protein complexes for 50 nanoseconds(ns).Drug-likeness was evaluated using Lipinski's Rule of Five(RO5),followed by absorption,distribution,metabolism,excretion,and toxicity(ADMET)analysis using SwissADME and pkCSM web servers.Antibacterial activity was evaluated through disc diffusion assays,testing both individual compounds and combinations with conventional antibiotics[cefotaxime(CTX1,30μg/disc),ceftazidime(CAZ1,30μg/disc),and piperacillin(PIP1,100μg/disc)].Results MD revealed strong binding affinity(ranging from-9.3 to-5.9 kcal/mol)for all compounds,with CAT1 showing exceptional binding to 3QP1(-9.3 kcal/mol)and 5BX9(-8.4 kcal/mol).MDS confirmed the stability of CAT1-protein complexes with binding free energies of-84.71 kJ/mol(5BX9-CAT1)and-95.59 kJ/mol(3QP1-CAT1).Five compounds(CAT1,SCR1,PSV1,OMB1,and QSF1)complied with Lipinski's RO5 and showed favorable ADMET profiles.All compounds were non-carcinogenic,with CAT1 classified in the lowest toxicity class(VI).In antibacterial assays,CAT1 demonstrated significant activity against both gram-positive bacteria[Streptococcus pneumoniae(S.pneumoniae),S.aureus,and Bacillus cereus(B.cereus)][zone diameter of inhibition(ZDI):10-22 mm]and gram-negative bacteria[Acinetobacter baumannii(A.baumannii),E.coli,and P.aeruginosa](ZDI:14-27 mm).Synergistic effects were observed when CAT1 was combined with antibiotics and the growth inhibitory indices(GII)was 0.69-1.00.Conclusion P.hydropiper bioactive compounds,particularly CAT1,show promising antibacterial potential through multiple mechanisms,including direct inhibition of bacterial virulence proteins and synergistic activity with conventional antibiotics.The favorable pharmacological properties and low toxicity profiles support their potential development as therapeutic agents against bacterial infections. 展开更多
关键词 Persicaria hydropiper phytochemicals Molecular docking Molecular dynamics simulation Bacterial pathogenicity-related proteins PHARMACOKINETICS
暂未订购
Plastic deformation mechanism of γ-phase U–Mo alloy studied by molecular dynamics simulations
17
作者 Chang Wang Peng Peng Wen-Sheng Lai 《Chinese Physics B》 2025年第1期468-475,共8页
Uranium–molybdenum(U–Mo) alloys are critical for nuclear power generation and propulsion because of their superior thermal conductivity, irradiation stability, and anti-swelling properties. This study explores the p... Uranium–molybdenum(U–Mo) alloys are critical for nuclear power generation and propulsion because of their superior thermal conductivity, irradiation stability, and anti-swelling properties. This study explores the plastic deformation mechanisms of γ-phase U–Mo alloys using molecular dynamics(MD) simulations. In the slip model, the generalized stacking fault energy(GSFE) and the modified Peierls–Nabarro(P–N) model are used to determine the competitive relationships among different slip systems. In the twinning model, the generalized plane fault energy(GPFE) is assessed to evaluate the competition between slip and twinning. The findings reveal that among the three slip systems, the {110}<111>slip system is preferentially activated, while in the {112}<111> system, twinning is favored over slip, as confirmed by MD tensile simulations conducted in various directions. Additionally, the impact of Mo content on deformation behavior is emphasized. Insights are provided for optimizing process conditions to avoid γ → α′′ transitions, thereby maintaining a higher proportion of γ-phase U–Mo alloys for practical applications. 展开更多
关键词 U-Mo alloy molecular dynamics simulation plastic deformation mechanism dislocation slip twin formation
原文传递
Molecular Dynamics Simulation of Bubble Arrangement and Cavitation Number Influence on Collapse Characteristics
18
作者 Shuaijie Jiang Zechen Zhou +3 位作者 XiuliWang WeiXu WenzhuoGuo Qingjiang Xiang 《Fluid Dynamics & Materials Processing》 2025年第3期471-491,共21页
In nature,cavitation bubbles typically appear in clusters,engaging in interactions that create a variety of dynamicmotion patterns.To better understand the behavior ofmultiple bubble collapses and the mechanisms of in... In nature,cavitation bubbles typically appear in clusters,engaging in interactions that create a variety of dynamicmotion patterns.To better understand the behavior ofmultiple bubble collapses and the mechanisms of interbubble interaction,this study employs molecular dynamics simulation combined with a coarse-grained force field.By focusing on collapsemorphology,local density,and pressure,it elucidates how the number and arrangement of bubbles influence the collapse process.The mechanisms behind inter-bubble interactions are also considered.The findings indicate that the collapse speed of unbounded bubbles located in lateral regions is greater than that of the bubbles in the center.Moreover,it is shown that asymmetrical bubble distributions lead to a shorter collapse time overall. 展开更多
关键词 Molecular dynamics simulation coarse-grained force field bubble arrangement multiple bubbles bubble collapse
在线阅读 下载PDF
A Hybrid Simulation-Experimental Method for Deriving Equivalent Dynamic Parameters of O-Ring Support Systems
19
作者 LIU Yi YE He +3 位作者 ZHANG Lingfeng LI Shujia CHEN Ge WANG Yongxing 《Journal of Donghua University(English Edition)》 2025年第4期425-434,共10页
The high-speed winding spindle employs a flexible support system incorporating rubber O-rings.By precisely configuring the structural parameters and the number of the O-rings,the spindle can stably surpass its critica... The high-speed winding spindle employs a flexible support system incorporating rubber O-rings.By precisely configuring the structural parameters and the number of the O-rings,the spindle can stably surpass its critical speed points and maintain operational stability across the entire working speed range.However,the support stiffness and damping of rubber O-rings exhibit significant nonlinear frequency dependence.Conventional experimental methods for deriving equivalent stiffness and damping,based on the principle of the forced non-resonance method,require fabricating custom setups for each O-ring specification and conducting vibration tests at varying frequencies,resulting in low efficiency and high costs.This study proposes a hybrid simulation-experimental method for dynamic parameter identification.Firstly,the frequency-dependent dynamic parameters of a specific O-ring support system are experimentally obtained.Subsequently,a corresponding parametric finite element model is established to simulate and solve the equivalent elastic modulus and equivalent stiffness-damping coefficient of this O-ring support system.Ultimately,after iterative simulation,the simulated and experimental results achieve a 99.7%agreement.The parametric finite element model developed herein can directly simulate and inversely estimate frequency-dependent dynamic parameters for O-rings of different specifications but identical elastic modulus. 展开更多
关键词 O-RING equivalent dynamic parameter forced non-resonance method inverse parameter estimation dynamic simulation
在线阅读 下载PDF
上一页 1 2 57 下一页 到第
使用帮助 返回顶部