期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Quality-related monitoring of papermaking wastewater treatment processes using dynamic multiblock partial least squares
1
作者 Jie Yang Yuchen Zhang +4 位作者 Lei Zhou Fengshan Zhang Yi Jing Mingzhi Huang Hongbin Liu 《Journal of Bioresources and Bioproducts》 EI 2022年第1期73-82,共10页
Environmental problems have attracted much attention in recent years,especially for papermak-ing wastewater discharge.To reduce the loss of effluence discharge violation,quality-related multivariate statistical method... Environmental problems have attracted much attention in recent years,especially for papermak-ing wastewater discharge.To reduce the loss of effluence discharge violation,quality-related multivariate statistical methods have been successfully applied to achieve a robust wastewater treatment system.In this work,a new dynamic multiblock partial least squares(DMBPLS)is pro-posed to extract the time-varying information in a large-scale papermaking wastewater treatment process.By introducing augmented matrices to input and output data,the proposed method not only handles the dynamic characteristic of data and reduces the time delay of fault detection,but enhances the interpretability of model.In addition,the DMBPLS provides a capability of fault location,which has certain guiding significance for fault recovery.In comparison with other mod-els,the DMBPLS has a superior fault detection result.Specifically,the maximum fault detection rate of the DMBPLS is improved by 35.93%and 12.5%for bias and drifting faults,respectively,in comparison with partial least squares(PLS). 展开更多
关键词 dynamic multiblock partial least squares Multivariate statistical process monitoring Papermaking wastewater treatment process Quality-related fault detection Sensor fault
在线阅读 下载PDF
Partial Dynamic Dimension Reduction for Conditional Mean in Regression
2
作者 GAN Shengjin YU Zhou 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2020年第5期1585-1601,共17页
In many regression analysis,the authors are interested in regression mean of response variate given predictors,not its the conditional distribution.This paper is concerned with dimension reduction of predictors in sen... In many regression analysis,the authors are interested in regression mean of response variate given predictors,not its the conditional distribution.This paper is concerned with dimension reduction of predictors in sense of mean function of response conditioning on predictors.The authors introduce the notion of partial dynamic central mean dimension reduction subspace,different from central mean dimension reduction subspace,it has varying subspace in the domain of predictors,and its structural dimensionality may not be the same point by point.The authors study the property of partial dynamic central mean dimension reduction subspace,and develop estimated methods called dynamic ordinary least squares and dynamic principal Hessian directions,which are extension of ordinary least squares and principal Hessian directions based on central mean dimension reduction subspace.The kernel estimate methods for dynamic ordinary least squares and dynamic Principal Hessian Directions are employed,and large sample properties of estimators are given under the regular conditions.Simulations and real data analysis demonstrate that they are effective. 展开更多
关键词 dynamic ordinary least square estimate dynamic principal Hessian directions kernel estimate partial dimension reduction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部