A cooperative region reconnaissance problem is considered in this paper where a group of agents are required to reconnoitre a region of interest. Amain challenge of this problem is the sensing region of each agent var...A cooperative region reconnaissance problem is considered in this paper where a group of agents are required to reconnoitre a region of interest. Amain challenge of this problem is the sensing region of each agent varies with its altitude within an altitude constraint. Meanwhile, the reconnaissance ability of an agent is determined by its altitude and radial distance. First, the region reconnaissance is formulated as an effective coverage problem, which means that each point in the given region should be surveyed until a preset level is achieved. Then, an effective coverage control law is proposed to minimize coverage performance index by adjusting the altitude of an agent. Finally, the effectiveness of the proposed control law is verified through numerical simulations.展开更多
A novel BODIPY(boradiazaindacene) dye denoted as BODIPY-DT containing terpyridine unit has been designed and characterized.The dye is found to be selective and visual solvatochromic sensor toward DMF among test organi...A novel BODIPY(boradiazaindacene) dye denoted as BODIPY-DT containing terpyridine unit has been designed and characterized.The dye is found to be selective and visual solvatochromic sensor toward DMF among test organic solvents.The sensing process displays time-controllable,dynamic signal outputs in the emission colors including red,purple,yellow and even white emission colors.It is presented that selective free radical oxidation reaction happens during the recognition process.展开更多
Diagnosing the operational status of High-voltage circuit breakers(HVCBs)is crucial for ensuring the safe and stable operation of the grid.Mechanical characteristic parameters are effective indicators for evaluating t...Diagnosing the operational status of High-voltage circuit breakers(HVCBs)is crucial for ensuring the safe and stable operation of the grid.Mechanical characteristic parameters are effective indicators for evaluating the performance of HVCBs.Recent studies have shown that the actions of the springs and cams in HVCBs can be used to detect the operational status of the mechanical mechanisms,which occur extremely quickly,usually in the speed of m/ms.In this paper,dynamic vision sensing technology was employed to rapidly and dynamically capture the movements of the springs and cam of the HPL245B1 HVCB.The data volume of a single experiment is less than 100 MB,whereas the data collected by a high-speed camera at the same frame rate exceeds 1 GB.Action data streams of the springs and cam were obtained and images were reconstructed from the event streams.The Lucas-Kanade optical flow algorithm and the normalised cross-correlation algorithm are applied to calculate the parameters of spring deformation characteristics and cam rotation characteristics for mechanical feature detection of HVCBs.This is the first attempt to utilize brain-inspired hardware technology for the status monitoring of electrical equipment.The advantages of dynamic vision sensing technology,such as high dynamic range,low data transmission,and low energy con-sumption,also offer significant benefits for air discharge monitoring and status moni-toring of electrical equipment.展开更多
This paper StUdies soil erosion dynamics in the typical region of southem China based onremote sensing, GIS tecndques and gray forecast model. The resultS of survey on Xingguo countyshown the soil eroded area and annu...This paper StUdies soil erosion dynamics in the typical region of southem China based onremote sensing, GIS tecndques and gray forecast model. The resultS of survey on Xingguo countyshown the soil eroded area and annual soil erosion amount decreased by 19.09% and 43.05%reSPectively from 1958 to 1988. The results of gray forecast model presented that soil eroded areaincreased from 818.04 km2 in 1988 to 1276.69 km2 in 1995. in the meanthne the total soil erosiollamount decreased from 607.21×104 ba in 1988 to 472. 12 ×104 t/a in 1995. By comparing differentlanduse types, the soil loss modulus of the forest was the lowest with 177. 16~187.75t/km2. a, on thecontraly the bare land was the highest with 10626.76~11265.48 t/km2. a. so the high vegetationcoverage can decrease soil and water loss effectively.展开更多
Reclamation is one of the fastest-growing land use type developed in coastal areas and has caused degradation and loss of coastal wetlands as well as serious environmental problems. This paper was aimed at monitoring ...Reclamation is one of the fastest-growing land use type developed in coastal areas and has caused degradation and loss of coastal wetlands as well as serious environmental problems. This paper was aimed at monitoring the spatiotemporal patterns of coastal wetlands and reclamation in the Yangtze Estuary during the 1960s and 2015. Satellite images obtained from 1980 to 2015 and topography maps of the 1960 s were employed to extract changes of reclamation and coastal wetlands. Area-weight centroids were calculated to identify the movement trend of reclamation and coastal wetlands. The results show that from the 1960 s to 2015, the net area of natural wetlands declined by 574.3 km^2, while man-made wetlands and reclamation increased by 553.6 and 543.9 km^2, respectively. During the five study phases, the fastest areal change rate natural wetlands was –13.3 km^2/yr in the period of 1990–2000, and that of man-made areas was 24.7 km^2/yr in the same period, and the areal change rate of reclamation was 27.6 km^2/yr in the period of 2000–2010. Conversion of coastal wetlands mainly occurred in the Chongming Island, Changshu City and the east coast of Shanghai Municipality. Reclamation was common across coastal areas, and was mainly attributed to settlement and man-made wetlands in the Chongming Island, Lianyungang City and the east coast of Shanghai Municipality. Natural wetlands turned into farmlands and settlement, and man-made wetlands gained from reclamation of farmlands. The centroid of natural wetlands generally moved towards the sea, man-made wetlands expanded equally in all directions and inland, and the centroid of reclamation migrated toward Shanghai Municipality. Sea level rise, erosion-deposition changes, and reclamation activities together determine the dynamics of the Yangtze Estuary wetlands. However, reclamation activities for construction of ports, industries and aquaculture are the key causes for the dynamics. The results from this study on the dynamics of coastal wetlands and reclamation are valuable for local government to put forward sustainable land use and land development plans.展开更多
The capability to sense complex pressure variations comprehensively is vital for wearable electronics and flexible human–machine interfaces.In this paper,inspired by button switches,a duplex tactile sensor based on t...The capability to sense complex pressure variations comprehensively is vital for wearable electronics and flexible human–machine interfaces.In this paper,inspired by button switches,a duplex tactile sensor based on the combination of triboelectric and piezoresistive effects is designed and fabricated.Because of its excellent mechanical strength and electrical stability,a double-networked ionic hydrogel is used as both the conductive electrode and elastic current regulator.In addition,micro-pyramidal patterned polydimethylsiloxane(PDMS)acts as both the friction layer and the encapsulation elastomer,thereby boosting the triboelectric output performance significantly.The duplex hydrogel sensor demonstrates comprehensive sensing ability in detecting the whole stimulation process including the dynamic and static pressures.The dynamic stress intensity(10–300 Pa),the action time,and the static variations(increase and decrease)of the pressure can be identified precisely from the dual-channel signals.Combined with a signal processing module,an intelligent visible door lamp is achieved for monitoring the entire“contact–hold–release–separation”state of the external stimulation,which shows great application potential for future smart robot e-skin and flexible electronics.展开更多
There is an urgent need for the development of a method that can undertake rapid, effective, and accurate monitoring and identification of fog by satellite remote sensing, since heavy fog can cause enormous disasters ...There is an urgent need for the development of a method that can undertake rapid, effective, and accurate monitoring and identification of fog by satellite remote sensing, since heavy fog can cause enormous disasters to China’s national economy and people's lives and property in the urban and coastal areas. In this paper, the correlative relationship between the reflectivity of land surface and clouds in different time phases is found, based on the analysis of the radiative and satellite-based spectral characteristics of fog. Through calculation and analyses of the relative variability of the reflectivity in the images, the threshold to identify quasi-fog areas is generated automatically. Furthermore, using the technique of quick image run-length encoding, and in combination with such practical methods as analyzing texture and shape fractures, smoothness, and template characteristics, the automatic identification of fog and fog-cloud separation using meteorological satellite remote sensing images are studied, with good results in application.展开更多
基金This research work was partially supported by the National Natural Science Foundation of China (Nos. 61473099, 61333001 ).
文摘A cooperative region reconnaissance problem is considered in this paper where a group of agents are required to reconnoitre a region of interest. Amain challenge of this problem is the sensing region of each agent varies with its altitude within an altitude constraint. Meanwhile, the reconnaissance ability of an agent is determined by its altitude and radial distance. First, the region reconnaissance is formulated as an effective coverage problem, which means that each point in the given region should be surveyed until a preset level is achieved. Then, an effective coverage control law is proposed to minimize coverage performance index by adjusting the altitude of an agent. Finally, the effectiveness of the proposed control law is verified through numerical simulations.
基金the National Natural Science Foundation of China(Nos.21401040,21301047,21771051)Young Talent Plan of Hebei Province and High-level Talent Project of Hebei Province(No.2016002014)+3 种基金Natural Science Foundation of Hebei Province(Nos.B2016208115,B2019208282)Excellent Youth Funding of Hebei Province(No.B2018208112)Outstanding Youth Fund of Hebei Province(No.B2019208415)One Hundred Excellent Innovative Talents Project in Hebei Province。
文摘A novel BODIPY(boradiazaindacene) dye denoted as BODIPY-DT containing terpyridine unit has been designed and characterized.The dye is found to be selective and visual solvatochromic sensor toward DMF among test organic solvents.The sensing process displays time-controllable,dynamic signal outputs in the emission colors including red,purple,yellow and even white emission colors.It is presented that selective free radical oxidation reaction happens during the recognition process.
基金National Natural Science Foundation of China,Grant/Award Numbers:52077118,62411560155Guangdong Basic and Applied Basic Research Foundation,Grant/Award Number:2024A1515012597。
文摘Diagnosing the operational status of High-voltage circuit breakers(HVCBs)is crucial for ensuring the safe and stable operation of the grid.Mechanical characteristic parameters are effective indicators for evaluating the performance of HVCBs.Recent studies have shown that the actions of the springs and cams in HVCBs can be used to detect the operational status of the mechanical mechanisms,which occur extremely quickly,usually in the speed of m/ms.In this paper,dynamic vision sensing technology was employed to rapidly and dynamically capture the movements of the springs and cam of the HPL245B1 HVCB.The data volume of a single experiment is less than 100 MB,whereas the data collected by a high-speed camera at the same frame rate exceeds 1 GB.Action data streams of the springs and cam were obtained and images were reconstructed from the event streams.The Lucas-Kanade optical flow algorithm and the normalised cross-correlation algorithm are applied to calculate the parameters of spring deformation characteristics and cam rotation characteristics for mechanical feature detection of HVCBs.This is the first attempt to utilize brain-inspired hardware technology for the status monitoring of electrical equipment.The advantages of dynamic vision sensing technology,such as high dynamic range,low data transmission,and low energy con-sumption,also offer significant benefits for air discharge monitoring and status moni-toring of electrical equipment.
文摘This paper StUdies soil erosion dynamics in the typical region of southem China based onremote sensing, GIS tecndques and gray forecast model. The resultS of survey on Xingguo countyshown the soil eroded area and annual soil erosion amount decreased by 19.09% and 43.05%reSPectively from 1958 to 1988. The results of gray forecast model presented that soil eroded areaincreased from 818.04 km2 in 1988 to 1276.69 km2 in 1995. in the meanthne the total soil erosiollamount decreased from 607.21×104 ba in 1988 to 472. 12 ×104 t/a in 1995. By comparing differentlanduse types, the soil loss modulus of the forest was the lowest with 177. 16~187.75t/km2. a, on thecontraly the bare land was the highest with 10626.76~11265.48 t/km2. a. so the high vegetationcoverage can decrease soil and water loss effectively.
基金Under the auspices of National Program on Key Basic Research Project(No.2013CB430401)
文摘Reclamation is one of the fastest-growing land use type developed in coastal areas and has caused degradation and loss of coastal wetlands as well as serious environmental problems. This paper was aimed at monitoring the spatiotemporal patterns of coastal wetlands and reclamation in the Yangtze Estuary during the 1960s and 2015. Satellite images obtained from 1980 to 2015 and topography maps of the 1960 s were employed to extract changes of reclamation and coastal wetlands. Area-weight centroids were calculated to identify the movement trend of reclamation and coastal wetlands. The results show that from the 1960 s to 2015, the net area of natural wetlands declined by 574.3 km^2, while man-made wetlands and reclamation increased by 553.6 and 543.9 km^2, respectively. During the five study phases, the fastest areal change rate natural wetlands was –13.3 km^2/yr in the period of 1990–2000, and that of man-made areas was 24.7 km^2/yr in the same period, and the areal change rate of reclamation was 27.6 km^2/yr in the period of 2000–2010. Conversion of coastal wetlands mainly occurred in the Chongming Island, Changshu City and the east coast of Shanghai Municipality. Reclamation was common across coastal areas, and was mainly attributed to settlement and man-made wetlands in the Chongming Island, Lianyungang City and the east coast of Shanghai Municipality. Natural wetlands turned into farmlands and settlement, and man-made wetlands gained from reclamation of farmlands. The centroid of natural wetlands generally moved towards the sea, man-made wetlands expanded equally in all directions and inland, and the centroid of reclamation migrated toward Shanghai Municipality. Sea level rise, erosion-deposition changes, and reclamation activities together determine the dynamics of the Yangtze Estuary wetlands. However, reclamation activities for construction of ports, industries and aquaculture are the key causes for the dynamics. The results from this study on the dynamics of coastal wetlands and reclamation are valuable for local government to put forward sustainable land use and land development plans.
基金supported by the National Natural Science Foundation of China(Grant Nos.51705429 and 61801525)the Fundamental Research Funds for the Central Universities,Guangdong Natural Science Funds(Grant No.2018A030313400).
文摘The capability to sense complex pressure variations comprehensively is vital for wearable electronics and flexible human–machine interfaces.In this paper,inspired by button switches,a duplex tactile sensor based on the combination of triboelectric and piezoresistive effects is designed and fabricated.Because of its excellent mechanical strength and electrical stability,a double-networked ionic hydrogel is used as both the conductive electrode and elastic current regulator.In addition,micro-pyramidal patterned polydimethylsiloxane(PDMS)acts as both the friction layer and the encapsulation elastomer,thereby boosting the triboelectric output performance significantly.The duplex hydrogel sensor demonstrates comprehensive sensing ability in detecting the whole stimulation process including the dynamic and static pressures.The dynamic stress intensity(10–300 Pa),the action time,and the static variations(increase and decrease)of the pressure can be identified precisely from the dual-channel signals.Combined with a signal processing module,an intelligent visible door lamp is achieved for monitoring the entire“contact–hold–release–separation”state of the external stimulation,which shows great application potential for future smart robot e-skin and flexible electronics.
基金Key research project "Research of Shanghai City and Costal Heavy Fog Remote Sensing Detecting and Warning System" of Science and Technology Commission of Shanghai Municipality (075115011)
文摘There is an urgent need for the development of a method that can undertake rapid, effective, and accurate monitoring and identification of fog by satellite remote sensing, since heavy fog can cause enormous disasters to China’s national economy and people's lives and property in the urban and coastal areas. In this paper, the correlative relationship between the reflectivity of land surface and clouds in different time phases is found, based on the analysis of the radiative and satellite-based spectral characteristics of fog. Through calculation and analyses of the relative variability of the reflectivity in the images, the threshold to identify quasi-fog areas is generated automatically. Furthermore, using the technique of quick image run-length encoding, and in combination with such practical methods as analyzing texture and shape fractures, smoothness, and template characteristics, the automatic identification of fog and fog-cloud separation using meteorological satellite remote sensing images are studied, with good results in application.