This study presents a comparative analysis of optimisation strategies for designing hull shapes of Autonomous Underwater Vehicles(AUVs),paying special attention to drag,lift-to-drag ratio,and delivered power.A fully i...This study presents a comparative analysis of optimisation strategies for designing hull shapes of Autonomous Underwater Vehicles(AUVs),paying special attention to drag,lift-to-drag ratio,and delivered power.A fully integrated optimisation framework is developed accordingly,combining a single-objective Genetic Algorithm(GA)for design parameter generation,Computer-Aided Geometric Design(CAGD)for the creation of hull geometries and associated fluid domains,and a Reynolds-Averaged Navier-Stokes(RANS)solver for evaluating hydrodynamic performance metrics.This unified approach eliminates manual intervention,enabling automated determination of optimal hull configurations.Three distinct optimisation problems are addressed using the proposed methodology.First,the drag minimisation of a reference afterbody geometry(A1)at zero angle of attack is performed under constraints of fixed length and internal volume for various flow velocities spanning the range from 0.5 to 15 m/s.Second,the lift-to-drag ratio of A1 is maximised at a 6°angle of attack,maintaining constant total length and internal volume.Third,delivered power is minimised for A1 at a 0°angle of attack.The comparative analysis of results from all three optimisation cases reveals hull shapes with practical design significance.Notably,the shape optimised for minimum delivered power outperforms the other two across a range of velocities.Specifically,it achieves reductions in required power by 7.6%,7.8%,10.2%,and 13.04%at velocities of 0.5,1.0,1.5,and 2.152 m/s,respectively.展开更多
Dynamic optimization problems are a kind of optimization problems that involve changes over time. They pose a serious challenge to traditional optimization methods as well as conventional genetic algorithms since the ...Dynamic optimization problems are a kind of optimization problems that involve changes over time. They pose a serious challenge to traditional optimization methods as well as conventional genetic algorithms since the goal is no longer to search for the optimal solution(s) of a fixed problem but to track the moving optimum over time. Dynamic optimization problems have attracted a growing interest from the genetic algorithm community in recent years. Several approaches have been developed to enhance the performance of genetic algorithms in dynamic environments. One approach is to maintain the diversity of the population via random immigrants. This paper proposes a hybrid immigrants scheme that combines the concepts of elitism, dualism and random immigrants for genetic algorithms to address dynamic optimization problems. In this hybrid scheme, the best individual, i.e., the elite, from the previous generation and its dual individual are retrieved as the bases to create immigrants via traditional mutation scheme. These elitism-based and dualism-based immigrants together with some random immigrants are substituted into the current population, replacing the worst individuals in the population. These three kinds of immigrants aim to address environmental changes of slight, medium and significant degrees respectively and hence efficiently adapt genetic algorithms to dynamic environments that are subject to different severities of changes. Based on a series of systematically constructed dynamic test problems, experiments are carried out to investigate the performance of genetic algorithms with the hybrid immigrants scheme and traditional random immigrants scheme. Experimental results validate the efficiency of the proposed hybrid immigrants scheme for improving the performance of genetic algorithms in dynamic environments.展开更多
Dynamic alliance(DA),namely,virtual corporations (VCs),is an enterprise management method. It means a temporary union formed by some independent commercial processes or corporations.Here, genetic algorithms(GA) is app...Dynamic alliance(DA),namely,virtual corporations (VCs),is an enterprise management method. It means a temporary union formed by some independent commercial processes or corporations.Here, genetic algorithms(GA) is applied to the research of nodes DA selection optimization in wireless sensor networks(WSN) target tracking(TT) problem.The detailed optimized selection method is presented in the paper and a typical simulation is conducted to verify the effectiveness of our model.展开更多
Dynamic exclusive pickup and delivery problem with time windows (DE-PDPTW), aspecial dynamic vehicle scheduling problem, is proposed. Its mathematical description is given andits static properties are analyzed, and th...Dynamic exclusive pickup and delivery problem with time windows (DE-PDPTW), aspecial dynamic vehicle scheduling problem, is proposed. Its mathematical description is given andits static properties are analyzed, and then the problem is simplified asthe asymmetrical travelingsalesman problem with time windows. The rolling horizon scheduling algorithm (RHSA) to solve thisdynamic problem is proposed. By the rolling of time horizon, the RHSA can adapt to the problem'sdynamic change and reduce the computation time by dealing with only part of the customers in eachrolling time horizon. Then, its three factors, the current customer window, the scheduling of thecurrent customer window and the rolling strategy, are analyzed. The test results demonstrate theeffectiveness of the RHSA to solve the dynamic vehicle scheduling problem.展开更多
The uninterrupted operation of the quay crane(QC)ensures that the large container ship can depart port within laytime,which effectively reduces the handling cost for the container terminal and ship owners.The QC waiti...The uninterrupted operation of the quay crane(QC)ensures that the large container ship can depart port within laytime,which effectively reduces the handling cost for the container terminal and ship owners.The QC waiting caused by automated guided vehicles(AGVs)delay in the uncertain environment can be alleviated by dynamic scheduling optimization.A dynamic scheduling process is introduced in this paper to solve the AGV scheduling and path planning problems,in which the scheduling scheme determines the starting and ending nodes of paths,and the choice of paths between nodes affects the scheduling of subsequent AGVs.This work proposes a two-stage mixed integer optimization model to minimize the transportation cost of AGVs under the constraint of laytime.A dynamic optimization algorithm,including the improved rule-based heuristic algorithm and the integration of the Dijkstra algorithm and the Q-Learning algorithm,is designed to solve the optimal AGV scheduling and path schemes.A new conflict avoidance strategy based on graph theory is also proposed to reduce the probability of path conflicts between AGVs.Numerical experiments are conducted to demonstrate the effectiveness of the proposed model and algorithm over existing methods.展开更多
One of the challenging scheduling problems in Cloud data centers is to take the allocation and migration of reconfigurable virtual machines as well as the integrated features of hosting physical machines into consider...One of the challenging scheduling problems in Cloud data centers is to take the allocation and migration of reconfigurable virtual machines as well as the integrated features of hosting physical machines into consideration. We introduce a Dynamic and Integrated Resource Scheduling algorithm (DAIRS) for Cloud data centers. Unlike traditional load-balance scheduling algorithms which often consider only one factor such as the CPU load in physical servers, DAIRS treats CPU, memory and network bandwidth integrated for both physical machines and virtual machines. We develop integrated measurement for the total imbalance level of a Cloud datacenter as well as the average imbalance level of each server. Simulation results show that DAIRS has good performance with regard to total imbalance level, average imbalance level of each server, as well as overall running time.展开更多
The solutions of dynamic optimization problems are usually very difficult due to their highly nonlinear and multidimensional nature. 13enetic algorithm (GA) has been proved to be a teasibte method when the gradient ...The solutions of dynamic optimization problems are usually very difficult due to their highly nonlinear and multidimensional nature. 13enetic algorithm (GA) has been proved to be a teasibte method when the gradient is difficult to calculate. Its advantage is that the control profiles at all time stages are optimized simultaneously, but its convergence is very slow in the later period of evolution and it is easily trapped in the local optimum. In this study, a hybrid improved genetic algorithm (HIGA) for solving dynamic optimization problems is proposed to overcome these defects. Simplex method (SM) is used to perform the local search in the neighborhood of the optimal solution. By using SM, the ideal searching direction of global optimal solution could be found as soon as possible and the convergence speed of the algorithm is improved. The hybrid algorithm presents some improvements, such as protecting the best individual, accepting immigrations, as well as employing adaptive crossover and Ganssian mutation operators. The efficiency of the proposed algorithm is demonstrated by solving several dynamic optimization problems. At last, HIGA is applied to the optimal production of secreted protein in a fed batch reactor and the optimal feed-rate found by HIGA is effective and relatively stable.展开更多
Hydraulic circuits with high speed on/off valve(HSV)for servo control have become commonplace in aerospace.However,the individual valve that is not volume-optimized results in a large total size of hydraulic control s...Hydraulic circuits with high speed on/off valve(HSV)for servo control have become commonplace in aerospace.However,the individual valve that is not volume-optimized results in a large total size of hydraulic control system,diminishing the practicality.To address this issue,the high-precision equivalent reluctance model of the HSV is established by employing an equivalent magnetic circuit,on which the dynamic characteristic of the HSV,as well as the effects of structural parameters on switching behaviour,are investigated.Based on this model,multi-objective optimization is adopted to design an HSV with faster dynamic performance and smaller volume,NSGA-II genetic algorithm is applied to obtain the Pareto front of the desired objectives.To assess the impact before and after optimization,an HSV based on the optimized structure is manufactured and tested.The experimental results show that the optimized HSV reduces 47.1%of its solenoid volume while improving opening and closing dynamic performance by 14.8%and 43.0%respectively,increasing maximum switching frequency by 6.2%,and expanding flow linear control area by 6.7%.These results validate the optimized structure and indicate that the optimization method provided in the paper is beneficial for developing superior HSV.展开更多
A dynamic database based dynamic scheduling system is proposed.As the schedule is being preformed, the scheduling task data in the dynamic database is updated timely.Genetic algorithm (GA) is employed for generating o...A dynamic database based dynamic scheduling system is proposed.As the schedule is being preformed, the scheduling task data in the dynamic database is updated timely.Genetic algorithm (GA) is employed for generating optimised production plan quickly and easily in response to changes on the shop floor. The current status of the shop is considered while rescheduling, and new plan is used in conjunction with the existing schedule to improve the effeciency of flexble manufacturing systems. Simulation results demonstrate the effectiveness of the proposed system.展开更多
Computational fluid dynamics (CFD) plays a major role in predicting the flow behavior of a ship. With the development of fast computers and robust CFD software, CFD has become an important tool for designers and eng...Computational fluid dynamics (CFD) plays a major role in predicting the flow behavior of a ship. With the development of fast computers and robust CFD software, CFD has become an important tool for designers and engineers in the ship industry. In this paper, the hull form of a ship was optimized for total resistance using CFD as a calculation tool and a genetic algorithm as an optimization tool. CFD based optimization consists of major steps involving automatic generation of geometry based on design parameters, automatic generation of mesh, automatic analysis of fluid flow to calculate the required objective/cost function, and finally an optimization tool to evaluate the cost for optimization. In this paper, integration of a genetic algorithm program, written in MATLAB, was carried out with the geometry and meshing software GAMBIT and CFD analysis software FLUENT. Different geometries of additive bulbous bow were incorporated in the original hull based on design parameters. These design variables were optimized to achieve a minimum cost function of "total resistance". Integration of a genetic algorithm with CFD tools proves to be effective for hull form ootimization.展开更多
To provide the supplier with the minimizum vehicle travel distance in the distribution process of goods in three situations of new customer demand,customer cancellation service,and change of customer delivery address,...To provide the supplier with the minimizum vehicle travel distance in the distribution process of goods in three situations of new customer demand,customer cancellation service,and change of customer delivery address,based on the ideas of pre-optimization and real-time optimization,a two-stage planning model of dynamic demand based vehicle routing problem with time windows was established.At the pre-optimization stage,an improved genetic algorithm was used to obtain the pre-optimized distribution route,a large-scale neighborhood search method was integrated into the mutation operation to improve the local optimization performance of the genetic algorithm,and a variety of operators were introduced to expand the search space of neighborhood solutions;At the real-time optimization stage,a periodic optimization strategy was adopted to transform a complex dynamic problem into several static problems,and four neighborhood search operators were used to quickly adjust the route.Two different scale examples were designed for experiments.It is proved that the algorithm can plan the better route,and adjust the distribution route in time under the real-time constraints.Therefore,the proposed algorithm can provide theoretical guidance for suppliers to solve the dynamic demand based vehicle routing problem.展开更多
Currently, the article analyzes the CAN bus's rule of priority's arbitration bit by bit without destroy. It elicits the conclusion that if static priority based on the affirmatory system model is used, the lower pri...Currently, the article analyzes the CAN bus's rule of priority's arbitration bit by bit without destroy. It elicits the conclusion that if static priority based on the affirmatory system model is used, the lower priority's messages will be delayed considerably more, even some data will be lost when the bus's bandwidth is widely used. The scheduling cannot be modified neither during the system when static priority is used. The dynamic priority promoting method and the math model of SQSA and SQMA are presented; it analyzes the model's rate of taking in and sending out in large quantities, the largest delay, the problems and solutions when using SQMA. In the end, it is confirmed that the method of improving dynamic priority has good performances on the network rate of taking in and sending out in large quantities, the average delay, and the rate of network usage by emulational experiments.展开更多
The dynamic characteristics of hydraulic self servo swing cylinder were analyzed according to the hydraulic system natural frequency formula. Based on that,a method of the hydraulic self servo swing cylinder structure...The dynamic characteristics of hydraulic self servo swing cylinder were analyzed according to the hydraulic system natural frequency formula. Based on that,a method of the hydraulic self servo swing cylinder structure optimization based on genetic algorithm was proposed in this paper. By analyzing the four parameters that affect the dynamic characteristics, we had to optimize the structure to obtain as larger the Dm( displacement) as possible under the condition with the purpose of improving the dynamic characteristics of hydraulic self servo swing cylinder. So three state equations were established in this paper. The paper analyzed the effect of the four parameters in hydraulic self servo swing cylinder natural frequency equation and used the genetic algorithm to obtain the optimal solution of structure parameters. The model was simulated by substituting the parameters and initial value to the simulink model. Simulation results show that: using self servo hydraulic swing cylinder natural frequency equation to study its dynamic response characteristics is very effective.Compared with no optimization,the overall system dynamic response speed is significantly improved.展开更多
This paper deals with dynamic airspace sectorization (DAS) problem by an improved genetic algorithm (iGA). A graph model is first constructed that represents the airspace static structure. Then the DAS problem is ...This paper deals with dynamic airspace sectorization (DAS) problem by an improved genetic algorithm (iGA). A graph model is first constructed that represents the airspace static structure. Then the DAS problem is formulated as a graph-partitioning problem to balance the sector workload under the premise of ensuring safety. In the iGA, multiple populations and hybrid coding are applied to determine the optimal sector number and airspace sectorization. The sector constraints are well satisfied by the improved genetic operators and protect zones. This method is validated by being applied to the airspace of North China in terms of three indexes, which are sector balancing index, coordination workload index and sector average flight time index. The improvement is obvious, as the sector balancing index is reduced by 16.5 %, the coordination workload index is reduced by 11.2 %, and the sector average flight time index is increased by 11.4 % during the peak-hour traffic.展开更多
It is important to evaluate function behaviors and performance features of task scheduling algorithm in the multi-processor system.A novel dynamic measurement method(DMM)was proposed to measure the task scheduling alg...It is important to evaluate function behaviors and performance features of task scheduling algorithm in the multi-processor system.A novel dynamic measurement method(DMM)was proposed to measure the task scheduling algorithm’s correctness and dependability.In a multi-processor system,task scheduling problem is represented by a combinatorial evaluation model,interactive Markov chain(IMC),and solution space of the algorithm with time and probability metrics is described by action-based continuous stochastic logic(aCSL).DMM derives a path by logging runtime scheduling actions and corresponding times.Through judging whether the derived path can be received by task scheduling IMC model,DMM analyses the correctness of algorithm.Through judging whether the actual values satisfy label function of the initial state,DMM analyses the dependability of algorithm.The simulation shows that DMM can effectively characterize the function behaviors and performance features of task scheduling algorithm.展开更多
A dynamic advanced planning and scheduling (DAPS) problem is addressed where new orders arrive on a continuous basis. A periodic policy with frozen interval is adopted to increase stability on the shop floor. A gene...A dynamic advanced planning and scheduling (DAPS) problem is addressed where new orders arrive on a continuous basis. A periodic policy with frozen interval is adopted to increase stability on the shop floor. A genetic algorithm is developed to find a schedule at each rescheduling point for both original orders and new orders that both production idle time and penalties on tardiness and earliness of orders are minimized. The proposed methodology is tested on a small example to illustrate the effect of the frozen interval. The results indicate that the suggested approach can improve the schedule stability while retaining efficiency.展开更多
A new static task scheduling algorithm named edge-zeroing based on dynamic critical paths is proposed. The main ideas of the algorithm are as follows: firstly suppose that all of the tasks are in different clusters; s...A new static task scheduling algorithm named edge-zeroing based on dynamic critical paths is proposed. The main ideas of the algorithm are as follows: firstly suppose that all of the tasks are in different clusters; secondly, select one of the critical paths of the partially clustered directed acyclic graph; thirdly, try to zero one of graph communication edges; fourthly, repeat above three processes until all edges are zeroed; finally, check the generated clusters to see if some of them can be further merged without increasing the parallel time. Comparisons of the previous algorithms with edge-zeroing based on dynamic critical paths show that the new algorithm has not only a low complexity but also a desired performance comparable or even better on average to much higher complexity heuristic algorithms.展开更多
The genetic algorithm (GA) is a nature-inspired evolutionary algorithm to find optima in search space via the interac- tion of individuals. Recently, researchers demonstrated that the interaction topology plays an i...The genetic algorithm (GA) is a nature-inspired evolutionary algorithm to find optima in search space via the interac- tion of individuals. Recently, researchers demonstrated that the interaction topology plays an important role in information exchange among individuals of evolutionary algorithm. In this paper, we investigate the effect of different network topolo- gies adopted to represent the interaction structures. It is found that GA with a high-density topology ends up more likely with an unsatisfactory solution, contrarily, a low-density topology can impede convergence. Consequently, we propose an improved GA with dynamic topology, named DT-GA, in which the topology structure varies dynamically along with the fitness evolution. Several experiments executed with 15 well-known test functions have illustrated that DT-GA outperforms other test GAs for making a balance of convergence speed and optimum quality. Our work may have implications in the combination of complex networks and computational intelligence.展开更多
Nowadays,emergency accidents could happen at any time.The accidents occur unpredictably and the accidents requirements are diversely.The accidents happen in a dynamic environment and the resource should be cooperative...Nowadays,emergency accidents could happen at any time.The accidents occur unpredictably and the accidents requirements are diversely.The accidents happen in a dynamic environment and the resource should be cooperative to solve the accidents.Most methods are focusing on minimizing the casualties and property losses in a static environment.However,they are lack in considering the dynamic and unpredictable event handling.In this paper,we propose a representative environmental model in representation of emergency and dynamic resource allocation model,and an adaptive mathematical model based on Genetic Algorithm(GA)to generate an optimal set of solution domain.The experimental results show that the proposed algorithm can get a set of better candidate solutions.展开更多
Recently,genetic algorithms(GAs) have been applied to multi-modal dynamic optimization(MDO).In this kind of optimization,an algorithm is required not only to find the multiple optimal solutions but also to locate a dy...Recently,genetic algorithms(GAs) have been applied to multi-modal dynamic optimization(MDO).In this kind of optimization,an algorithm is required not only to find the multiple optimal solutions but also to locate a dynamically changing optimum.Our fuzzy genetic sharing(FGS) approach is based on a novel genetic algorithm with dynamic niche sharing(GADNS).FGS finds the optimal solutions,while maintaining the diversity of the population.For this,FGS uses several strategies.First,an unsupervised fuzzy clustering method is used to track multiple optima and perform GADNS.Second,a modified tournament selection is used to control selection pressure.Third,a novel mutation with an adaptive mutation rate is used to locate unexplored search areas.The effectiveness of FGS in dynamic environments is demonstrated using the generalized dynamic benchmark generator(GDBG).展开更多
文摘This study presents a comparative analysis of optimisation strategies for designing hull shapes of Autonomous Underwater Vehicles(AUVs),paying special attention to drag,lift-to-drag ratio,and delivered power.A fully integrated optimisation framework is developed accordingly,combining a single-objective Genetic Algorithm(GA)for design parameter generation,Computer-Aided Geometric Design(CAGD)for the creation of hull geometries and associated fluid domains,and a Reynolds-Averaged Navier-Stokes(RANS)solver for evaluating hydrodynamic performance metrics.This unified approach eliminates manual intervention,enabling automated determination of optimal hull configurations.Three distinct optimisation problems are addressed using the proposed methodology.First,the drag minimisation of a reference afterbody geometry(A1)at zero angle of attack is performed under constraints of fixed length and internal volume for various flow velocities spanning the range from 0.5 to 15 m/s.Second,the lift-to-drag ratio of A1 is maximised at a 6°angle of attack,maintaining constant total length and internal volume.Third,delivered power is minimised for A1 at a 0°angle of attack.The comparative analysis of results from all three optimisation cases reveals hull shapes with practical design significance.Notably,the shape optimised for minimum delivered power outperforms the other two across a range of velocities.Specifically,it achieves reductions in required power by 7.6%,7.8%,10.2%,and 13.04%at velocities of 0.5,1.0,1.5,and 2.152 m/s,respectively.
基金This work was supported by UK EPSRC(No.EP/E060722/01)Broil FAPESP(Proc.04/04289-6).
文摘Dynamic optimization problems are a kind of optimization problems that involve changes over time. They pose a serious challenge to traditional optimization methods as well as conventional genetic algorithms since the goal is no longer to search for the optimal solution(s) of a fixed problem but to track the moving optimum over time. Dynamic optimization problems have attracted a growing interest from the genetic algorithm community in recent years. Several approaches have been developed to enhance the performance of genetic algorithms in dynamic environments. One approach is to maintain the diversity of the population via random immigrants. This paper proposes a hybrid immigrants scheme that combines the concepts of elitism, dualism and random immigrants for genetic algorithms to address dynamic optimization problems. In this hybrid scheme, the best individual, i.e., the elite, from the previous generation and its dual individual are retrieved as the bases to create immigrants via traditional mutation scheme. These elitism-based and dualism-based immigrants together with some random immigrants are substituted into the current population, replacing the worst individuals in the population. These three kinds of immigrants aim to address environmental changes of slight, medium and significant degrees respectively and hence efficiently adapt genetic algorithms to dynamic environments that are subject to different severities of changes. Based on a series of systematically constructed dynamic test problems, experiments are carried out to investigate the performance of genetic algorithms with the hybrid immigrants scheme and traditional random immigrants scheme. Experimental results validate the efficiency of the proposed hybrid immigrants scheme for improving the performance of genetic algorithms in dynamic environments.
文摘Dynamic alliance(DA),namely,virtual corporations (VCs),is an enterprise management method. It means a temporary union formed by some independent commercial processes or corporations.Here, genetic algorithms(GA) is applied to the research of nodes DA selection optimization in wireless sensor networks(WSN) target tracking(TT) problem.The detailed optimized selection method is presented in the paper and a typical simulation is conducted to verify the effectiveness of our model.
文摘Dynamic exclusive pickup and delivery problem with time windows (DE-PDPTW), aspecial dynamic vehicle scheduling problem, is proposed. Its mathematical description is given andits static properties are analyzed, and then the problem is simplified asthe asymmetrical travelingsalesman problem with time windows. The rolling horizon scheduling algorithm (RHSA) to solve thisdynamic problem is proposed. By the rolling of time horizon, the RHSA can adapt to the problem'sdynamic change and reduce the computation time by dealing with only part of the customers in eachrolling time horizon. Then, its three factors, the current customer window, the scheduling of thecurrent customer window and the rolling strategy, are analyzed. The test results demonstrate theeffectiveness of the RHSA to solve the dynamic vehicle scheduling problem.
基金supported in part by the National Natural Science Foundation of China(61473053)the Science and Technology Innovation Foundation of Dalian,China(2020JJ26GX033)。
文摘The uninterrupted operation of the quay crane(QC)ensures that the large container ship can depart port within laytime,which effectively reduces the handling cost for the container terminal and ship owners.The QC waiting caused by automated guided vehicles(AGVs)delay in the uncertain environment can be alleviated by dynamic scheduling optimization.A dynamic scheduling process is introduced in this paper to solve the AGV scheduling and path planning problems,in which the scheduling scheme determines the starting and ending nodes of paths,and the choice of paths between nodes affects the scheduling of subsequent AGVs.This work proposes a two-stage mixed integer optimization model to minimize the transportation cost of AGVs under the constraint of laytime.A dynamic optimization algorithm,including the improved rule-based heuristic algorithm and the integration of the Dijkstra algorithm and the Q-Learning algorithm,is designed to solve the optimal AGV scheduling and path schemes.A new conflict avoidance strategy based on graph theory is also proposed to reduce the probability of path conflicts between AGVs.Numerical experiments are conducted to demonstrate the effectiveness of the proposed model and algorithm over existing methods.
基金supported by Scientific Research Foundation for the Returned Overseas Chinese ScholarsState Education Ministry under Grant No.2010-2011 and Chinese Post-doctoral Research Foundation
文摘One of the challenging scheduling problems in Cloud data centers is to take the allocation and migration of reconfigurable virtual machines as well as the integrated features of hosting physical machines into consideration. We introduce a Dynamic and Integrated Resource Scheduling algorithm (DAIRS) for Cloud data centers. Unlike traditional load-balance scheduling algorithms which often consider only one factor such as the CPU load in physical servers, DAIRS treats CPU, memory and network bandwidth integrated for both physical machines and virtual machines. We develop integrated measurement for the total imbalance level of a Cloud datacenter as well as the average imbalance level of each server. Simulation results show that DAIRS has good performance with regard to total imbalance level, average imbalance level of each server, as well as overall running time.
基金Supported by Major State Basic Research Development Program of China (2012CB720500), National Natural Science Foundation of China (Key Program: Ul162202), National Science Fund for Outstanding Young Scholars (61222303), National Natural Science Foundation of China (21276078, 21206037) and the Fundamental Research Funds for the Central Universities.
文摘The solutions of dynamic optimization problems are usually very difficult due to their highly nonlinear and multidimensional nature. 13enetic algorithm (GA) has been proved to be a teasibte method when the gradient is difficult to calculate. Its advantage is that the control profiles at all time stages are optimized simultaneously, but its convergence is very slow in the later period of evolution and it is easily trapped in the local optimum. In this study, a hybrid improved genetic algorithm (HIGA) for solving dynamic optimization problems is proposed to overcome these defects. Simplex method (SM) is used to perform the local search in the neighborhood of the optimal solution. By using SM, the ideal searching direction of global optimal solution could be found as soon as possible and the convergence speed of the algorithm is improved. The hybrid algorithm presents some improvements, such as protecting the best individual, accepting immigrations, as well as employing adaptive crossover and Ganssian mutation operators. The efficiency of the proposed algorithm is demonstrated by solving several dynamic optimization problems. At last, HIGA is applied to the optimal production of secreted protein in a fed batch reactor and the optimal feed-rate found by HIGA is effective and relatively stable.
基金Supported by the National Natural Science Foundation of China(No.52005441)Natural Science Foundation of Zhejiang Province(No.LQ21E050017)+4 种基金Young Elite Scientist Sponsorship Program by CAST(No.2022QNRC001)State Key Laboratory of Mechanical System and Vibration(No.MSV202316)"Pioneer"and"Leading Goose"R&D Program of Zhejiang Province(Nos.2022C01122,2022C01132)the Fundamental Research Funds for the Provincial Universities of Zhejiang(No.RFA2023007)the Research Project of ZJUT(No.GYY-ZH2023075).
文摘Hydraulic circuits with high speed on/off valve(HSV)for servo control have become commonplace in aerospace.However,the individual valve that is not volume-optimized results in a large total size of hydraulic control system,diminishing the practicality.To address this issue,the high-precision equivalent reluctance model of the HSV is established by employing an equivalent magnetic circuit,on which the dynamic characteristic of the HSV,as well as the effects of structural parameters on switching behaviour,are investigated.Based on this model,multi-objective optimization is adopted to design an HSV with faster dynamic performance and smaller volume,NSGA-II genetic algorithm is applied to obtain the Pareto front of the desired objectives.To assess the impact before and after optimization,an HSV based on the optimized structure is manufactured and tested.The experimental results show that the optimized HSV reduces 47.1%of its solenoid volume while improving opening and closing dynamic performance by 14.8%and 43.0%respectively,increasing maximum switching frequency by 6.2%,and expanding flow linear control area by 6.7%.These results validate the optimized structure and indicate that the optimization method provided in the paper is beneficial for developing superior HSV.
基金This project is supported by National Natural ScienceFoundation of China (No.70071017,59889505)
文摘A dynamic database based dynamic scheduling system is proposed.As the schedule is being preformed, the scheduling task data in the dynamic database is updated timely.Genetic algorithm (GA) is employed for generating optimised production plan quickly and easily in response to changes on the shop floor. The current status of the shop is considered while rescheduling, and new plan is used in conjunction with the existing schedule to improve the effeciency of flexble manufacturing systems. Simulation results demonstrate the effectiveness of the proposed system.
文摘Computational fluid dynamics (CFD) plays a major role in predicting the flow behavior of a ship. With the development of fast computers and robust CFD software, CFD has become an important tool for designers and engineers in the ship industry. In this paper, the hull form of a ship was optimized for total resistance using CFD as a calculation tool and a genetic algorithm as an optimization tool. CFD based optimization consists of major steps involving automatic generation of geometry based on design parameters, automatic generation of mesh, automatic analysis of fluid flow to calculate the required objective/cost function, and finally an optimization tool to evaluate the cost for optimization. In this paper, integration of a genetic algorithm program, written in MATLAB, was carried out with the geometry and meshing software GAMBIT and CFD analysis software FLUENT. Different geometries of additive bulbous bow were incorporated in the original hull based on design parameters. These design variables were optimized to achieve a minimum cost function of "total resistance". Integration of a genetic algorithm with CFD tools proves to be effective for hull form ootimization.
基金supported by Natural Science Foundation Project of Gansu Provincial Science and Technology Department(No.1506RJZA084)Gansu Provincial Education Department Scientific Research Fund Grant Project(No.1204-13).
文摘To provide the supplier with the minimizum vehicle travel distance in the distribution process of goods in three situations of new customer demand,customer cancellation service,and change of customer delivery address,based on the ideas of pre-optimization and real-time optimization,a two-stage planning model of dynamic demand based vehicle routing problem with time windows was established.At the pre-optimization stage,an improved genetic algorithm was used to obtain the pre-optimized distribution route,a large-scale neighborhood search method was integrated into the mutation operation to improve the local optimization performance of the genetic algorithm,and a variety of operators were introduced to expand the search space of neighborhood solutions;At the real-time optimization stage,a periodic optimization strategy was adopted to transform a complex dynamic problem into several static problems,and four neighborhood search operators were used to quickly adjust the route.Two different scale examples were designed for experiments.It is proved that the algorithm can plan the better route,and adjust the distribution route in time under the real-time constraints.Therefore,the proposed algorithm can provide theoretical guidance for suppliers to solve the dynamic demand based vehicle routing problem.
基金supported by the National Natural Science Foundation of China (50421703)the National Key Laboratory of Electrical Engineering of Naval Engineering University
文摘Currently, the article analyzes the CAN bus's rule of priority's arbitration bit by bit without destroy. It elicits the conclusion that if static priority based on the affirmatory system model is used, the lower priority's messages will be delayed considerably more, even some data will be lost when the bus's bandwidth is widely used. The scheduling cannot be modified neither during the system when static priority is used. The dynamic priority promoting method and the math model of SQSA and SQMA are presented; it analyzes the model's rate of taking in and sending out in large quantities, the largest delay, the problems and solutions when using SQMA. In the end, it is confirmed that the method of improving dynamic priority has good performances on the network rate of taking in and sending out in large quantities, the average delay, and the rate of network usage by emulational experiments.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61105086)Self-Planned Task of State Key Laboratory of Robotics and System(HIT)(Grant No.SKLRS-2010-MS-12)Hubei Province Natural Science Foundation(Grant No.2010CDB0 3405)
文摘The dynamic characteristics of hydraulic self servo swing cylinder were analyzed according to the hydraulic system natural frequency formula. Based on that,a method of the hydraulic self servo swing cylinder structure optimization based on genetic algorithm was proposed in this paper. By analyzing the four parameters that affect the dynamic characteristics, we had to optimize the structure to obtain as larger the Dm( displacement) as possible under the condition with the purpose of improving the dynamic characteristics of hydraulic self servo swing cylinder. So three state equations were established in this paper. The paper analyzed the effect of the four parameters in hydraulic self servo swing cylinder natural frequency equation and used the genetic algorithm to obtain the optimal solution of structure parameters. The model was simulated by substituting the parameters and initial value to the simulink model. Simulation results show that: using self servo hydraulic swing cylinder natural frequency equation to study its dynamic response characteristics is very effective.Compared with no optimization,the overall system dynamic response speed is significantly improved.
基金funded by the Joint Funds of the National Natural Science Foundation of China (61079001)
文摘This paper deals with dynamic airspace sectorization (DAS) problem by an improved genetic algorithm (iGA). A graph model is first constructed that represents the airspace static structure. Then the DAS problem is formulated as a graph-partitioning problem to balance the sector workload under the premise of ensuring safety. In the iGA, multiple populations and hybrid coding are applied to determine the optimal sector number and airspace sectorization. The sector constraints are well satisfied by the improved genetic operators and protect zones. This method is validated by being applied to the airspace of North China in terms of three indexes, which are sector balancing index, coordination workload index and sector average flight time index. The improvement is obvious, as the sector balancing index is reduced by 16.5 %, the coordination workload index is reduced by 11.2 %, and the sector average flight time index is increased by 11.4 % during the peak-hour traffic.
基金the National Natural Science Foundation of China(Nos.11371003 and 11461006)the Special Fund for Scientific and Technological Bases and Talents of Guangxi(No.2016AD05050)+3 种基金the Special Fund for Bagui Scholars of Guangxithe Major Tendering Project of the National Social Science Foundation(No.17ZDA160)the Sichuan Science and Technology Project(No.19YYJC0038)the Fundamental Research Funds for the Central Universities,SWUN(No.2019NYB20)
文摘It is important to evaluate function behaviors and performance features of task scheduling algorithm in the multi-processor system.A novel dynamic measurement method(DMM)was proposed to measure the task scheduling algorithm’s correctness and dependability.In a multi-processor system,task scheduling problem is represented by a combinatorial evaluation model,interactive Markov chain(IMC),and solution space of the algorithm with time and probability metrics is described by action-based continuous stochastic logic(aCSL).DMM derives a path by logging runtime scheduling actions and corresponding times.Through judging whether the derived path can be received by task scheduling IMC model,DMM analyses the correctness of algorithm.Through judging whether the actual values satisfy label function of the initial state,DMM analyses the dependability of algorithm.The simulation shows that DMM can effectively characterize the function behaviors and performance features of task scheduling algorithm.
基金This project is supported by the Hong Kong Polytechnic University,China(No,G-RGF9).
文摘A dynamic advanced planning and scheduling (DAPS) problem is addressed where new orders arrive on a continuous basis. A periodic policy with frozen interval is adopted to increase stability on the shop floor. A genetic algorithm is developed to find a schedule at each rescheduling point for both original orders and new orders that both production idle time and penalties on tardiness and earliness of orders are minimized. The proposed methodology is tested on a small example to illustrate the effect of the frozen interval. The results indicate that the suggested approach can improve the schedule stability while retaining efficiency.
文摘A new static task scheduling algorithm named edge-zeroing based on dynamic critical paths is proposed. The main ideas of the algorithm are as follows: firstly suppose that all of the tasks are in different clusters; secondly, select one of the critical paths of the partially clustered directed acyclic graph; thirdly, try to zero one of graph communication edges; fourthly, repeat above three processes until all edges are zeroed; finally, check the generated clusters to see if some of them can be further merged without increasing the parallel time. Comparisons of the previous algorithms with edge-zeroing based on dynamic critical paths show that the new algorithm has not only a low complexity but also a desired performance comparable or even better on average to much higher complexity heuristic algorithms.
基金Project supported by the National Natural Science Foundation for Young Scientists of China(Grant No.61401011)the National Key Technologies R&D Program of China(Grant No.2015BAG15B01)the National Natural Science Foundation of China(Grant No.U1533119)
文摘The genetic algorithm (GA) is a nature-inspired evolutionary algorithm to find optima in search space via the interac- tion of individuals. Recently, researchers demonstrated that the interaction topology plays an important role in information exchange among individuals of evolutionary algorithm. In this paper, we investigate the effect of different network topolo- gies adopted to represent the interaction structures. It is found that GA with a high-density topology ends up more likely with an unsatisfactory solution, contrarily, a low-density topology can impede convergence. Consequently, we propose an improved GA with dynamic topology, named DT-GA, in which the topology structure varies dynamically along with the fitness evolution. Several experiments executed with 15 well-known test functions have illustrated that DT-GA outperforms other test GAs for making a balance of convergence speed and optimum quality. Our work may have implications in the combination of complex networks and computational intelligence.
基金This work is supported by the National Science Foundation of China under Grant No.F020803,and No.61602254the National Science Foundation of Jiangsu Province,China,under Grant No.BK20160968the Project through the Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions,the China-USA Computer Science Research Center.
文摘Nowadays,emergency accidents could happen at any time.The accidents occur unpredictably and the accidents requirements are diversely.The accidents happen in a dynamic environment and the resource should be cooperative to solve the accidents.Most methods are focusing on minimizing the casualties and property losses in a static environment.However,they are lack in considering the dynamic and unpredictable event handling.In this paper,we propose a representative environmental model in representation of emergency and dynamic resource allocation model,and an adaptive mathematical model based on Genetic Algorithm(GA)to generate an optimal set of solution domain.The experimental results show that the proposed algorithm can get a set of better candidate solutions.
文摘Recently,genetic algorithms(GAs) have been applied to multi-modal dynamic optimization(MDO).In this kind of optimization,an algorithm is required not only to find the multiple optimal solutions but also to locate a dynamically changing optimum.Our fuzzy genetic sharing(FGS) approach is based on a novel genetic algorithm with dynamic niche sharing(GADNS).FGS finds the optimal solutions,while maintaining the diversity of the population.For this,FGS uses several strategies.First,an unsupervised fuzzy clustering method is used to track multiple optima and perform GADNS.Second,a modified tournament selection is used to control selection pressure.Third,a novel mutation with an adaptive mutation rate is used to locate unexplored search areas.The effectiveness of FGS in dynamic environments is demonstrated using the generalized dynamic benchmark generator(GDBG).