The layout optimization for the dishes installed on a rotating table is investigated. This is a packing problem with equilibrium behavioural constraints. To deal with its layout topo-models and initial layout, a mathe...The layout optimization for the dishes installed on a rotating table is investigated. This is a packing problem with equilibrium behavioural constraints. To deal with its layout topo-models and initial layout, a mathematical model and heuristic approaches, including the method of model-changing iteration (MCI) and the method of main objects topo-models (MOT), are proposed, with a series of intuitive algorithms embedded in, such as the technique for the search under the initial guess and the strategies for remission of "combinatorial explosion" . The validity and reliability of the proposed algorithms are verified by numerical examples and engineering applications, which could be used in satellite module, multiple spindle box, rotating structure and so on.展开更多
We propose a new constructive algorithm, called HAPE3 D, which is a heuristic algorithm based on the principle of minimum total potential energy for the 3D irregular packing problem, involving packing a set of irregul...We propose a new constructive algorithm, called HAPE3 D, which is a heuristic algorithm based on the principle of minimum total potential energy for the 3D irregular packing problem, involving packing a set of irregularly shaped polyhedrons into a box-shaped container with fixed width and length but unconstrained height. The objective is to allocate all the polyhedrons in the container, and thus minimize the waste or maximize profit. HAPE3 D can deal with arbitrarily shaped polyhedrons, which can be rotated around each coordinate axis at different angles. The most outstanding merit is that HAPE3 D does not need to calculate no-fit polyhedron(NFP), which is a huge obstacle for the 3D packing problem. HAPE3 D can also be hybridized with a meta-heuristic algorithm such as simulated annealing. Two groups of computational experiments demonstrate the good performance of HAPE3 D and prove that it can be hybridized quite well with a meta-heuristic algorithm to further improve the packing quality.展开更多
In this paper we hybridize ant colony optimiza- tion (ACt) and river formation dynamics (RFD), two related swarm intelligence methods. In ACt, ants form paths (prob- lem solutions) by following each other's phe...In this paper we hybridize ant colony optimiza- tion (ACt) and river formation dynamics (RFD), two related swarm intelligence methods. In ACt, ants form paths (prob- lem solutions) by following each other's pheromone trails and reinforcing trails at best paths until eventually a single path is followed. On the other hand, RFD is based on copy- ing how drops form rivers by eroding the ground and de- positing sediments. In a rough sense, RFD can be seen as a gradient-oriented version of ACt. Several previous experi- ments have shown that the gradient orientation of RFD makes this method solve problems in a different way as ACt. In particular, RFD typically performs deeper searches, which in turn makes it find worse solutions than ACt in the first exe- cution steps in general, though RFD solutions surpass ACt solutions after some more time passes. In this paper we try to get the best features of both worlds by hybridizing RFD and ACt. We use a kind of ant-drop hybrid and consider both pheromone trails and altitudes in the environment. We apply the hybrid method, as well as ACt and RFD, to solve two NP-hard problems where ACt and RFD fit in a different manner: the traveling salesman problem (TSP) and the prob- lem of the minimum distances tree in a variable-cost graph (MDV). We compare the results of each method and we an- alyze the advantages of using the hybrid approach in each case.展开更多
基金Project supported by the National Natural Science Foundation of China.
文摘The layout optimization for the dishes installed on a rotating table is investigated. This is a packing problem with equilibrium behavioural constraints. To deal with its layout topo-models and initial layout, a mathematical model and heuristic approaches, including the method of model-changing iteration (MCI) and the method of main objects topo-models (MOT), are proposed, with a series of intuitive algorithms embedded in, such as the technique for the search under the initial guess and the strategies for remission of "combinatorial explosion" . The validity and reliability of the proposed algorithms are verified by numerical examples and engineering applications, which could be used in satellite module, multiple spindle box, rotating structure and so on.
基金supported by the Natural Science Foundation of Guangdong Province,China(No.S2013040016594)the Natural Science Foundation of Liaoning Province,China(No.201102164)the Fundamental Research Funds for the Central Universities,China(No.2013ZM0124)
文摘We propose a new constructive algorithm, called HAPE3 D, which is a heuristic algorithm based on the principle of minimum total potential energy for the 3D irregular packing problem, involving packing a set of irregularly shaped polyhedrons into a box-shaped container with fixed width and length but unconstrained height. The objective is to allocate all the polyhedrons in the container, and thus minimize the waste or maximize profit. HAPE3 D can deal with arbitrarily shaped polyhedrons, which can be rotated around each coordinate axis at different angles. The most outstanding merit is that HAPE3 D does not need to calculate no-fit polyhedron(NFP), which is a huge obstacle for the 3D packing problem. HAPE3 D can also be hybridized with a meta-heuristic algorithm such as simulated annealing. Two groups of computational experiments demonstrate the good performance of HAPE3 D and prove that it can be hybridized quite well with a meta-heuristic algorithm to further improve the packing quality.
文摘In this paper we hybridize ant colony optimiza- tion (ACt) and river formation dynamics (RFD), two related swarm intelligence methods. In ACt, ants form paths (prob- lem solutions) by following each other's pheromone trails and reinforcing trails at best paths until eventually a single path is followed. On the other hand, RFD is based on copy- ing how drops form rivers by eroding the ground and de- positing sediments. In a rough sense, RFD can be seen as a gradient-oriented version of ACt. Several previous experi- ments have shown that the gradient orientation of RFD makes this method solve problems in a different way as ACt. In particular, RFD typically performs deeper searches, which in turn makes it find worse solutions than ACt in the first exe- cution steps in general, though RFD solutions surpass ACt solutions after some more time passes. In this paper we try to get the best features of both worlds by hybridizing RFD and ACt. We use a kind of ant-drop hybrid and consider both pheromone trails and altitudes in the environment. We apply the hybrid method, as well as ACt and RFD, to solve two NP-hard problems where ACt and RFD fit in a different manner: the traveling salesman problem (TSP) and the prob- lem of the minimum distances tree in a variable-cost graph (MDV). We compare the results of each method and we an- alyze the advantages of using the hybrid approach in each case.