期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Interactive Dynamic Graph Convolution with Temporal Attention for Traffic Flow Forecasting
1
作者 Zitong Zhao Zixuan Zhang Zhenxing Niu 《Computers, Materials & Continua》 2026年第1期1049-1064,共16页
Reliable traffic flow prediction is crucial for mitigating urban congestion.This paper proposes Attentionbased spatiotemporal Interactive Dynamic Graph Convolutional Network(AIDGCN),a novel architecture integrating In... Reliable traffic flow prediction is crucial for mitigating urban congestion.This paper proposes Attentionbased spatiotemporal Interactive Dynamic Graph Convolutional Network(AIDGCN),a novel architecture integrating Interactive Dynamic Graph Convolution Network(IDGCN)with Temporal Multi-Head Trend-Aware Attention.Its core innovation lies in IDGCN,which uniquely splits sequences into symmetric intervals for interactive feature sharing via dynamic graphs,and a novel attention mechanism incorporating convolutional operations to capture essential local traffic trends—addressing a critical gap in standard attention for continuous data.For 15-and 60-min forecasting on METR-LA,AIDGCN achieves MAEs of 0.75%and 0.39%,and RMSEs of 1.32%and 0.14%,respectively.In the 60-min long-term forecasting of the PEMS-BAY dataset,the AIDGCN out-performs the MRA-BGCN method by 6.28%,4.93%,and 7.17%in terms of MAE,RMSE,and MAPE,respectively.Experimental results demonstrate the superiority of our pro-posed model over state-of-the-art methods. 展开更多
关键词 Traffic flow prediction interactive dynamic graph convolution graph convolution temporal multi-head trend-aware attention self-attention mechanism
在线阅读 下载PDF
Enhancing human behavior recognition with dynamic graph convolutional networks and multi-scale position attention
2
作者 Peng Huang Hongmei Jiang +1 位作者 Shuxian Wang Jiandeng Huang 《International Journal of Intelligent Computing and Cybernetics》 2025年第1期236-253,共18页
Purpose-Human behavior recognition poses a pivotal challenge in intelligent computing and cybernetics,significantly impacting engineering and management systems.With the rapid advancement of autonomous systems and int... Purpose-Human behavior recognition poses a pivotal challenge in intelligent computing and cybernetics,significantly impacting engineering and management systems.With the rapid advancement of autonomous systems and intelligent manufacturing,there is an increasing demand for precise and efficient human behavior recognition technologies.However,traditional methods often suffer from insufficient accuracy and limited generalization ability when dealing with complex and diverse human actions.Therefore,this study aims to enhance the precision of human behavior recognition by proposing an innovative framework,dynamic graph convolutional networks with multi-scale position attention(DGCN-MPA)to sup.Design/methodology/approach-The primary applications are in autonomous systems and intelligent manufacturing.The main objective of this study is to develop an efficient human behavior recognition framework that leverages advanced techniques to improve the prediction and interpretation of human actions.This framework aims to address the shortcomings of existing methods in handling the complexity and variability of human actions,providing more reliable and precise solutions for practical applications.The proposed DGCN-MPA framework integrates the strengths of convolutional neural networks and graph-based models.It innovatively incorporates wavelet packet transform to extract time-frequency characteristics and a MPA module to enhance the representation of skeletal node positions.The core innovation lies in the fusion of dynamic graph convolution with hierarchical attention mechanisms,which selectively attend to relevant features and spatial relationships,adjusting their importance across scales to address the variability in human actions.Findings-To validate the effectiveness of the DGCN-MPA framework,rigorous evaluations were conducted on benchmark datasets such as NTU-RGBþD and Kinetics-Skeleton.The results demonstrate that the framework achieves an F1 score of 62.18%and an accuracy of 75.93%on NTU-RGBþD and an F1 score of 69.34%and an accuracy of 76.86%on Kinetics-Skeleton,outperforming existing models.These findings underscore the framework’s capability to capture complex behavior patterns with high precision.Originality/value-By introducing a dynamic graph convolutional approach combined with multi-scale position attention mechanisms,this study represents a significant advancement in human behavior recognition technologies.The innovative design and superior performance of the DGCN-MPA framework contribute to its potential for real-world applications,particularly in integrating behavior recognition into engineering and autonomous systems.In the future,this framework has the potential to further propel the development of intelligent computing,cybernetics and related fields. 展开更多
关键词 Big data analytics Decision support Human behavior recognition graph convolution neural network Multi-scale attention dynamic graph convolution
在线阅读 下载PDF
A performance prediction method for on-site chillers based on dynamic graph convolutional network enhanced by association rules
3
作者 Qiao Deng Zhiwen Chen +3 位作者 Wanting Zhu Zefan Li Yifeng Yuan Weihua Gui 《Building Simulation》 SCIE EI CSCD 2024年第7期1213-1229,共17页
Accurately predicting the chiller coefficient of performance(COP)is essential for improving the energy efficiency of heating,ventilation,and air conditioning(HVAC)systems,significantly contributing to energy conservat... Accurately predicting the chiller coefficient of performance(COP)is essential for improving the energy efficiency of heating,ventilation,and air conditioning(HVAC)systems,significantly contributing to energy conservation in buildings.Traditional performance prediction methods often overlook the dynamic interaction among sensor variables and face challenges in using extensive historical data efficiently,which impedes accurate predictions.To overcome these challenges,this paper proposes an innovative on-site chiller performance prediction method employing a dynamic graph convolutional network(GCN)enhanced by association rules.The distinctive feature of this method is constructing an association graph bank containing static graphs in each operating mode by mining the association rules between various sensor variables in historical operating data.A real-time graph is created by analyzing the correlation between various sensor variables in the current operating data.This graph is fused online with the static graph in the current operating mode to obtain a dynamic graph used for feature extraction and training of GCN.The effectiveness of this method has been empirically confirmed through the operational data of an actual building chiller system.Comparative analysis with state-of-the-art methods highlights the superior performance of the proposed method. 展开更多
关键词 chillers performance prediction dynamic graph convolutional network association rules operating modes
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部