期刊文献+
共找到213篇文章
< 1 2 11 >
每页显示 20 50 100
Dynamic Control System of Automatic Monitoring Equipment for Waste Gas Pollution Source
1
作者 Yun WU Chengxin PAN Hanju BAO 《Asian Agricultural Research》 2021年第5期48-52,共5页
In order to improve the quality of automatic monitoring data of pollution sources and apply the automatic monitoring data to verify the environmental tax,Shandong Province took the lead in adopting the Internet of Thi... In order to improve the quality of automatic monitoring data of pollution sources and apply the automatic monitoring data to verify the environmental tax,Shandong Province took the lead in adopting the Internet of Things technology and drawing on the successful experience of air automatic monitoring stations and surface water automatic monitoring stations in management,and developed a dynamic management and control system for automatic monitoring equipment of pollution sources to improve and strengthen the quality audit of automatic monitoring data,further improve the quality of automatic monitoring data and better provide a basis for environmental management and decision making.The system realizes the simultaneous monitoring of monitoring data,running state and parameters of the automatic monitoring equipment,eliminates the phenomenon of falsification by modifying equipment parameters,and judges the validity of the collected data by acquiring the working state of the equipment remotely and randomly.After the actual operation test of the Department of Ecological Environment of Shandong Province,the system is proved to have the characteristics of practicality,real time and high efficiency,and be able to make up for low frequency and narrow coverage of manual inspection,with good application prospect in the field of environment and pollution source monitoring. 展开更多
关键词 dynamic management and control Monitoring data Running state Equipment parameter Negative control
在线阅读 下载PDF
Monolithically 3D-nanoprinted millimeter-scale lens actuator for dynamic focus control in optical systems
2
作者 Florian Lux Aybuke Calikoglu Çağlar Ataman 《Advanced Photonics Nexus》 2025年第4期140-153,共14页
Three-dimensional(3D)nanoprinting via two-photon polymerization offers unparalleled design flexibility and precision,thereby enabling rapid prototyping of advanced micro-optical elements and systems that have found im... Three-dimensional(3D)nanoprinting via two-photon polymerization offers unparalleled design flexibility and precision,thereby enabling rapid prototyping of advanced micro-optical elements and systems that have found important applications in endomicroscopy and biomedical imaging.The potential of this versatile tool for monolithic manufacturing of dynamic micro-opto-electro-mechanical systems(MOEMSs),however,has not yet been sufficiently explored.This work introduces a 3D-nanoprinted lens actuator with a large optical aperture,optimized for remote focusing in miniaturized imaging systems.The device integrates orthoplanar linear motion springs,a self-aligned sintered micro-magnet,and a monolithic lens,actuated by dual microcoils for uniaxial motion.The use of 3D nanoprinting allows complete design freedom for the integrated optical lens,whereas the monolithic fabrication ensures inherent alignment of the lens with the mechanical elements.With a lens diameter of 1.4 mm and a compact footprint of 5.74 mm,it achieves high mechanical robustness at resonant frequencies exceeding 300 Hz while still providing a large displacement range of 200μm(±100μm).A comprehensive analysis of optical and mechanical performance,including the effects of coil temperature and polymer viscoelasticity,demonstrates its advantages over conventional micro-electro-mechanical system actuators,showcasing its potential for next-generation imaging applications. 展开更多
关键词 micro-electro-mechanical system scanner two-photon polymerization 3D nanoprinting dynamic focus control electromagnetic actuation
在线阅读 下载PDF
Retraction notice:Emotion detection on webpages using biosensors integrated to a window-based dynamic control system
3
《International Journal of Intelligent Computing and Cybernetics》 2024年第4期890-890,共1页
The publisher of International Journal of Intelligent Computing and Cybernetics wishes to retract the article by Isiaka,F.,Abdulkarim,S.A.,Mwitondi,K.and Adamu,Z.(2022),“Emotion detection on webpages using biosensors... The publisher of International Journal of Intelligent Computing and Cybernetics wishes to retract the article by Isiaka,F.,Abdulkarim,S.A.,Mwitondi,K.and Adamu,Z.(2022),“Emotion detection on webpages using biosensors integrated to a window-based dynamic control system”,International Journal of Intelligent Computing and Cybernetics,Vol.15 No.2,pp.277-301,https://doi.org/10.1108/IJICC-05-2021-0080. 展开更多
关键词 biosensors emotion detection intelligent computing cyberneticsvol intelligent computing cybernetics window based dynamic control system
在线阅读 下载PDF
Fixed-time Target-guided Coordinate Control of Unmanned Surface Vehicles Based on Dynamic Surface Control
4
作者 LI Chao−yi XU Hai−xiang +2 位作者 YU Wen−zhao DU Zhe DING Ya−nan 《船舶力学》 北大核心 2025年第6期849-862,共14页
This paper presents an investigation on the target-guided coordinated control(TACC)of unmanned surface vehicles(USVs).In the scenario of tracking non-cooperative targets,the status information of the target can only b... This paper presents an investigation on the target-guided coordinated control(TACC)of unmanned surface vehicles(USVs).In the scenario of tracking non-cooperative targets,the status information of the target can only be obtained by some USVs.In order to achieve semi-encirclement tracking of noncooperative targets under maritime security conditions,a fixed-time tracking control method based on dynamic surface control(DSC)is proposed in this paper.Firstly,a novel TACC architecture with decoupled kinematic control law and decoupled kinetic control law was designed to reduce the complexity of control system design.Secondly,the proposed DSC-based target-guided kinematic control law including tracking points pre-allocation strategy and sigmoid artificial potential functions(SigAPFs)can avoid collisions during tracking process and optimize kinematic control output.Finally,a fixed-time TACC system was proposed to achieve fast convergence of kinematic and kinetics errors.The effectiveness of the proposed TACC approach in improving target tracking safety and reducing control output chattering was verified by simulation comparison results. 展开更多
关键词 unmanned surface vehicle distributed control target-guided coordinate control fixed-time convergence dynamic surface control
在线阅读 下载PDF
Dynamic Constraint-Driven Event-Triggered Control of Strict-Feedback Systems Without Max/Min Values on Irregular Constraints 被引量:1
5
作者 Zhuwu Shao Yujuan Wang +1 位作者 Zeqiang Li Yongduan Song 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第3期569-580,共12页
This work proposes an event-triggered adaptive control approach for a class of uncertain nonlinear systems under irregular constraints.Unlike the constraints considered in most existing papers,here the external irregu... This work proposes an event-triggered adaptive control approach for a class of uncertain nonlinear systems under irregular constraints.Unlike the constraints considered in most existing papers,here the external irregular constraints are considered and a constraints switching mechanism(CSM)is introduced to circumvent the difficulties arising from irregular output constraints.Based on the CSM,a new class of generalized barrier functions are constructed,which allows the control results to be independent of the maximum and minimum values(MMVs)of constraints and thus extends the existing results.Finally,we proposed a novel dynamic constraint-driven event-triggered strategy(DCDETS),under which the stress on signal transmission is reduced greatly and no constraints are violated by making a dynamic trade-off among system state,external constraints,and inter-execution intervals.It is proved that the system output is driven to close to the reference trajectory and the semi-global stability is guaranteed under the proposed control scheme,regardless of the external irregular output constraints.Simulation also verifies the effectiveness and benefits of the proposed method. 展开更多
关键词 Adaptive control dynamic constraint-driven event-triggered control irregular output constraints nonlinear strict-feed-back systems
在线阅读 下载PDF
Fuzzy Logic-Based Robust Global Consensus in Leader-Follower Robotic Systems under Sensor and Actuator Attacks Using Hybrid Control Strategy
6
作者 Asad Khan Fathia Moh.Al Samman +4 位作者 Waqar Ul Hassan Mohammed M.A.Almazah A.Y.Al-Rezami Azmat Ullah Khan Niazi Adnan Manzor 《Computer Modeling in Engineering & Sciences》 2025年第8期1971-1999,共29页
This research paper tackles the complexities of achieving global fuzzy consensus in leader-follower systems in robotic systems,focusing on robust control systems against an advanced signal attack that integrates senso... This research paper tackles the complexities of achieving global fuzzy consensus in leader-follower systems in robotic systems,focusing on robust control systems against an advanced signal attack that integrates sensor and actuator disturbances within the dynamics of follower robots.Each follower robot has unknown dynamics and control inputs,which expose it to the risks of both sensor and actuator attacks.The leader robot,described by a secondorder,time-varying nonlinear model,transmits its position,velocity,and acceleration information to follower robots through a wireless connection.To handle the complex setup and communication among robots in the network,we design a robust hybrid distributed adaptive control strategy combining the effect of sensor and actuator attack,which ensures asymptotic consensus,extending beyond conventional bounded consensus results.The proposed framework employs fuzzy logic systems(FLSs)as proactive controllers to estimate unknown nonlinear behaviors,while also effectively managing sensor and actuator attacks,ensuring stable consensus among all agents.To counter the impact of the combined signal attack on follower dynamics,a specialized robust control mechanism is designed,sustaining system stability and performance under adversarial conditions.The efficiency of this control strategy is demonstrated through simulations conducted across two different directed communication topologies,underscoring the protocol’s adaptability,resilience,and effectiveness in maintaining global consensus under complex attack scenarios. 展开更多
关键词 Robotic systems CONSENSUS sensor dynamic control strategy leader-follower framework system stand actuator attacks:fuzzy logic systems(FLSs)
在线阅读 下载PDF
Observed-based adaptive neural tracking control for nonlinear systems with unknown control directions and input delay
7
作者 DENG Yuxuan WANG Qingling 《Journal of Systems Engineering and Electronics》 2025年第1期269-279,共11页
Enhancing the stability and performance of practical control systems in the presence of nonlinearity,time delay,and uncertainty remains a significant challenge.Particularly,a class of strict-feedback nonlinear uncerta... Enhancing the stability and performance of practical control systems in the presence of nonlinearity,time delay,and uncertainty remains a significant challenge.Particularly,a class of strict-feedback nonlinear uncertain systems characterized by unknown control directions and time-varying input delay lacks comprehensive solutions.In this paper,we propose an observerbased adaptive tracking controller to address this gap.Neural networks are utilized to handle uncertainty,and a unique coordinate transformation is employed to untangle the coupling between input delay and unknown control directions.Subsequently,a new auxiliary signal counters the impact of time-varying input delay,while a Nussbaum function is introduced to solve the problem of unknown control directions.The leverage of an advanced dynamic surface control technique avoids the“complexity explosion”and reduces boundary layer errors.Synthesizing these techniques ensures that all the closed-loop signals are semi-globally uniformly ultimately bounded(SGUUB),and the tracking error converges to a small region around the origin by selecting suitable parameters.Simulation examples are provided to demonstrate the feasibility of the proposed approach. 展开更多
关键词 adaptive neural network dynamic surface control unknown control direction input delay
在线阅读 下载PDF
Optimization and Intelligent Control in Hybrid Renewable Energy Systems Incorporating Solar and Biomass
8
作者 Arpita Johri Varnita Verma Mainak Basu 《Energy Engineering》 2025年第5期1887-1918,共32页
The globe faces an urgent need to close the energy demand-supply gap.Addressing this difficulty requires constructing a Hybrid Renewable Energy System(HRES),which has proven to be the most appropriate solution.HRES al... The globe faces an urgent need to close the energy demand-supply gap.Addressing this difficulty requires constructing a Hybrid Renewable Energy System(HRES),which has proven to be the most appropriate solution.HRES allows for integrating two or more renewable energy resources,successfully addressing the issue of intermittent availability of non-conventional energy resources.Optimization is critical for improving the HRES’s performance parameters during implementation.This study focuses on HRES using solar and biomass as renewable energy supplies and appropriate energy storage technologies.However,energy fluctuations present a problem with the power quality of HRES.To address this issue,the research paper introduces the Generalized Dynamic Progressive Neural Fuzzy Controller(GDPNFC),which regulates power flow within the proposed HRES.Furthermore,a unique approach called Enhanced Multi-Objective Monarch Butterfly Optimization(EMMBO)is used to optimize technical parameters.The simulation tool used in the research work is HOMER(Hybrid Optimization of Multiple Energy Resources)-PRO,and the system’s power quality is assessed using MATLAB 2016.The research paper concludes with comparing the performance of existing systems to the proposed system in terms of power loss and Total Harmonic Distortion(THD).It was established that the proposed technique involving EMMBO outperformed existing methods in technical optimization. 展开更多
关键词 Hybrid renewable energy sources(HRES) multi-objective optimization generalized dynamic progressive neural fuzzy controller(GDPNFC) pre-feasibility analysis total harmonic distortion(THD) enhanced multi-objective monarch butterfly optimization(EMMBO)
在线阅读 下载PDF
Robust adaptive dynamic surface control for nonlinear uncertain systems 被引量:5
9
作者 朱永红 姜长生 费树岷 《Journal of Southeast University(English Edition)》 EI CAS 2003年第2期126-131,共6页
We propose a new method for robust adaptive backstepping control of nonlinear systems with parametric uncertainties and disturbances in the strict feedback form. The method is called dynamic surface control. Traditio... We propose a new method for robust adaptive backstepping control of nonlinear systems with parametric uncertainties and disturbances in the strict feedback form. The method is called dynamic surface control. Traditional backstepping algorithms require repeated differentiations of the modelled nonlinearities. The addition of n first order low pass filters allows the algorithm to be implemented without differentiating any model nonlinearities, thus ending the complexity arising due to the 'explosion of terms' that makes other methods difficult to implement in practice. The combined robust adaptive backstepping/first order filter system is proved to be semiglobally asymptotically stable for sufficiently fast filters by a singular perturbation approach. The simulation results demonstrate the feasibility and effectiveness of the controller designed by the method. 展开更多
关键词 nonlinear systems robust control adaptive control dynamic surface control UNCERTAINTIES
在线阅读 下载PDF
Emotion detection on webpages using biosensors integrated to a window-based dynamic control system
10
作者 Fatima Isiaka Salihu Aish Abdulkarim +1 位作者 Kassim Mwitondi Zainab Adamu 《International Journal of Intelligent Computing and Cybernetics》 EI 2022年第2期277-301,共25页
Purpose-Detecting emotion on user experience of web applications and browsing is important in many ways.Web designers and developers find such approach quite useful in enhancing navigational features of webpages,and b... Purpose-Detecting emotion on user experience of web applications and browsing is important in many ways.Web designers and developers find such approach quite useful in enhancing navigational features of webpages,and biomedical personnel regularly use computer simulations to monitor and control the behaviour of patients.On the other hand,law enforcement agents rely on human physiological functions to determine the likelihood of falsehood in interrogations.Quite often,online user experience is studied via tangible measures such as task completion time,surveys and comprehensive tests from which data attributes are generated.Prediction of users’emotion and behaviour in some of these cases depends mostly on task completion time and number of clicks per given time interval.However,such approaches are generally subjective and rely heavily on distributional assumptions making the results prone to recording errors.Design/methodology/approach-The authors propose a novel method-a window dynamic control system that addresses the foregoing issues.Primary data were obtained from laboratory experiments during which forty-four volunteers had their synchronised physiological readings,skin conductance response(SCR),skin temperature(ST),eye movement behaviour and users’activity attributes taken using biosensors.The windowbased dynamic control system(PHYCOB I)is integrated to the biosensor which collects secondary data attributes from these synchronised physiological readings and uses them for two purposes.For both detection of optimal emotional responses and users’stress levels.The method’s novelty derives from its ability to integrate physiological readings and eye movement records to identify hidden correlates on a webpage.Findings-Results show that the control system detects basic emotions and outperforms other conventional models in terms of both accuracy and reliability,when subjected to model comparison that is,the average recoverable natural structures for the three models with respect to accuracy and reliability are more consistent within the window-based control system environment than with the conventional methods.Research limitations/implications-The paper is limited to using a window control system to detect emotions on webpages,while integrated to biosensors and eye-tracker.Originality/value-The originality of the proposed model is its resistance to overfitting and its ability to automatically assess human emotion(stress levels)while dealing with specific web contents.The latter is particularly important in that it can be used to predict which contents of webpages cause stress-induced emotions to users when involved in online activities. 展开更多
关键词 Skin conductance response Skin temperature Eye tracker sensors Human physiological functions Online behaviour dynamic control system
在线阅读 下载PDF
Adaptive Fuzzy Dynamic Surface Control of Flexible-Joint Robot Systems With Input Saturation 被引量:31
11
作者 Song Ling Huanqing Wang Peter X.Liu 《IEEE/CAA Journal of Automatica Sinica》 EI CSCD 2019年第1期97-107,共11页
In this paper, we propose an adaptive fuzzy dynamic surface control(DSC) scheme for single-link flexible-joint robotic systems with input saturation. A smooth function is utilized with the mean-value theorem to deal w... In this paper, we propose an adaptive fuzzy dynamic surface control(DSC) scheme for single-link flexible-joint robotic systems with input saturation. A smooth function is utilized with the mean-value theorem to deal with the difficulties associated with input saturation. An adaptive DSC design with an auxiliary first-order filter is used to solve the "explosion of complexity"problem. It is proved that all the signals in the closed-loop system are semi-globally uniformly ultimately bounded, and the tracking error eventually converges to a small neighborhood around zero. The main advantage of the proposed method is that only one adaptation parameter needs to be updated,which reduces the computational burden significantly. Simulation results demonstrate the feasibility of the proposed scheme and the comparison results show that the improved DSC method can reduce the computational burden by almost two thirds in comparison with the standard DSC method. 展开更多
关键词 Adaptive fuzzy control dynamic surface control (DSC) flexible-joint (FJ) robots single-link tracking control
在线阅读 下载PDF
Adaptive Fuzzy Dynamic Surface Control for a Class of Perturbed Nonlinear Time-varying Delay Systems with Unknown Dead-zone 被引量:7
12
作者 Hong-Yun Yue Jun-Min Li Department of Applied Mathematics,Xidian University,Xi an 710071,China 《International Journal of Automation and computing》 EI 2012年第5期545-554,共10页
In this paper,adaptive dynamic surface control(DSC) is developed for a class of nonlinear systems with unknown discrete and distributed time-varying delays and unknown dead-zone.Fuzzy logic systems are used to approxi... In this paper,adaptive dynamic surface control(DSC) is developed for a class of nonlinear systems with unknown discrete and distributed time-varying delays and unknown dead-zone.Fuzzy logic systems are used to approximate the unknown nonlinear functions.Then,by combining the backstepping technique and the appropriate Lyapunov-Krasovskii functionals with the dynamic surface control approach,the adaptive fuzzy tracking controller is designed.Our development is able to eliminate the problem of 'explosion of complexity' inherent in the existing backstepping-based methods.The main advantages of our approach include:1) for the n-th-order nonlinear systems,only one parameter needs to be adjusted online in the controller design procedure,which reduces the computation burden greatly.Moreover,the input of the dead-zone with only one adjusted parameter is much simpler than the ones in the existing results;2) the proposed control scheme does not need to know the time delays and their upper bounds.It is proven that the proposed design method is able to guarantee that all the signals in the closed-loop system are bounded and the tracking error is smaller than a prescribed error bound,Finally,simulation results demonstrate the effectiveness of the proposed approach. 展开更多
关键词 Adaptive fuzzy control dynamic surface control(DSC) discrete and distributed time-varying delays Lyapunov-Krasovskii functionals DEAD-ZONE
原文传递
Output-feedback Dynamic Surface Control for a Class of Nonlinear Non-minimum Phase Systems 被引量:5
13
作者 Shanwei Su 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI 2016年第1期96-104,共9页
In this paper, an output-feedback tracking controller is proposed for a class of nonlinear non-minimum phase systems.To keep the unstable internal dynamics bounded, the method of output redefinition is applied to let ... In this paper, an output-feedback tracking controller is proposed for a class of nonlinear non-minimum phase systems.To keep the unstable internal dynamics bounded, the method of output redefinition is applied to let the stability of the internal dynamics depend on that of redefined output, thus we only need to consider the new external dynamics rather than internal dynamics in the process of designing control law. To overcome the explosion of complexity problem in traditional backstepping design, the dynamic surface control(DSC) method is firstly used to deal with the problem of tracking control for the nonlinear non-minimum phase systems. The proposed outputfeedback DSC controller not only forces the system output to asymptotically track the desired trajectory, but also drives the unstable internal dynamics to follow its corresponding bounded and causal ideal internal dynamics, which is solved via stable system center method. Simulation results illustrate the validity of the proposed output-feedback DSC controller. 展开更多
关键词 Non-minimum phase system OUTPUT-FEEDBACK trajectory tracking internal dynamics dynamic surface control(DSC)
在线阅读 下载PDF
Adaptive Neural Network Dynamic Surface Control for Perturbed Nonlinear Time-delay Systems 被引量:4
14
作者 Geng Ji 《International Journal of Automation and computing》 EI 2012年第2期135-141,共7页
This paper proposes an adaptive neural network control method for a class of perturbed strict-feedback nonlinear systems with unknown time delays. Radial basis function neural networks are used to approximate unknown ... This paper proposes an adaptive neural network control method for a class of perturbed strict-feedback nonlinear systems with unknown time delays. Radial basis function neural networks are used to approximate unknown intermediate control signals. By constructing appropriate Lyapunov-Krasovskii functionals, the unknown time delay terms have been compensated. Dynamic surface control technique is used to overcome the problem of "explosion of complexity" in backstepping design procedure. In addition, the semiglobal uniform ultimate boundedness of all the signals in the closed-loop system is proved. A main advantage of the proposed controller is that both problems of "curse of dimensionality" and "explosion of complexity" are avoided simultaneously. Finally, simulation results are presented to demonstrate the effectiveness of the approach. 展开更多
关键词 Adaptive control dynamic surface control neural network nonlinear time delay system stability analysis.
在线阅读 下载PDF
Global output feedback control of feedforward nonlinear time-delay systems with unknown growth rate and unknown measurement sensitivity
15
作者 Weiyong Yu Keao Gao +1 位作者 Hongbing Zhou Qiang Liu 《Control Theory and Technology》 EI CSCD 2024年第1期122-134,共13页
This paper discusses the problem of global state regulation via output feedback for a class of feedforward nonlinear time-delay systems with unknown measurement sensitivity. Different from previous works, the nonlinea... This paper discusses the problem of global state regulation via output feedback for a class of feedforward nonlinear time-delay systems with unknown measurement sensitivity. Different from previous works, the nonlinear terms are dominated by upper triangular linear unmeasured (delayed) states multiplied by unknown growth rate. The unknown growth rate is composed of an unknown constant, a power function of output, and an input function. Furthermore, due to the measurement uncertainty of the system output, it is more difficult to solve this problem. It is proved that the presented output feedback controller can globally regulate all states of the nonlinear systems using the dynamic gain scaling technique and choosing the appropriate Lyapunov–Krasovskii functionals. 展开更多
关键词 Adaptive control dynamic gain controllers Feedforward time-delay systems Measurement sensitivity Output feedback
原文传递
Adaptive Fuzzy Dynamic Surface Control for Uncertain Nonlinear Systems 被引量:4
16
作者 Xiao-Yuan Luo Zhi-Hao Zhu Xin-Ping Guan 《International Journal of Automation and computing》 EI 2009年第4期385-390,共6页
In this paper, a robust adaptive fuzzy dynamic surface control for a class of uncertain nonlinear systems is proposed. A novel adaptive fuzzy dynamic surface model is built to approximate the uncertain nonlinear funct... In this paper, a robust adaptive fuzzy dynamic surface control for a class of uncertain nonlinear systems is proposed. A novel adaptive fuzzy dynamic surface model is built to approximate the uncertain nonlinear functions by only one fuzzy logic system. The approximation capability of this model is proved and the model is implemented to solve the problem that too many approximators are used in the controller design of uncertain nonlinear systems. The shortage of "explosion of complexity" in backstepping design procedure is overcome by using the proposed dynamic surface control method. It is proved by constructing appropriate Lyapunov candidates that all signals of closed-loop systems are semi-globally uniformly ultimate bounded. Also, this novel controller stabilizes the states of uncertain nonlinear systems faster than the adaptive sliding mode controller (SMC). Two simulation examples are provided to illustrate the effectiveness of the control approach proposed in this paper. 展开更多
关键词 Uncertain nonlinear systems fuzzy logic system dynamic surface control backstepping design
在线阅读 下载PDF
Adaptive Neural Network Dynamic Surface Control for a Class of Nonlinear Systems with Uncertain Time Delays 被引量:3
17
作者 Xiao-Jing Wu Xue-Li Wu Xiao-Yuan Luo 《International Journal of Automation and computing》 EI CSCD 2016年第4期409-416,共8页
This paper presents a solution to tracking control problem for a class of nonlinear systems with unknown parameters ana uncertain time-varying delays. A new adaptive neural network (NN) dynamic surface controller (... This paper presents a solution to tracking control problem for a class of nonlinear systems with unknown parameters ana uncertain time-varying delays. A new adaptive neural network (NN) dynamic surface controller (DSC) is developed. Some assumptions on uncertain time delays, which were required to be satisfied in previous works, are removed by introducing a novel indirect neural network algorithm into dynamic surface control framework. Also, the designed controller is independent of the time delays. Moreover, the dynamic compensation terms are introduced to facilitate the controller design. It is shown that the closed-loop tracking error converges to a small neighborhood of zero. Finally, a chaotic circuit system is initially bench tested to show the effectiveness of the proposed method. 展开更多
关键词 Neural network (NN) dynamic surface control (DSC) time delay nonlinear systems adaptive.
原文传递
Dynamic Surface Control with Nonlinear Disturbance Observer for Uncertain Flight Dynamic System 被引量:3
18
作者 李飞 胡剑波 +1 位作者 吴俊 王坚浩 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2015年第4期469-476,共8页
A new robust control method of a nonlinear flight dynamic system with aerodynamic coefficients and external disturbance has been proposed.The proposed control system is a combination of the dynamic surface control(DSC... A new robust control method of a nonlinear flight dynamic system with aerodynamic coefficients and external disturbance has been proposed.The proposed control system is a combination of the dynamic surface control(DSC)and the nonlinear disturbance observer(NDO).DSC technique provides the ability to overcome the″explosion of complexity″problem in backstepping control.NDO is adopted to observe the uncertainties in nonlinear flight dynamic system.It has been proved that the proposed design method can guarantee uniformly ultimately boundedness of all the signals in the closed-loop system by Lyapunov stability theorem.Finally,simulation results show that the proposed controller provides better performance than the traditional nonlinear controller. 展开更多
关键词 nonlinear disturbance observer(NDO) dynamic surface control(DSC) UNCERTAINTIES flight control
在线阅读 下载PDF
Dynamic event-triggered formation control of second-order nonholonomic systems 被引量:3
19
作者 WANG Xiaoyu SUN Sijia +1 位作者 XIAO Feng YU Mei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第2期501-514,共14页
In this paper,the formation control problem of secondorder nonholonomic mobile robot systems is investigated in a dynamic event-triggered scheme.Event-triggered control protocols combined with persistent excitation(PE... In this paper,the formation control problem of secondorder nonholonomic mobile robot systems is investigated in a dynamic event-triggered scheme.Event-triggered control protocols combined with persistent excitation(PE)conditions are presented.In event-detecting processes,an inactive time is introduced after each sampling instant,which can ensure a positive minimum sampling interval.To increase the flexibility of the event-triggered scheme,internal dynamic variables are included in event-triggering conditions.Moreover,the dynamic event-triggered scheme plays an important role in increasing the lengths of time intervals between any two consecutive events.In addition,event-triggered control protocols without forward and angular velocities are also presented based on approximate-differentiation(low-pass)filters.The asymptotic convergence results are given based on a nested Matrosov theorem and artificial sampling methods. 展开更多
关键词 nonholonomic system dynamic event-triggered control consensus-based formation
在线阅读 下载PDF
Adaptive NN Dynamic Surface Control for a Class of Uncertain Non-affine Pure-feedback Systems with Unknown Time-delay 被引量:2
20
作者 Xiao-Qiang Li Dan Wang Zhu-Mu Fu 《International Journal of Automation and computing》 EI CSCD 2016年第3期268-276,共9页
Adaptive neural network (NN) dynamic surface control (DSC) is developed for a class of non-affine pure-feedback systems with unknown time-delay. The problems of "explosion of complexity" and circular constructio... Adaptive neural network (NN) dynamic surface control (DSC) is developed for a class of non-affine pure-feedback systems with unknown time-delay. The problems of "explosion of complexity" and circular construction of the practical controller in the traditional backstepping algorithm are avoided by using this controller design method. For removing the requirements on the sign of the derivative of function f~, Nussbaum control gain technique is used in control design procedure. The effects of unknown time-delays are eliminated by using appropriate Lyapunov-Krasovskii functionals. Proposed control scheme guarantees that all the signals in the closed-loop system are semi-globally uniformly ultimately bounded. Two simulation examples are presented to demonstrate the method. 展开更多
关键词 Nonaffine pure-feedback systems dynamic surface control (DSC) TIME-DELAY neural network backstepping.
原文传递
上一页 1 2 11 下一页 到第
使用帮助 返回顶部