In cold regions,the dynamic compressive strength(DCS)of rock damaged by freeze-thaw weathering significantly influences the stability of rock engineering.Nevertheless,testing the dynamic strength under freeze-thaw wea...In cold regions,the dynamic compressive strength(DCS)of rock damaged by freeze-thaw weathering significantly influences the stability of rock engineering.Nevertheless,testing the dynamic strength under freeze-thaw weathering conditions is often both time-consuming and expensive.Therefore,this study considers the effect of characteristic impedance on DCS and aims to quickly determine the DCS of frozen-thawed rocks through the application of machine-learning techniques.Initially,a database of DCS for frozen-thawed rocks,comprising 216 rock specimens,was compiled.Three external load parameters(freeze-thaw cycle number,confining pressure,and impact pressure)and two rock parameters(characteristic impedance and porosity)were selected as input variables,with DCS as the predicted target.This research optimized the kernel scale,penalty factor,and insensitive loss coefficient of the support vector regression(SVR)model using five swarm intelligent optimization algorithms,leading to the development of five hybrid models.In addition,a statistical DCS prediction equation using multiple linear regression techniques was developed.The performance of the prediction models was comprehensively evaluated using two error indexes and two trend indexes.A sensitivity analysis based on the cosine amplitude method has also been conducted.The results demonstrate that the proposed hybrid SVR-based models consistently provided accurate DCS predictions.Among these models,the SVR model optimized with the chameleon swarm algorithm exhibited the best performance,with metrics indicating its effectiveness,including root mean square error(RMSE)﹦3.9675,mean absolute error(MAE)﹦2.9673,coefficient of determination(R^(2))﹦0.98631,and variance accounted for(VAF)﹦98.634.This suggests that the chameleon swarm algorithm yielded the most optimal results for enhancing SVR models.Notably,impact pressure and characteristic impedance emerged as the two most influential parameters in DCS prediction.This research is anticipated to serve as a reliable reference for estimating the DCS of rocks subjected to freeze-thaw weathering.展开更多
For the purpose of investigating the dynamic deformational behavior and failure mechanisms of magnesium under high strain rates,the Split Hopkinson Pressure Bar(SHPB)was used for investigating dynamic mechanical prope...For the purpose of investigating the dynamic deformational behavior and failure mechanisms of magnesium under high strain rates,the Split Hopkinson Pressure Bar(SHPB)was used for investigating dynamic mechanical properties of extruded Mg-Gd-Y Magnesium alloy at ambient temperature(300 K),200℃(473 K)and 300℃(573 K)temperature.The samples after compression were analyzed by scanning electron microscope(SEM)and metallographic microscope.Dynamic mechanical properties,crack performance and plastic deformation mechanism of extruded Mg-Gd-Y Magnesium alloy along the extrusion direction(ED)were discussed.The results show that,extruded Mg-Gd-Y Magnesium alloy has the largest dynamic compressive strength which is 535 MPa at ambient temperature(300 K)and strain rate of 2826 s^(−1).When temperature increases,dynamic compressive strength decreases,while ductility increases.The dynamic compression fracture mechanism of extruded Mg-Gd-Y Magnesium alloy is multi-crack propagation and intergranular quasi-cleavage fracture at both ambient temperature and high temperature.The dynamic compressive deformation mechanism of extruded Mg-Gd-Y Magnesium alloy is a combination of twinning,slipping and dynamic recrystallization at both ambient temperature and high temperature.展开更多
To investigate the influence of microwave heating on the dynamic behavior and failure mechanisms of rock,dynamic compression tests were conducted on microwave-irradiated sandstone specimens using a modified split Hopk...To investigate the influence of microwave heating on the dynamic behavior and failure mechanisms of rock,dynamic compression tests were conducted on microwave-irradiated sandstone specimens using a modified split Hopkinson pressure bar(SHPB)system.Experimental results show that microwave radiation can effectively weaken the compressive strength of sandstone.Rock specimens show three different failure modes under impact load:tensile failure,tensile−shear composite failure and compressive−shear failure.The dynamic Poisson’s ratio,calculated using the measured P-and S-wave velocities,is introduced to describe the deformation characteristics of sandstone.With the increase in microwave power and heating time,the Poisson’s ratio declines first and then increases slightly,and the turning point occurs at 244.6℃.Moreover,the microstructural characteristics reveal that microwave radiation produces dehydration,pore expansion,and cracking of the rock.The damage mechanisms caused by microwave radiation are discussed based on thermal stress and steam pressure inside the rock,which provides a reasonable explanation for the experimental results.展开更多
Split Hopkinson Pressure Bar(SHPB) test was simulated to investigate the distribution of the first principal stress and damage zone of specimen subjected to dynamic compressive load. Numerical models of plate-type spe...Split Hopkinson Pressure Bar(SHPB) test was simulated to investigate the distribution of the first principal stress and damage zone of specimen subjected to dynamic compressive load. Numerical models of plate-type specimen containing cracks with inclined angles of 0°,45° and 90° were also established to investigate the crack propagation and damage evolution under dynamic loading. The results show that the simulation results are in accordance with the failure patterns of specimens in experimental test. The interactions between stress wave and crack with different inclined angles are different; damage usually appears around the crack tips firstly; and then more damage zones develop away from the foregoing damage zone after a period of energy accumulation; eventually,the damage zones run through the specimen in the direction of applied loading and split the specimen into pieces.展开更多
The dynamic mechanical properties of basalt affected by microwave were investigated by performing dynamic compressive tests using the SHPB system.Meanwhile,the thermal damage of the treated basalt was characterized by...The dynamic mechanical properties of basalt affected by microwave were investigated by performing dynamic compressive tests using the SHPB system.Meanwhile,the thermal damage of the treated basalt was characterized by ultrasonic non-destructive testing and nuclear magnetic resonance technology.The results show that with the increase of microwave power and exposure time,the P-wave velocity,dynamic compressive strength and elastic modulus decrease continuously,and the dynamic failure mode tends to be a more complex fracturing.The increase in microwave power and exposure time can enhance the temperature difference and transfer coefficient among minerals,hence intensifying the rock damage induced by thermal shock.展开更多
The dynamic mechanical properties of open-cell aluminum alloy foams with different relative densities and cell sizes have been investigated by compressive tests. The strain rates varied from 700 s-1 to 2600 s-1. The e...The dynamic mechanical properties of open-cell aluminum alloy foams with different relative densities and cell sizes have been investigated by compressive tests. The strain rates varied from 700 s-1 to 2600 s-1. The experimental results showed that the dynamic compressive stress-strain curves exhibited a typical three-stage behavior: elastic, plateau and densification. The dynamic compressive strength of foams is affected not only by the relative density but also by the strain rate and cell size. Aluminum alloy foams with higher relative density or smaller cell size are more sensitive to the strain rate than foams with lower relative density or larger cell size.展开更多
To understand the quasi-static and dynamic compressive mechanical behavior of two- dimensional SiC fiber-reinforced SiC composites (2D-SiC1/SiC), their compressive behavior at room temperature was investigated at a ...To understand the quasi-static and dynamic compressive mechanical behavior of two- dimensional SiC fiber-reinforced SiC composites (2D-SiC1/SiC), their compressive behavior at room temperature was investigated at a strain rate from 10-4 to 104/s, and the fracture surfaces and damage morphology were observed. The results show that the dynamic failure strength of 2D-SiC1/SiC obeys the Weibull distribution, and the Weibull modulus is 5,66. Meanwhile, 2D-SiC1/SiC presents a transition from brittle to tough with a decrease of strain rate, and 2D-SiC1/SiC has a more significant strain rate sensitivity compared to the 2D-C/SiC composites. The failure mode of 2D-SiC1/SiC depends upon the strain rate.展开更多
The mechanical behaviors of Zr43.5Cu43.5Ni4Al8Nb1,Zr55.4Cu31.6Ni4Al8Nb1,Ti32.8Zr30.2Ni5.3Cu9Be22.7(at.%)metallic glass at different strain rates were studied.For all the present alloys,the dispersion over 700 MPa was ...The mechanical behaviors of Zr43.5Cu43.5Ni4Al8Nb1,Zr55.4Cu31.6Ni4Al8Nb1,Ti32.8Zr30.2Ni5.3Cu9Be22.7(at.%)metallic glass at different strain rates were studied.For all the present alloys,the dispersion over 700 MPa was observed on the strength in the repeated dynamic compressions,which was much stronger than that of the quasi-static compressive strength.Such the dispersion of the dynamic compressive strength was well correlated with the corresponding fracture behaviors.The area of fracture surface was calculated and also showed a strong dispersion for all the fractured specimens tested at the strain rate of 500 s^-1 and 1000 s^-1.All the specimens showed a linear relationship between the square of dynamic compressive strength and the area of fracture surface in the dynamic compression tests.This phenomenon was mainly thought to be related to the difference of mean initial free volume concentration of different samples,stress concentration caused by the split Hopkinson pressure bar experimental setup and high sensitivity of defects under dynamic deformation.These findings were beneficial to deeply understand the effect of strain rate on the mechanical properties of the metallic glass.展开更多
The dynamic compressive behavior and constitutive relations of Lanthanum(La) metal was determined by using the first compression in split Hopkinson pressure bar(SHPB) tests at different strain rates and temperatur...The dynamic compressive behavior and constitutive relations of Lanthanum(La) metal was determined by using the first compression in split Hopkinson pressure bar(SHPB) tests at different strain rates and temperatures.The constitutive relation of La metal determined in a certain range of strains was employed and adjusted in numerically simulating large deformations of La metal specimens generated by multi-compression in SHPB tests and recorded by a high-speed camera.The dynamic compressive behavior and constitutive relations of La metal under multiple SHPB tests loading was also revealed.The results of scanning electron microscope(SEM) investigation of the recovered La metal specimens for typical tests showed that there was a variety of deformation microstructures depending on strain rate,temperature and stress state.展开更多
During rock drilling and blasting activities,stemming blast holes is to prevent high-pressure explosive gases from the holes,thereby enhancing the overall blasting effectiveness.Hence,it is imperative to investigate t...During rock drilling and blasting activities,stemming blast holes is to prevent high-pressure explosive gases from the holes,thereby enhancing the overall blasting effectiveness.Hence,it is imperative to investigate the dynamic mechanical properties of the stem-ming materials.In this study,impact compression tests were conducted on self-swelling cartridges(SSCs)using a split Hopkinson pres-sure bar(SHPB),aiming to evaluate dynamic performances across strain rate range of 20 to 65 s^(−1).Test results indicate that the dynamic compressive strength of SSCs exhibits the following trends:it increases with increasing density of SSC,decreases with an increase in insertion gap,and follows an initial rise and subsequent fall trend with an increase in water absorption.The order of significance among these factors is density>water absorption>insertion gaps.SSCs exhibit a pronounced strain-rate strengthening dependence in dynamic compressive strength.Furthermore,both the compressive peak stress and peak strain of SSCs follow a well-defined quadratic upward trend with increasing strain rates.As the strain rate increases,the degree of fragmentation,absorbed energy,and dynamic increase factor exhibit an upward trend.Model experimental results indicate that,compared to cementitious stemming materials,SSCs can prolong the duration of gas explosion action.Therefore,SSCs are more suitable for high strain-rate applications such as blasting stemming and rock burst control.展开更多
Coal seam water injection in tunnels is an effective technical measure for preventing coal mine rock bursts.This study used the improved split Hopkinson pressure bar(SHPB)to apply three equal static stresses to water-...Coal seam water injection in tunnels is an effective technical measure for preventing coal mine rock bursts.This study used the improved split Hopkinson pressure bar(SHPB)to apply three equal static stresses to water-saturated coal to simulate the initial stress environment of coal at different depths.Then,dynamic mechanical experiments were conducted on the saturated coal at different depths to investigate the effects of water saturation and depth on the coal samples’dynamic mechanical properties.Under uniaxial compression and without lateral compression,the strength of coal samples decreased to varying degrees in the saturated state;under different depth conditions,the dynamic strength of coal in the saturated state decreased compared with that in the natural state.However,compared with that at 0 m,the reduction in the strength of coal under the saturated condition at 200,400,600,and 800 m was significantly reduced.The findings of this study provide a basic theoretical foundation for the prevention and control of dynamic coal mine disasters.展开更多
Split Hopkinson pressure bar(SHPB)was used to investigate the dynamic compressive properties of sisal fiber reinforced coral aggregate concrete(SFCAC).The results showed that,with the increase of strain rate,the dynam...Split Hopkinson pressure bar(SHPB)was used to investigate the dynamic compressive properties of sisal fiber reinforced coral aggregate concrete(SFCAC).The results showed that,with the increase of strain rate,the dynamic compressive strength,peak strain and toughness index of SFCAC are all greater than its static properties,indicating that SFCAC is a kind of rate-sensitive material.When the sisal fiber was blended,the failure mode showed obvious ductility.At high strain rates,the SFCAC without sisal fiber specimen was comminuted,and the SFCAC showed a"cracked without breaking"state.The results indicated that the sisal fiber played a significant role in reinforcing and strengthening the properties of concrete.The finite element software LS-DYNA was used to simulate two working conditions with strain rates of 78 and 101 s-1.The stressstrain curves and failure patterns obtained were in good agreement with the experimental results.展开更多
The dynamic properties of limestone play a pivotal role while selecting the suitable explosives for any limestone mine.Since the application of explosives creates dynamic loading and is a dynamic event,the determinati...The dynamic properties of limestone play a pivotal role while selecting the suitable explosives for any limestone mine.Since the application of explosives creates dynamic loading and is a dynamic event,the determination of dynamic modulus values is technically more appropriate than the static measurement.The rock fragmentation would significantly improve by investigating the dynamic uniaxial compressive strength as specific fracture energy,stress intensity factor,fracture toughness of any detonating blast hole depend heavily on dynamic rock property and not on static rock property.Most of the limestone projects globally are still accustomed with using static compressive strength to understand the rock fragmentation.The present papers deal with determination of dynamic uniaxial compressive property using split Hopkinson pressure bar(SHPB)system.The nano second high speed camera with laser captures the crack surface opening velocity during dynamic loading.It was observed during data analysis that dynamic compressive strength of limestone increases by 1.7-4.9 times of the static strength.It may be concluded by the study that determination of dynamic compressive strength is paramount for understanding the rock fragmentation.展开更多
As an attractive class of metallic materials,single-phase CrCoNi medium-entropy alloy(MEA)has drawn much attention recently regarding their deformation behaviors,but the dynamically mechanical responses of this alloy ...As an attractive class of metallic materials,single-phase CrCoNi medium-entropy alloy(MEA)has drawn much attention recently regarding their deformation behaviors,but the dynamically mechanical responses of this alloy at high strain rates remain less studied,especially coupled with extremely low temperatures.In this study,the dynamic deformation behaviors of this CrCoNi MEA were systematically investigated at room temperature(RT)of 298 K and liquid nitrogen temperature(LNT)of 77 K using the split Hopkinson pressure bar(SHPB).This alloy exhibited a combination of higher yield strength and stronger hardening rate upon dynamic compressive deformation when the loading conditions become much harsher(higher strain rate or lower temperature).Detailed microstructure analyses indicated that the strong strain hardening ability during dynamic deformation was mainly attributed to the continuous formation of nanoscale deformation twins.Furthermore,as loaded at LNT,multi-directional deformation twins were activated.Meanwhile,due to the interaction between Shockley partial dislocations and twin boundaries,large-sized deformation-induced FCC-HCP phase transformations at a micrometer scale were also observed within the grains,which not only accommodated the plasticity but also played an important role in improving the hardening capability owing to the appearance of newly generated interfaces.展开更多
We present a class of arbitrarily high order fully explicit kinetic numerical methods in compressible fluid dynamics,both in time and space,which include the relaxation schemes by Jin and Xin.These methods can use the...We present a class of arbitrarily high order fully explicit kinetic numerical methods in compressible fluid dynamics,both in time and space,which include the relaxation schemes by Jin and Xin.These methods can use the CFL number larger or equal to unity on regular Cartesian meshes for the multi-dimensional case.These kinetic models depend on a small parameter that can be seen as a"Knudsen"number.The method is asymptotic preserving in this Knudsen number.Also,the computational costs of the method are of the same order of a fully explicit scheme.This work is the extension of Abgrall et al.(2022)[3]to multidimensional systems.We have assessed our method on several problems for two-dimensional scalar problems and Euler equations and the scheme has proven to be robust and to achieve the theoretically predicted high order of accuracy on smooth solutions.展开更多
For understanding the rock microscopic damage and dynamic mechanical properties subjected to recurrent freeze-thaw cycles, experiments for five groups of homogeneous sandstone under different freeze-thaw cycles were c...For understanding the rock microscopic damage and dynamic mechanical properties subjected to recurrent freeze-thaw cycles, experiments for five groups of homogeneous sandstone under different freeze-thaw cycles were conducted. After freezethaw, nuclear magnetic resonance(NMR) tests and impact loading tests were carried out, from which microscopic damage characteristics of sandstone and dynamic mechanical parameters were obtained. The results indicate that the porosity increases with the increase of cycle number, the rate of porosity growth descends at the beginning of freeze-thaw, yet accelerates after a certain number of cycles. The proportion of pores with different sizes changes dynamically and the multi-scale distribution of pores tends to develop on pore structure with the continuing impact of freeze-thaw and thawing. Dynamic compressive stress-strain curve of sandstone undergoing freeze-thaw can be divided into four phases, and the phase of compaction is inconspicuous compared with the static curve. Elastic modulus and dynamic peak intensity of sandstone gradually decrease with freeze-thaw cycles, while peak strain increases. The higher the porosity is, the more serious the degradation of dynamic intensity is. The porosity is of a polynomial relationship with the dynamic peak intensity.展开更多
The microwave-assisted rock fragmentation has been proven to be a promising approach in reducing cutting tools wear and improving efficiency in rock crushing and excavation.Thus,understanding the influence of damage i...The microwave-assisted rock fragmentation has been proven to be a promising approach in reducing cutting tools wear and improving efficiency in rock crushing and excavation.Thus,understanding the influence of damage induced by microwave irradiation on rock fragmentation is necessary.In this context,cylindrical Fangshan granite(FG)specimens were exposed to microwave irradiation at a power of 6 kW for different durations up to 4.5 min.The damages of the specimens induced by irradiation were quantified by using both X-ray micro-CT scanning and ultrasonic wave measurement.The CT value and Pwave velocity decreased with increase of irradiation duration.The irradiated specimens were then tested using a split Hopkinson pressure bar(SHPB)system to simulate rock fragmentation.A momentum-trap technique was utilized to ensure single-pulse loading on the specimen in SHPB tests,enabling valid fragment size distribution(FSD)analysis.The dependence of dynamic uniaxial compressive strength(UCS)on the irradiation duration and loading rate was revealed.The dynamic UCS increased with increase of loading rate while decreased with increase of irradiation duration.Using the sieve analysis,three fragmentation types were proposed based on FSD,which were dictated by both loading rate and irradiation duration.In addition,an average fragment size was proposed to quantify FSD.The results showed that the average fragment size decreased with increase of loading rate.A loading rate range was identified,where a dramatic reduction of the average fragment size occurred.The dependence of fragmentation on the irradiation duration and loading rate was also discussed.展开更多
Slurry-infiltrated fiber concrete(SIFCON)is a sort of strain hardening cement-based composite material,typically made with 5%–20%steel fibers.This study focused on a novel type of SIFCON in which hooked-end steel fib...Slurry-infiltrated fiber concrete(SIFCON)is a sort of strain hardening cement-based composite material,typically made with 5%–20%steel fibers.This study focused on a novel type of SIFCON in which hooked-end steel fibers were replaced by arc-shaped steel fibers.The quasi-static compressive properties of the SIFCON were first measured.Test results suggested that using arc-shaped steel fibers in lieu of hooked-end steel fibers increased the quasi-static compressive strength by 47.1%and the strain at peak stress by 56.3%.We attribute these improvements to new crack-resisting mechanisms,namely“fiber crosslock”,“dual bridging”,and“confinement loops”,when the arc-shaped steel fibers are introduced into SIFCON.As high impact resistance is a special property of SIFCON that is of practical significance,the dynamic compressive properties of arc-shaped steel fiber SIFCON were studied by using an 80-mm-diameter split Hopkinson pressure bar(SHPB).The results showed that the dynamic compressive strength,dynamic increase factor(DIF),and dynamic toughness of SIFCON all increased with the strain rate.The SIFCON incorporating arc-shaped steel fibers proved to have significant advantages in structural applications requiring high impact resistance.展开更多
Microstructural evolution of the zirconium alloy deformed at a strain rate of about 1000 s-1 was investigated. Four different strain levels of the zirconium alloy subjected to dynamic compression were designed by seve...Microstructural evolution of the zirconium alloy deformed at a strain rate of about 1000 s-1 was investigated. Four different strain levels of the zirconium alloy subjected to dynamic compression were designed by several-times impacting at almost the same strain rate. The results show that abundant low angle boundaries at different strain levels were observed in the deformed microstructures, and the quantity and density of low angle boundary increase dramatically with the strain increasing. Besides low angle boundaries and high angle boundaries observed in grain boundary maps, the twin boundaries including the tensile twins {10 2}, {11 1} and compressive twins {11 2} were distinguished at different strain levels, and most twin boundaries were indexed as {10 2} twins. With the stain increasing, the twin boundary density in the deformed microstructures increases indistinctively. Based on the characterization of the deformed microstructures at the different strain levels, the deformation and evolution processes of the zirconium alloy subjected to dynamic loading were proposed. Microhardness measurements show that the microhardness in the impacted specimens increases gradually with the strain increasing, which should be associated with the strain hardening caused by the tangled dislocation.展开更多
Recent advances in additive manufacturing have enabled the construction of metallic lattice structures with tailored mechanical and functional properties.One potential application of metallic lattice struc-tures is in...Recent advances in additive manufacturing have enabled the construction of metallic lattice structures with tailored mechanical and functional properties.One potential application of metallic lattice struc-tures is in the impact load mitigation where an external kinetic energy is absorbed by the deformation/crushing of lattice cells.This has motivated a growing number of experimental and numerical studies,recently,on the crushing behavior of additively produced lattice structures.The present study overviews the dynamic and quasi-static crushing behavior of additively produced Ti64,316L,and AlSiMg alloy lattice structures.The first part of the study summarizes the main features of two most commonly used additive processing techniques for lattice structures,namely selective-laser-melt(SLM)and electro-beam-melt(EBM),along with a description of commonly observed process induced defects.In the second part,the deformation and strain rate sensitivities of the selected alloy lattices are outlined together with the most widely used dynamic test methods,followed by a part on the observed micro-structures of the SLM and EBM-processed Ti64,316L and AlSiMg alloys.Finally,the experimental and numerical studies on the quasi-static and dynamic compression behavior of the additively processed Ti64,316L,and AlSiMg alloy lattices are reviewed.The results of the experimental and numerical studies of the dynamic properties of various types of lattices,including graded,non-uniform strut size,hollow,non-uniform cell size,and bio-inspired,were tabulated together with the used dynamic testing methods.The dynamic tests have been noted to be mostly conducted in compression Split Hopkinson Pressure Bar(SHPB)or Taylor-and direct-impact tests using the SHPB set-up,in all of which relatively small-size test specimens were tested.The test specimen size effect on the compression behavior of the lattices was further emphasized.It has also been shown that the lattices of Ti64 and AlSiMg alloys are relatively brittle as compared with the lattices of 316L alloy.Finally,the challenges associated with modelling lattice structures were explained and the micro tension tests and multi-scale modeling techniques combining microstructural characteristics with macroscopic lattice dynamics were recommended to improve the accuracy of the numerical simulations of the dynamic compression deformations of metallic lattice structures.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.42072309)the Knowledge Innovation Program of Wuhan-Basic Research(Grant No.2022020801010199)the Fundamental Research Funds for National University,China University of Geosciences(Wuhan)(Grant No.CUGDCJJ202217).
文摘In cold regions,the dynamic compressive strength(DCS)of rock damaged by freeze-thaw weathering significantly influences the stability of rock engineering.Nevertheless,testing the dynamic strength under freeze-thaw weathering conditions is often both time-consuming and expensive.Therefore,this study considers the effect of characteristic impedance on DCS and aims to quickly determine the DCS of frozen-thawed rocks through the application of machine-learning techniques.Initially,a database of DCS for frozen-thawed rocks,comprising 216 rock specimens,was compiled.Three external load parameters(freeze-thaw cycle number,confining pressure,and impact pressure)and two rock parameters(characteristic impedance and porosity)were selected as input variables,with DCS as the predicted target.This research optimized the kernel scale,penalty factor,and insensitive loss coefficient of the support vector regression(SVR)model using five swarm intelligent optimization algorithms,leading to the development of five hybrid models.In addition,a statistical DCS prediction equation using multiple linear regression techniques was developed.The performance of the prediction models was comprehensively evaluated using two error indexes and two trend indexes.A sensitivity analysis based on the cosine amplitude method has also been conducted.The results demonstrate that the proposed hybrid SVR-based models consistently provided accurate DCS predictions.Among these models,the SVR model optimized with the chameleon swarm algorithm exhibited the best performance,with metrics indicating its effectiveness,including root mean square error(RMSE)﹦3.9675,mean absolute error(MAE)﹦2.9673,coefficient of determination(R^(2))﹦0.98631,and variance accounted for(VAF)﹦98.634.This suggests that the chameleon swarm algorithm yielded the most optimal results for enhancing SVR models.Notably,impact pressure and characteristic impedance emerged as the two most influential parameters in DCS prediction.This research is anticipated to serve as a reliable reference for estimating the DCS of rocks subjected to freeze-thaw weathering.
基金The authors would like to acknowledge the financial support from the National Key Basic Research Program(973 Program),Project(2013CB632205).
文摘For the purpose of investigating the dynamic deformational behavior and failure mechanisms of magnesium under high strain rates,the Split Hopkinson Pressure Bar(SHPB)was used for investigating dynamic mechanical properties of extruded Mg-Gd-Y Magnesium alloy at ambient temperature(300 K),200℃(473 K)and 300℃(573 K)temperature.The samples after compression were analyzed by scanning electron microscope(SEM)and metallographic microscope.Dynamic mechanical properties,crack performance and plastic deformation mechanism of extruded Mg-Gd-Y Magnesium alloy along the extrusion direction(ED)were discussed.The results show that,extruded Mg-Gd-Y Magnesium alloy has the largest dynamic compressive strength which is 535 MPa at ambient temperature(300 K)and strain rate of 2826 s^(−1).When temperature increases,dynamic compressive strength decreases,while ductility increases.The dynamic compression fracture mechanism of extruded Mg-Gd-Y Magnesium alloy is multi-crack propagation and intergranular quasi-cleavage fracture at both ambient temperature and high temperature.The dynamic compressive deformation mechanism of extruded Mg-Gd-Y Magnesium alloy is a combination of twinning,slipping and dynamic recrystallization at both ambient temperature and high temperature.
基金the National Natural Science Foundation of China(Nos.41972283,11972378)the National Key Scientific Instrument and Equipment Development,China(No.51927808)the Hunan Provincial Innovation Foundation for Postgraduate,China(No.CX2018B066).
文摘To investigate the influence of microwave heating on the dynamic behavior and failure mechanisms of rock,dynamic compression tests were conducted on microwave-irradiated sandstone specimens using a modified split Hopkinson pressure bar(SHPB)system.Experimental results show that microwave radiation can effectively weaken the compressive strength of sandstone.Rock specimens show three different failure modes under impact load:tensile failure,tensile−shear composite failure and compressive−shear failure.The dynamic Poisson’s ratio,calculated using the measured P-and S-wave velocities,is introduced to describe the deformation characteristics of sandstone.With the increase in microwave power and heating time,the Poisson’s ratio declines first and then increases slightly,and the turning point occurs at 244.6℃.Moreover,the microstructural characteristics reveal that microwave radiation produces dehydration,pore expansion,and cracking of the rock.The damage mechanisms caused by microwave radiation are discussed based on thermal stress and steam pressure inside the rock,which provides a reasonable explanation for the experimental results.
基金Projects(50534030, 50674107, 50490274) supported by the National Natural Science Foundation of ChinaProject(06JJ3028) supported by the Provincial Natural Science Foundation of Hunan, China
文摘Split Hopkinson Pressure Bar(SHPB) test was simulated to investigate the distribution of the first principal stress and damage zone of specimen subjected to dynamic compressive load. Numerical models of plate-type specimen containing cracks with inclined angles of 0°,45° and 90° were also established to investigate the crack propagation and damage evolution under dynamic loading. The results show that the simulation results are in accordance with the failure patterns of specimens in experimental test. The interactions between stress wave and crack with different inclined angles are different; damage usually appears around the crack tips firstly; and then more damage zones develop away from the foregoing damage zone after a period of energy accumulation; eventually,the damage zones run through the specimen in the direction of applied loading and split the specimen into pieces.
基金supported by the National Natural Science Foundation of China(Nos.51774325,41972283,11972378).
文摘The dynamic mechanical properties of basalt affected by microwave were investigated by performing dynamic compressive tests using the SHPB system.Meanwhile,the thermal damage of the treated basalt was characterized by ultrasonic non-destructive testing and nuclear magnetic resonance technology.The results show that with the increase of microwave power and exposure time,the P-wave velocity,dynamic compressive strength and elastic modulus decrease continuously,and the dynamic failure mode tends to be a more complex fracturing.The increase in microwave power and exposure time can enhance the temperature difference and transfer coefficient among minerals,hence intensifying the rock damage induced by thermal shock.
基金This work was supported by the Natural Science Foundation of CAEP under grant No.10076020.
文摘The dynamic mechanical properties of open-cell aluminum alloy foams with different relative densities and cell sizes have been investigated by compressive tests. The strain rates varied from 700 s-1 to 2600 s-1. The experimental results showed that the dynamic compressive stress-strain curves exhibited a typical three-stage behavior: elastic, plateau and densification. The dynamic compressive strength of foams is affected not only by the relative density but also by the strain rate and cell size. Aluminum alloy foams with higher relative density or smaller cell size are more sensitive to the strain rate than foams with lower relative density or larger cell size.
基金Funded by the Scientific and Technological Development Project of Yantai(No.2013JH020)
文摘To understand the quasi-static and dynamic compressive mechanical behavior of two- dimensional SiC fiber-reinforced SiC composites (2D-SiC1/SiC), their compressive behavior at room temperature was investigated at a strain rate from 10-4 to 104/s, and the fracture surfaces and damage morphology were observed. The results show that the dynamic failure strength of 2D-SiC1/SiC obeys the Weibull distribution, and the Weibull modulus is 5,66. Meanwhile, 2D-SiC1/SiC presents a transition from brittle to tough with a decrease of strain rate, and 2D-SiC1/SiC has a more significant strain rate sensitivity compared to the 2D-C/SiC composites. The failure mode of 2D-SiC1/SiC depends upon the strain rate.
基金financially supported by the National Natural Science Foundation of China(Nos.51790484,U1738101)the National Key Research and Development Program(No.2018YFB0703402)+1 种基金the Liaoning Revitalization Talents Program(Nos.XLYC1802078 and XLYC1807062)the Shenyang Amorphous Metal Manufacturing Co.,Ltd。
文摘The mechanical behaviors of Zr43.5Cu43.5Ni4Al8Nb1,Zr55.4Cu31.6Ni4Al8Nb1,Ti32.8Zr30.2Ni5.3Cu9Be22.7(at.%)metallic glass at different strain rates were studied.For all the present alloys,the dispersion over 700 MPa was observed on the strength in the repeated dynamic compressions,which was much stronger than that of the quasi-static compressive strength.Such the dispersion of the dynamic compressive strength was well correlated with the corresponding fracture behaviors.The area of fracture surface was calculated and also showed a strong dispersion for all the fractured specimens tested at the strain rate of 500 s^-1 and 1000 s^-1.All the specimens showed a linear relationship between the square of dynamic compressive strength and the area of fracture surface in the dynamic compression tests.This phenomenon was mainly thought to be related to the difference of mean initial free volume concentration of different samples,stress concentration caused by the split Hopkinson pressure bar experimental setup and high sensitivity of defects under dynamic deformation.These findings were beneficial to deeply understand the effect of strain rate on the mechanical properties of the metallic glass.
基金supported by National Natural Science Foundation of China (10872100,11072118)Natural Science Foundation of Zhejiang(Y12A020008)
文摘The dynamic compressive behavior and constitutive relations of Lanthanum(La) metal was determined by using the first compression in split Hopkinson pressure bar(SHPB) tests at different strain rates and temperatures.The constitutive relation of La metal determined in a certain range of strains was employed and adjusted in numerically simulating large deformations of La metal specimens generated by multi-compression in SHPB tests and recorded by a high-speed camera.The dynamic compressive behavior and constitutive relations of La metal under multiple SHPB tests loading was also revealed.The results of scanning electron microscope(SEM) investigation of the recovered La metal specimens for typical tests showed that there was a variety of deformation microstructures depending on strain rate,temperature and stress state.
基金supported by the National Natural Science Foundation of China(Nos.51874068 and 52074062)the Open Funds from the Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines,Northeastern University,China(No.DM2023B03).
文摘During rock drilling and blasting activities,stemming blast holes is to prevent high-pressure explosive gases from the holes,thereby enhancing the overall blasting effectiveness.Hence,it is imperative to investigate the dynamic mechanical properties of the stem-ming materials.In this study,impact compression tests were conducted on self-swelling cartridges(SSCs)using a split Hopkinson pres-sure bar(SHPB),aiming to evaluate dynamic performances across strain rate range of 20 to 65 s^(−1).Test results indicate that the dynamic compressive strength of SSCs exhibits the following trends:it increases with increasing density of SSC,decreases with an increase in insertion gap,and follows an initial rise and subsequent fall trend with an increase in water absorption.The order of significance among these factors is density>water absorption>insertion gaps.SSCs exhibit a pronounced strain-rate strengthening dependence in dynamic compressive strength.Furthermore,both the compressive peak stress and peak strain of SSCs follow a well-defined quadratic upward trend with increasing strain rates.As the strain rate increases,the degree of fragmentation,absorbed energy,and dynamic increase factor exhibit an upward trend.Model experimental results indicate that,compared to cementitious stemming materials,SSCs can prolong the duration of gas explosion action.Therefore,SSCs are more suitable for high strain-rate applications such as blasting stemming and rock burst control.
基金Projects(52225403,52074112)supported by the National Natural Science Foundation of ChinaProject(2022CFD009)supported by the Hubei Natural Science Foundation Innovation and Development Joint Fund Key Project,China+2 种基金Project(SDGZK2423)supported by the State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering,ChinaProject(HJZKYBKT2024111)supported by the Xiangyang Federation of Social Sciences“Hanjiang Think Tank”Project,ChinaProject supported by the Hubei Superior and Distinctive Discipline Group of“New Energy Vehicle and Smart Transportation”,China。
文摘Coal seam water injection in tunnels is an effective technical measure for preventing coal mine rock bursts.This study used the improved split Hopkinson pressure bar(SHPB)to apply three equal static stresses to water-saturated coal to simulate the initial stress environment of coal at different depths.Then,dynamic mechanical experiments were conducted on the saturated coal at different depths to investigate the effects of water saturation and depth on the coal samples’dynamic mechanical properties.Under uniaxial compression and without lateral compression,the strength of coal samples decreased to varying degrees in the saturated state;under different depth conditions,the dynamic strength of coal in the saturated state decreased compared with that in the natural state.However,compared with that at 0 m,the reduction in the strength of coal under the saturated condition at 200,400,600,and 800 m was significantly reduced.The findings of this study provide a basic theoretical foundation for the prevention and control of dynamic coal mine disasters.
基金National Natural Science Foundation of China(Nos.51508272,11832013,51878350,52078250)。
文摘Split Hopkinson pressure bar(SHPB)was used to investigate the dynamic compressive properties of sisal fiber reinforced coral aggregate concrete(SFCAC).The results showed that,with the increase of strain rate,the dynamic compressive strength,peak strain and toughness index of SFCAC are all greater than its static properties,indicating that SFCAC is a kind of rate-sensitive material.When the sisal fiber was blended,the failure mode showed obvious ductility.At high strain rates,the SFCAC without sisal fiber specimen was comminuted,and the SFCAC showed a"cracked without breaking"state.The results indicated that the sisal fiber played a significant role in reinforcing and strengthening the properties of concrete.The finite element software LS-DYNA was used to simulate two working conditions with strain rates of 78 and 101 s-1.The stressstrain curves and failure patterns obtained were in good agreement with the experimental results.
文摘The dynamic properties of limestone play a pivotal role while selecting the suitable explosives for any limestone mine.Since the application of explosives creates dynamic loading and is a dynamic event,the determination of dynamic modulus values is technically more appropriate than the static measurement.The rock fragmentation would significantly improve by investigating the dynamic uniaxial compressive strength as specific fracture energy,stress intensity factor,fracture toughness of any detonating blast hole depend heavily on dynamic rock property and not on static rock property.Most of the limestone projects globally are still accustomed with using static compressive strength to understand the rock fragmentation.The present papers deal with determination of dynamic uniaxial compressive property using split Hopkinson pressure bar(SHPB)system.The nano second high speed camera with laser captures the crack surface opening velocity during dynamic loading.It was observed during data analysis that dynamic compressive strength of limestone increases by 1.7-4.9 times of the static strength.It may be concluded by the study that determination of dynamic compressive strength is paramount for understanding the rock fragmentation.
基金supported by the National Natural Science Foundation of China(Grant No.12102363)the China National Funds for Distinguished Young Scientists(Grant No.12025205).
文摘As an attractive class of metallic materials,single-phase CrCoNi medium-entropy alloy(MEA)has drawn much attention recently regarding their deformation behaviors,but the dynamically mechanical responses of this alloy at high strain rates remain less studied,especially coupled with extremely low temperatures.In this study,the dynamic deformation behaviors of this CrCoNi MEA were systematically investigated at room temperature(RT)of 298 K and liquid nitrogen temperature(LNT)of 77 K using the split Hopkinson pressure bar(SHPB).This alloy exhibited a combination of higher yield strength and stronger hardening rate upon dynamic compressive deformation when the loading conditions become much harsher(higher strain rate or lower temperature).Detailed microstructure analyses indicated that the strong strain hardening ability during dynamic deformation was mainly attributed to the continuous formation of nanoscale deformation twins.Furthermore,as loaded at LNT,multi-directional deformation twins were activated.Meanwhile,due to the interaction between Shockley partial dislocations and twin boundaries,large-sized deformation-induced FCC-HCP phase transformations at a micrometer scale were also observed within the grains,which not only accommodated the plasticity but also played an important role in improving the hardening capability owing to the appearance of newly generated interfaces.
基金funded by the SNF project 200020_204917 entitled"Structure preserving and fast methods for hyperbolic systems of conservation laws".
文摘We present a class of arbitrarily high order fully explicit kinetic numerical methods in compressible fluid dynamics,both in time and space,which include the relaxation schemes by Jin and Xin.These methods can use the CFL number larger or equal to unity on regular Cartesian meshes for the multi-dimensional case.These kinetic models depend on a small parameter that can be seen as a"Knudsen"number.The method is asymptotic preserving in this Knudsen number.Also,the computational costs of the method are of the same order of a fully explicit scheme.This work is the extension of Abgrall et al.(2022)[3]to multidimensional systems.We have assessed our method on several problems for two-dimensional scalar problems and Euler equations and the scheme has proven to be robust and to achieve the theoretically predicted high order of accuracy on smooth solutions.
基金Project(2013YQ17046310)supported by the National Key Scientific Instrument and Equipment Development Project of ChinaProject(2013M542138)supported by China Postdoctoral Science FoundationProjects(20130162110010,20130162120012)supported by Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘For understanding the rock microscopic damage and dynamic mechanical properties subjected to recurrent freeze-thaw cycles, experiments for five groups of homogeneous sandstone under different freeze-thaw cycles were conducted. After freezethaw, nuclear magnetic resonance(NMR) tests and impact loading tests were carried out, from which microscopic damage characteristics of sandstone and dynamic mechanical parameters were obtained. The results indicate that the porosity increases with the increase of cycle number, the rate of porosity growth descends at the beginning of freeze-thaw, yet accelerates after a certain number of cycles. The proportion of pores with different sizes changes dynamically and the multi-scale distribution of pores tends to develop on pore structure with the continuing impact of freeze-thaw and thawing. Dynamic compressive stress-strain curve of sandstone undergoing freeze-thaw can be divided into four phases, and the phase of compaction is inconspicuous compared with the static curve. Elastic modulus and dynamic peak intensity of sandstone gradually decrease with freeze-thaw cycles, while peak strain increases. The higher the porosity is, the more serious the degradation of dynamic intensity is. The porosity is of a polynomial relationship with the dynamic peak intensity.
基金This research was supported by the National Natural Science Foundation of China(Nos.51704211 and 51879184).
文摘The microwave-assisted rock fragmentation has been proven to be a promising approach in reducing cutting tools wear and improving efficiency in rock crushing and excavation.Thus,understanding the influence of damage induced by microwave irradiation on rock fragmentation is necessary.In this context,cylindrical Fangshan granite(FG)specimens were exposed to microwave irradiation at a power of 6 kW for different durations up to 4.5 min.The damages of the specimens induced by irradiation were quantified by using both X-ray micro-CT scanning and ultrasonic wave measurement.The CT value and Pwave velocity decreased with increase of irradiation duration.The irradiated specimens were then tested using a split Hopkinson pressure bar(SHPB)system to simulate rock fragmentation.A momentum-trap technique was utilized to ensure single-pulse loading on the specimen in SHPB tests,enabling valid fragment size distribution(FSD)analysis.The dependence of dynamic uniaxial compressive strength(UCS)on the irradiation duration and loading rate was revealed.The dynamic UCS increased with increase of loading rate while decreased with increase of irradiation duration.Using the sieve analysis,three fragmentation types were proposed based on FSD,which were dictated by both loading rate and irradiation duration.In addition,an average fragment size was proposed to quantify FSD.The results showed that the average fragment size decreased with increase of loading rate.A loading rate range was identified,where a dramatic reduction of the average fragment size occurred.The dependence of fragmentation on the irradiation duration and loading rate was also discussed.
基金This work is supported by the National Natural Science Foundation of China(Nos.52278281,51978624,and 51908505).
文摘Slurry-infiltrated fiber concrete(SIFCON)is a sort of strain hardening cement-based composite material,typically made with 5%–20%steel fibers.This study focused on a novel type of SIFCON in which hooked-end steel fibers were replaced by arc-shaped steel fibers.The quasi-static compressive properties of the SIFCON were first measured.Test results suggested that using arc-shaped steel fibers in lieu of hooked-end steel fibers increased the quasi-static compressive strength by 47.1%and the strain at peak stress by 56.3%.We attribute these improvements to new crack-resisting mechanisms,namely“fiber crosslock”,“dual bridging”,and“confinement loops”,when the arc-shaped steel fibers are introduced into SIFCON.As high impact resistance is a special property of SIFCON that is of practical significance,the dynamic compressive properties of arc-shaped steel fiber SIFCON were studied by using an 80-mm-diameter split Hopkinson pressure bar(SHPB).The results showed that the dynamic compressive strength,dynamic increase factor(DIF),and dynamic toughness of SIFCON all increased with the strain rate.The SIFCON incorporating arc-shaped steel fibers proved to have significant advantages in structural applications requiring high impact resistance.
基金Project(50890172)supported by the National Natural Science Foundation of ChinaProject(NCET-08-0606)supported by New Century Excellent Talents in University,China
文摘Microstructural evolution of the zirconium alloy deformed at a strain rate of about 1000 s-1 was investigated. Four different strain levels of the zirconium alloy subjected to dynamic compression were designed by several-times impacting at almost the same strain rate. The results show that abundant low angle boundaries at different strain levels were observed in the deformed microstructures, and the quantity and density of low angle boundary increase dramatically with the strain increasing. Besides low angle boundaries and high angle boundaries observed in grain boundary maps, the twin boundaries including the tensile twins {10 2}, {11 1} and compressive twins {11 2} were distinguished at different strain levels, and most twin boundaries were indexed as {10 2} twins. With the stain increasing, the twin boundary density in the deformed microstructures increases indistinctively. Based on the characterization of the deformed microstructures at the different strain levels, the deformation and evolution processes of the zirconium alloy subjected to dynamic loading were proposed. Microhardness measurements show that the microhardness in the impacted specimens increases gradually with the strain increasing, which should be associated with the strain hardening caused by the tangled dislocation.
基金the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No 101034425 for the project titled A2M2TECHThe Scientific and Technological Research Council of Türkiye (TUBITAK) with grant No 120C158 for the same A2M2TECH project under the TUBITAK's 2236/B program
文摘Recent advances in additive manufacturing have enabled the construction of metallic lattice structures with tailored mechanical and functional properties.One potential application of metallic lattice struc-tures is in the impact load mitigation where an external kinetic energy is absorbed by the deformation/crushing of lattice cells.This has motivated a growing number of experimental and numerical studies,recently,on the crushing behavior of additively produced lattice structures.The present study overviews the dynamic and quasi-static crushing behavior of additively produced Ti64,316L,and AlSiMg alloy lattice structures.The first part of the study summarizes the main features of two most commonly used additive processing techniques for lattice structures,namely selective-laser-melt(SLM)and electro-beam-melt(EBM),along with a description of commonly observed process induced defects.In the second part,the deformation and strain rate sensitivities of the selected alloy lattices are outlined together with the most widely used dynamic test methods,followed by a part on the observed micro-structures of the SLM and EBM-processed Ti64,316L and AlSiMg alloys.Finally,the experimental and numerical studies on the quasi-static and dynamic compression behavior of the additively processed Ti64,316L,and AlSiMg alloy lattices are reviewed.The results of the experimental and numerical studies of the dynamic properties of various types of lattices,including graded,non-uniform strut size,hollow,non-uniform cell size,and bio-inspired,were tabulated together with the used dynamic testing methods.The dynamic tests have been noted to be mostly conducted in compression Split Hopkinson Pressure Bar(SHPB)or Taylor-and direct-impact tests using the SHPB set-up,in all of which relatively small-size test specimens were tested.The test specimen size effect on the compression behavior of the lattices was further emphasized.It has also been shown that the lattices of Ti64 and AlSiMg alloys are relatively brittle as compared with the lattices of 316L alloy.Finally,the challenges associated with modelling lattice structures were explained and the micro tension tests and multi-scale modeling techniques combining microstructural characteristics with macroscopic lattice dynamics were recommended to improve the accuracy of the numerical simulations of the dynamic compression deformations of metallic lattice structures.