期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于多感受野特征增强的改进EfficientDet遥感目标检测算法 被引量:6
1
作者 张润梅 贾振楠 +3 位作者 李佳祥 吴路路 徐信芯 袁彬 《电光与控制》 CSCD 北大核心 2024年第7期53-60,96,共9页
针对遥感图像目标检测中小目标检测精度低、目标密集和尺度形态多样等问题,在轻量化网络EfficientDet-D0目标检测算法的基础上,在加权双向特征金字塔网络(BiFPN)进行特征融合时加入小尺度以及高一级尺度的中间信息,对BiFPN网络进行重构... 针对遥感图像目标检测中小目标检测精度低、目标密集和尺度形态多样等问题,在轻量化网络EfficientDet-D0目标检测算法的基础上,在加权双向特征金字塔网络(BiFPN)进行特征融合时加入小尺度以及高一级尺度的中间信息,对BiFPN网络进行重构,充分利用不同尺度信息,提高多尺度目标检测精度;同时在BiFPN中加入融合空洞卷积和快速归一化融合方法的特征增强模块,补强因特征图缩放所丢失的特征信息,进一步提高检测精度;另外,采用参数动态的Dynamic ReLU激活函数对原始网络中的参数静态的Swish激活函数进行改进。改进EfficientDet算法在不影响轻量化特点的前提下,对公开数据集Pascal VOC的目标检测平均精度均值(mAP)相较于原始算法提升11.9个百分点,亦优于其他目标检测算法。针对遥感图像数据集RSOD,通过Imgaug数据增强库对已有的936幅遥感图像数据集进行数据增广,利用改进模型进行迁移学习,未进行数据增广和增广后的目标检测结果分别为88.38%和96.78%,证明所提算法可以满足实际应用中对遥感图像目标的检测要求。 展开更多
关键词 深度学习 遥感图像 目标检测 EfficientDet 多尺度特征融合 特征增强模块 dynamic relu
在线阅读 下载PDF
基于层级残差连接LSTM的命名实体识别 被引量:11
2
作者 王进 李颖 +2 位作者 蒋晓翠 吕晓旭 肖黄清 《江苏大学学报(自然科学版)》 CAS 北大核心 2022年第4期446-452,共7页
针对命名实体识别任务中现有的LSTM提取特征向量存在对短期信息特征表达能力不足的问题,提出一个基于层级残差连接的LSTM网络.通过添加残差块堆叠LSTM网络深度,增强短期信息特征非线性拟合能力;利用全局信息编码动态选择激活函数,在加... 针对命名实体识别任务中现有的LSTM提取特征向量存在对短期信息特征表达能力不足的问题,提出一个基于层级残差连接的LSTM网络.通过添加残差块堆叠LSTM网络深度,增强短期信息特征非线性拟合能力;利用全局信息编码动态选择激活函数,在加强网络计算能力的同时降低了参数量;通过注意力机制,对输入动态调整残差连接的层数加强模型拟合能力.给出了残差网络和Dynamic ReLU激活函数,建立了基于层级残差连接的LSTM命名实体识别整体框架,定义了残差连接模块、Dynamic ReLU模块、注意力机制模块.对比了所提出方法与FLAT、Lattice LSTM等相关算法,在Weibo和Resume数据集上进行试验.结果表明,基于层级残差连接的LSTM在Weibo上达到了最好的效果,在Resume上效果仅次于FLAT,F_(1)分别为0.7001、0.9586. 展开更多
关键词 命名实体识别 短期信息特征 LSTM 残差连接 dynamic relu 注意力机制
在线阅读 下载PDF
Neural Networks on an FPGA and Hardware-Friendly Activation Functions
3
作者 Jiong Si Sarah L. Harris Evangelos Yfantis 《Journal of Computer and Communications》 2020年第12期251-277,共27页
This paper describes our implementation of several neural networks built on a field programmable gate array (FPGA) and used to recognize a handwritten digit dataset—the Modified National Institute of Standards and Te... This paper describes our implementation of several neural networks built on a field programmable gate array (FPGA) and used to recognize a handwritten digit dataset—the Modified National Institute of Standards and Technology (MNIST) database. We also propose a novel hardware-friendly activation function called the dynamic Rectifid Linear Unit (ReLU)—D-ReLU function that achieves higher performance than traditional activation functions at no cost to accuracy. We built a 2-layer online training multilayer perceptron (MLP) neural network on an FPGA with varying data width. Reducing the data width from 8 to 4 bits only reduces prediction accuracy by 11%, but the FPGA area decreases by 41%. Compared to networks that use the sigmoid functions, our proposed D-ReLU function uses 24% - 41% less area with no loss to prediction accuracy. Further reducing the data width of the 3-layer networks from 8 to 4 bits, the prediction accuracies only decrease by 3% - 5%, with area being reduced by 9% - 28%. Moreover, FPGA solutions have 29 times faster execution time, even despite running at a 60× lower clock rate. Thus, FPGA implementations of neural networks offer a high-performance, low power alternative to traditional software methods, and our novel D-ReLU activation function offers additional improvements to performance and power saving. 展开更多
关键词 Deep Learning D-relu dynamic relu FPGA Hardware Acceleration Activation Function
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部