The outbreak of corona virus disease 2019 has profoundly affected people’s way of life.It is increasingly necessary to investigate epidemics over social networks.This paper studies susceptible-infected-removed(SIR)ep...The outbreak of corona virus disease 2019 has profoundly affected people’s way of life.It is increasingly necessary to investigate epidemics over social networks.This paper studies susceptible-infected-removed(SIR)epidemics via the semi-tensor product.First,a formal susceptible-infected-removed epidemic dynamic model over probabilistic dynamic networks(SIRED-PDN)is given.Based on an evolutionary rule,the algebraic form for the dynamics of individual states and network topologies is given,respectively.Second,the SIRED-PDN can be described by a probabilistic mix-valued logical network.After providing an algorithm,all possible final spreading equilibria can be obtained for any given initial epidemic state and network topology by seeking attractors of the network.And the shortest time for all possible initial epidemic state and network topology profiles to evolve to the final spreading equilibria can be obtained by seeking the transient time of the network.Finally,an illustrative example is given to show the effectiveness of our model.展开更多
The mobility of service providers brings new features into the research of dynamic network based service composition.From an optimistic perspective,the mobility of services could benefit the optimization of service co...The mobility of service providers brings new features into the research of dynamic network based service composition.From an optimistic perspective,the mobility of services could benefit the optimization of service composition,if properly handled.Therefore,the impacts of node mobility on the dynamic network based service composition are investigated.Then,a movement-assisted optimization method,namely MASCO,is proposed to improve the performance of the composited services by minimizing the length of data stream and the hop-counts of the service routes in the underlying networks.The correctness and efficiency of the proposed method are then verified through theoretical analysis and computer simulations.展开更多
This paper investigates epidemic dynamics over dynamic networks via the approach of semi-tensor product of matrices. First, a formal susceptible-infected-susceptible epidemic dynamic model over dynamic networks (SISE...This paper investigates epidemic dynamics over dynamic networks via the approach of semi-tensor product of matrices. First, a formal susceptible-infected-susceptible epidemic dynamic model over dynamic networks (SISED-DN) is given. Second, based on a class of determinate co-evolutionary rule, the matrix expressions are established for the dynamics of individual states and network topologies, respectively. Then, all possible final spreading equilibria are obtained for any given initial epidemic state and network topology by the matrix expression. Third, a sufficient and necessary condition of the existence of state feedback vaccination control is presented to make every individual susceptible. The study of illustrative examples shows the effectiveness of our new results.展开更多
We investigate the similarities and differences among three queue rules,the first-in-first-out(FIFO)rule,last-in-firstout(LIFO)rule and random-in-random-out(RIRO)rule,on dynamical networks with limited buffer size.In ...We investigate the similarities and differences among three queue rules,the first-in-first-out(FIFO)rule,last-in-firstout(LIFO)rule and random-in-random-out(RIRO)rule,on dynamical networks with limited buffer size.In our network model,nodes move at each time step.Packets are transmitted by an adaptive routing strategy,combining Euclidean distance and node load by a tunable parameter.Because of this routing strategy,at the initial stage of increasing buffer size,the network density will increase,and the packet loss rate will decrease.Packet loss and traffic congestion occur by these three rules,but nodes keep unblocked and lose no packet in a larger buffer size range on the RIRO rule networks.If packets are lost and traffic congestion occurs,different dynamic characteristics are shown by these three queue rules.Moreover,a phenomenon similar to Braess’paradox is also found by the LIFO rule and the RIRO rule.展开更多
The increasing popularity of the Internet and the widespread use of information technology have led to a rise in the number and sophistication of network attacks and security threats.Intrusion detection systems are cr...The increasing popularity of the Internet and the widespread use of information technology have led to a rise in the number and sophistication of network attacks and security threats.Intrusion detection systems are crucial to network security,playing a pivotal role in safeguarding networks from potential threats.However,in the context of an evolving landscape of sophisticated and elusive attacks,existing intrusion detection methodologies often overlook critical aspects such as changes in network topology over time and interactions between hosts.To address these issues,this paper proposes a real-time network intrusion detection method based on graph neural networks.The proposedmethod leverages the advantages of graph neural networks and employs a straightforward graph construction method to represent network traffic as dynamic graph-structured data.Additionally,a graph convolution operation with a multi-head attention mechanism is utilized to enhance the model’s ability to capture the intricate relationships within the graph structure comprehensively.Furthermore,it uses an integrated graph neural network to address dynamic graphs’structural and topological changes at different time points and the challenges of edge embedding in intrusion detection data.The edge classification problem is effectively transformed into node classification by employing a line graph data representation,which facilitates fine-grained intrusion detection tasks on dynamic graph node feature representations.The efficacy of the proposed method is evaluated using two commonly used intrusion detection datasets,UNSW-NB15 and NF-ToN-IoT-v2,and results are compared with previous studies in this field.The experimental results demonstrate that our proposed method achieves 99.3%and 99.96%accuracy on the two datasets,respectively,and outperforms the benchmark model in several evaluation metrics.展开更多
Social interaction with peer pressure is widely studied in social network analysis.Game theory can be utilized to model dynamic social interaction,and one class of game network models assumes that people’s decision p...Social interaction with peer pressure is widely studied in social network analysis.Game theory can be utilized to model dynamic social interaction,and one class of game network models assumes that people’s decision payoff functions hinge on individual covariates and the choices of their friends.However,peer pressure would be misidentified and induce a non-negligible bias when incomplete covariates are involved in the game model.For this reason,we develop a generalized constant peer effects model based on homogeneity structure in dynamic social networks.The new model can effectively avoid bias through homogeneity pursuit and can be applied to a wider range of scenarios.To estimate peer pressure in the model,we first present two algorithms based on the initialize expand merge method and the polynomial-time twostage method to estimate homogeneity parameters.Then we apply the nested pseudo-likelihood method and obtain consistent estimators of peer pressure.Simulation evaluations show that our proposed methodology can achieve desirable and effective results in terms of the community misclassification rate and parameter estimation error.We also illustrate the advantages of our model in the empirical analysis when compared with a benchmark model.展开更多
For emerging respiratory infectious diseases like COVID-19,non-pharmaceutical interventions such as isolation are crucial for controlling the spread.From the perspective of network transmission,non-pharmaceutical inte...For emerging respiratory infectious diseases like COVID-19,non-pharmaceutical interventions such as isolation are crucial for controlling the spread.From the perspective of network transmission,non-pharmaceutical interventions like isolation alter the degree distribution and other topological structures of the network,thereby controlling the spread of the infectious disease.In this paper,we establish a SEIR mean-field propagation dynamics model for the synchronous evolution of dynamic networks caused by propagation and tracing isolation.We employ the reducing-dimension method to convert the mean-field model in networks into an equivalent and simpler low-dimension model,and then calculate the exact expression of the final size.In addition,we get the differential equations of the degree distribution over time in dynamic networks under tracing isolation and the relationships between the first and second moment of the dynamic network.While the degree of a node remains constant regardless of its state in many previous studies,this paper takes into account that the degree of each node changes over time whatever its state under the disease spread and intervention measures.展开更多
Delay aware routing is now widely used to provide efficient network transmission. However, for newly developing or developed mobile communication networks(MCN), only limited delay data can be obtained. In such a netwo...Delay aware routing is now widely used to provide efficient network transmission. However, for newly developing or developed mobile communication networks(MCN), only limited delay data can be obtained. In such a network, the delay is with epistemic uncertainty, which makes the traditional routing scheme based on deterministic theory or probability theory not applicable. Motivated by this problem, the MCN with epistemic uncertainty is first summarized as a dynamic uncertain network based on uncertainty theory, which is widely applied to model epistemic uncertainties. Then by modeling the uncertain end-toend delay, a new delay bounded routing scheme is proposed to find the path with the maximum belief degree that satisfies the delay threshold for the dynamic uncertain network. Finally, a lowEarth-orbit satellite communication network(LEO-SCN) is used as a case to verify the effectiveness of our routing scheme. It is first modeled as a dynamic uncertain network, and then the delay bounded paths with the maximum belief degree are computed and compared under different delay thresholds.展开更多
Aqueous Zn-metal batteries(AZMBs)performance is hampered by freezing water at low temperatures,which hampers their multi-scenario application.Hydrogen bonds(HBs)play a pivotal role in water freezing,and proton transpo...Aqueous Zn-metal batteries(AZMBs)performance is hampered by freezing water at low temperatures,which hampers their multi-scenario application.Hydrogen bonds(HBs)play a pivotal role in water freezing,and proton transport is indispensable for the establishment of HBs.Here,the accelerated proton transport modulates the dynamic hydrogen bonding network of a Zn(BF4)2/EMIMBF4impregnated polyacrylamide/poly(vinyl alcohol)/xanthan gum dual network eutectic gel electrolyte(PPX-ILZSE)for lowtemperature AZMBs.The PPX-ILZSE forms more HBs,shorter HBs lifetimes,higher tetrahedral entropy,and faster desolvation processes,as demonstrated by experimental and theoretical calculations.This enhanced dynamic proton transport promotes rapid cycling of HBs formation-failure,and for polyaniline cathode(PANI)abundant redox sites of proton,confers excellent low temperature electrochemical performance to the Zn//PANI full cell.Specific capacities for 1000 and 5000 cycles at 1 and 5 A g^(-1)were149.8 and 128.4 m A h g^(-1)at room temperature,respectively.Furthermore,specific capacities of 131.1 mA hg^(-1)(92.4%capacity retention)and 0.0066%capacity decay per lap were achieved for 3000and 3500 laps at-30 and 40℃,respectively,at 0.5 A g^(-1).Furthermore,in-situ protective layer of ZnOHF nano-arrays on the Zn anode surface to eliminate dendrite growth and accelerate Zn-ions adsorption and charge transfer.展开更多
Identifying critical nodes or sets in large-scale networks is a fundamental scientific problem and one of the key research directions in the fields of data mining and network science when implementing network attacks,...Identifying critical nodes or sets in large-scale networks is a fundamental scientific problem and one of the key research directions in the fields of data mining and network science when implementing network attacks, defense, repair and control.Traditional methods usually begin from the centrality, node location or the impact on the largest connected component after node destruction, mainly based on the network structure.However, these algorithms do not consider network state changes.We applied a model that combines a random connectivity matrix and minimal low-dimensional structures to represent network connectivity.By using mean field theory and information entropy to calculate node activity,we calculated the overlap between the random parts and fixed low-dimensional parts to quantify the influence of node impact on network state changes and ranked them by importance.We applied this algorithm and the proposed importance algorithm to the overall analysis and stratified analysis of the C.elegans neural network.We observed a change in the critical entropy of the network state and by utilizing the proposed method we can calculate the nodes that indirectly affect muscle cells through neural layers.展开更多
In many engineering networks, only a part of target state variables are required to be estimated.On the other hand,multi-layer complex network exists widely in practical situations.In this paper, the state estimation ...In many engineering networks, only a part of target state variables are required to be estimated.On the other hand,multi-layer complex network exists widely in practical situations.In this paper, the state estimation of target state variables in multi-layer complex dynamical networks with nonlinear node dynamics is studied.A suitable functional state observer is constructed with the limited measurement.The parameters of the designed functional observer are obtained from the algebraic method and the stability of the functional observer is proven by the Lyapunov theorem.Some necessary conditions that need to be satisfied for the design of the functional state observer are obtained.Different from previous studies, in the multi-layer complex dynamical network with nonlinear node dynamics, the proposed method can estimate the state of target variables on some layers directly instead of estimating all the individual states.Thus, it can greatly reduce the placement of observers and computational cost.Numerical simulations with the three-layer complex dynamical network composed of three-dimensional nonlinear dynamical nodes are developed to verify the effectiveness of the method.展开更多
Complex networked systems,which range from biological systems in the natural world to infrastructure systems in the human-made world,can exhibit spontaneous recovery after a failure;for example,a brain may spontaneous...Complex networked systems,which range from biological systems in the natural world to infrastructure systems in the human-made world,can exhibit spontaneous recovery after a failure;for example,a brain may spontaneously return to normal after a seizure,and traffic flow can become smooth again after a jam.Previous studies on the spontaneous recovery of dynamical networks have been limited to undirected networks.However,most real-world networks are directed.To fill this gap,we build a model in which nodes may alternately fail and recover,and we develop a theoretical tool to analyze the recovery properties of directed dynamical networks.We find that the tool can accurately predict the final fraction of active nodes,and the prediction accuracy decreases as the fraction of bidirectional links in the network increases,which emphasizes the importance of directionality in network dynamics.Due to different initial states,directed dynamical networks may show alternative stable states under the same control parameter,exhibiting hysteresis behavior.In addition,for networks with finite sizes,the fraction of active nodes may jump back and forth between high and low states,mimicking repetitive failure-recovery processes.These findings could help clarify the system recovery mechanism and enable better design of networked systems with high resilience.展开更多
This study focuses on the detection of infection sources in dynamic networks,which is very important for network analysis,cybersecurity,and public health.We aim to improve source detection in complex networks using da...This study focuses on the detection of infection sources in dynamic networks,which is very important for network analysis,cybersecurity,and public health.We aim to improve source detection in complex networks using data,computational advances,and machine learning to improve epidemic response and public health protection.We explore dynamic network analysis and recent algorithms for infection source detection,emphasizing data integration and machine learning.Our approach involves reviewing existing research,identifying gaps,and proposing dynamic network-based infectious disease source detection strategies.Our study highlights evolving infection source detection methods and underscores the potential of machine learning and artificial intelligence.We acknowledge ongoing challenges due to network complexity and outline promising research directions.Detecting infection sources in dynamic networks is vital.This study emphasizes the need for improved techniques and technology integration to address complexities effectively.Advancements will empower us to identify and mitigate epidemics,reducing their societal and public health impacts.展开更多
Multi-agent systems often require good interoperability in the process of completing their assigned tasks.This paper first models the static structure and dynamic behavior of multiagent systems based on layered weight...Multi-agent systems often require good interoperability in the process of completing their assigned tasks.This paper first models the static structure and dynamic behavior of multiagent systems based on layered weighted scale-free community network and susceptible-infected-recovered(SIR)model.To solve the problem of difficulty in describing the changes in the structure and collaboration mode of the system under external factors,a two-dimensional Monte Carlo method and an improved dynamic Bayesian network are used to simulate the impact of external environmental factors on multi-agent systems.A collaborative information flow path optimization algorithm for agents under environmental factors is designed based on the Dijkstra algorithm.A method for evaluating system interoperability is designed based on simulation experiments,providing reference for the construction planning and optimization of organizational application of the system.Finally,the feasibility of the method is verified through case studies.展开更多
Dynamic publishing of social network graphs offers insights into user behavior but brings privacy risks, notably re-identification attacks on evolving data snapshots. Existing methods based on -anonymity can mitigate ...Dynamic publishing of social network graphs offers insights into user behavior but brings privacy risks, notably re-identification attacks on evolving data snapshots. Existing methods based on -anonymity can mitigate these attacks but are cumbersome, neglect dynamic protection of community structure, and lack precise utility measures. To address these challenges, we present a dynamic social network graph anonymity scheme with community structure protection (DSNGA-CSP), which achieves the dynamic anonymization process by incorporating community detection. First, DSNGA-CSP categorizes communities of the original graph into three types at each timestamp, and only partitions community subgraphs for a specific category at each updated timestamp. Then, DSNGA-CSP achieves intra-community and inter-community anonymization separately to retain more of the community structure of the original graph at each timestamp. It anonymizes community subgraphs by the proposed novel -composition method and anonymizes inter-community edges by edge isomorphism. Finally, a novel information loss metric is introduced in DSNGA-CSP to precisely capture the utility of the anonymized graph through original information preservation and anonymous information changes. Extensive experiments conducted on five real-world datasets demonstrate that DSNGA-CSP consistently outperforms existing methods, providing a more effective balance between privacy and utility. Specifically, DSNGA-CSP shows an average utility improvement of approximately 30% compared to TAKG and CTKGA for three dynamic graph datasets, according to the proposed information loss metric IL.展开更多
This paper proposes second-order consensus protocols with time-delays and gives the measure of the robustness of the protocols to the time-delay existing in the network of agents with second-order dynamics. By employi...This paper proposes second-order consensus protocols with time-delays and gives the measure of the robustness of the protocols to the time-delay existing in the network of agents with second-order dynamics. By employing a frequency domain method, it is proven that the information states and their time derivatives of all the agents in the network achieve consensus asymptotically, respectively, for appropriate communication timedelay if the topology of weighted network is connected. Particularly, a tight upper bound on the communication time-delay that can be tolerated in the dynamic network is found. The consensus protocols are distributed in the sense that each agent only needs information from its neighboring agents, which reduces the complexity of connections between neighboring agents significantly. Numerical simulation results are provided to demonstrate the effectiveness and the sharpness of the theoretical results for second-order consensus in networks in the presence of communication time-delays.展开更多
Multivariate dynamic networks indicate networks whose topology structure and vertex attributes are evolving along time.They are common in multimedia applications.Anomaly detection is one of the essential tasks in anal...Multivariate dynamic networks indicate networks whose topology structure and vertex attributes are evolving along time.They are common in multimedia applications.Anomaly detection is one of the essential tasks in analyzing these networks though it is not well addressed.In this paper,we combine a rare category detection method and visualization techniques to help users to identify and analyze anomalies in multivariate dynamic networks.We conclude features of rare categories and two types of anomalies of rare categories.Then we present a novel rare category detection method,called DIRAD,to detect rare category candidates with anomalies.We develop a prototype system called iNet,which integrates two major visualization components,including a glyph-based rare category identifier,which helps users to identify rare categories among detected substructures,a major view,which assists users to analyze and interpret the anomalies of rare categories in network topology and vertex attributes.Evaluations,including an algorithm performance evaluation,a case study,and a user study,are conducted to test the effectiveness of proposed methods.展开更多
This paper proposes second-order consensus protocols and gives a measure of the robustness of the protocols to the time-delays existing in the dynamics of agents with second-order dynamics. By employing a frequency do...This paper proposes second-order consensus protocols and gives a measure of the robustness of the protocols to the time-delays existing in the dynamics of agents with second-order dynamics. By employing a frequency domain method, it is proven that the information states achieve second-order consensus asymptotically for appropriate time-delay if the topology of the network is connected. Particularly, a nonconservative upper bound on the fixed time-delay that can be tolerated is found. The consensus protocols are distributed in the sense that each agent only needs information from its neighboring agents, which makes the proposed protocols scalable. It reduces the complexity of connections among agents significantly. Simulation results are provided to verify the effectiveness of the theoretical results for second-order consensus in networks in the presence of time-delays existing in the dynamics of agents.展开更多
Air transport systems are highly dynamic at temporal scales from minutes to years.This dynamic behavior not only characterizes the evolution of the system but also affect the system's functioning.Understanding the ev...Air transport systems are highly dynamic at temporal scales from minutes to years.This dynamic behavior not only characterizes the evolution of the system but also affect the system's functioning.Understanding the evolutionary mechanisms is thus fundamental in order to better design optimal air transport networks that benefits companies,passengers and the environment.In this review,we briefly present and discuss the state-of-the-art on time-evolving air transport networks.We distinguish the structural analysis of sequences of network snapshots,ideal for long-term network evolution(e.g.annual evolution),and temporal paths,preferred for short-term dynamics(e.g.hourly evolution).We emphasize that most previous research focused on the first modeling approach(i.e.long-term) whereas only a few studies look at high-resolution temporal paths.We conclude the review highlighting that much research remains to be done,both to apply already available methods and to develop new measures for temporal paths on air transport networks.In particular,we identify that the study of delays,network resilience and optimization of resources(aircraft and crew) are critical topics.展开更多
Network embedding(NE)tries to learn the potential properties of complex networks represented in a low-dimensional feature space.However,the existing deep learningbased NE methods are time-consuming as they need to tra...Network embedding(NE)tries to learn the potential properties of complex networks represented in a low-dimensional feature space.However,the existing deep learningbased NE methods are time-consuming as they need to train a dense architecture for deep neural networks with extensive unknown weight parameters.A sparse deep autoencoder(called SPDNE)for dynamic NE is proposed,aiming to learn the network structures while preserving the node evolution with a low computational complexity.SPDNE tries to use an optimal sparse architecture to replace the fully connected architecture in the deep autoencoder while maintaining the performance of these models in the dynamic NE.Then,an adaptive simulated algorithm to find the optimal sparse architecture for the deep autoencoder is proposed.The performance of SPDNE over three dynamical NE models(i.e.sparse architecture-based deep autoencoder method,DynGEM,and ElvDNE)is evaluated on three well-known benchmark networks and five real-world networks.The experimental results demonstrate that SPDNE can reduce about 70%of weight parameters of the architecture for the deep autoencoder during the training process while preserving the performance of these dynamical NE models.The results also show that SPDNE achieves the highest accuracy on 72 out of 96 edge prediction and network reconstruction tasks compared with the state-of-the-art dynamical NE algorithms.展开更多
基金supported by the National Natural Science Foundation of China(Nos.61973175,62203328)the Tianjin Natural Science Foundation(Nos.20JCYBJC01060,21JCQNJC00840)the General Terminal IC Interdisciplinary Science Center of Nankai University.
文摘The outbreak of corona virus disease 2019 has profoundly affected people’s way of life.It is increasingly necessary to investigate epidemics over social networks.This paper studies susceptible-infected-removed(SIR)epidemics via the semi-tensor product.First,a formal susceptible-infected-removed epidemic dynamic model over probabilistic dynamic networks(SIRED-PDN)is given.Based on an evolutionary rule,the algebraic form for the dynamics of individual states and network topologies is given,respectively.Second,the SIRED-PDN can be described by a probabilistic mix-valued logical network.After providing an algorithm,all possible final spreading equilibria can be obtained for any given initial epidemic state and network topology by seeking attractors of the network.And the shortest time for all possible initial epidemic state and network topology profiles to evolve to the final spreading equilibria can be obtained by seeking the transient time of the network.Finally,an illustrative example is given to show the effectiveness of our model.
基金Supported by the National Natural Science Foundation of China(No.61070182,60873192)
文摘The mobility of service providers brings new features into the research of dynamic network based service composition.From an optimistic perspective,the mobility of services could benefit the optimization of service composition,if properly handled.Therefore,the impacts of node mobility on the dynamic network based service composition are investigated.Then,a movement-assisted optimization method,namely MASCO,is proposed to improve the performance of the composited services by minimizing the length of data stream and the hop-counts of the service routes in the underlying networks.The correctness and efficiency of the proposed method are then verified through theoretical analysis and computer simulations.
基金This work was supported by the National Natural Science Foundation of China (Nos. 61374065, 61503225), the Research Fund for the Taishan Scholar Project of Shandong Province, and the Natural Science Foundation of Shandong Province (No. ZR2015FQ003).
文摘This paper investigates epidemic dynamics over dynamic networks via the approach of semi-tensor product of matrices. First, a formal susceptible-infected-susceptible epidemic dynamic model over dynamic networks (SISED-DN) is given. Second, based on a class of determinate co-evolutionary rule, the matrix expressions are established for the dynamics of individual states and network topologies, respectively. Then, all possible final spreading equilibria are obtained for any given initial epidemic state and network topology by the matrix expression. Third, a sufficient and necessary condition of the existence of state feedback vaccination control is presented to make every individual susceptible. The study of illustrative examples shows the effectiveness of our new results.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.71801066 and 71431003)the Fundamental Research Funds for the Central Universities of China(Grant Nos.PA2019GDQT0020 and JZ2017HGTB0186)
文摘We investigate the similarities and differences among three queue rules,the first-in-first-out(FIFO)rule,last-in-firstout(LIFO)rule and random-in-random-out(RIRO)rule,on dynamical networks with limited buffer size.In our network model,nodes move at each time step.Packets are transmitted by an adaptive routing strategy,combining Euclidean distance and node load by a tunable parameter.Because of this routing strategy,at the initial stage of increasing buffer size,the network density will increase,and the packet loss rate will decrease.Packet loss and traffic congestion occur by these three rules,but nodes keep unblocked and lose no packet in a larger buffer size range on the RIRO rule networks.If packets are lost and traffic congestion occurs,different dynamic characteristics are shown by these three queue rules.Moreover,a phenomenon similar to Braess’paradox is also found by the LIFO rule and the RIRO rule.
文摘The increasing popularity of the Internet and the widespread use of information technology have led to a rise in the number and sophistication of network attacks and security threats.Intrusion detection systems are crucial to network security,playing a pivotal role in safeguarding networks from potential threats.However,in the context of an evolving landscape of sophisticated and elusive attacks,existing intrusion detection methodologies often overlook critical aspects such as changes in network topology over time and interactions between hosts.To address these issues,this paper proposes a real-time network intrusion detection method based on graph neural networks.The proposedmethod leverages the advantages of graph neural networks and employs a straightforward graph construction method to represent network traffic as dynamic graph-structured data.Additionally,a graph convolution operation with a multi-head attention mechanism is utilized to enhance the model’s ability to capture the intricate relationships within the graph structure comprehensively.Furthermore,it uses an integrated graph neural network to address dynamic graphs’structural and topological changes at different time points and the challenges of edge embedding in intrusion detection data.The edge classification problem is effectively transformed into node classification by employing a line graph data representation,which facilitates fine-grained intrusion detection tasks on dynamic graph node feature representations.The efficacy of the proposed method is evaluated using two commonly used intrusion detection datasets,UNSW-NB15 and NF-ToN-IoT-v2,and results are compared with previous studies in this field.The experimental results demonstrate that our proposed method achieves 99.3%and 99.96%accuracy on the two datasets,respectively,and outperforms the benchmark model in several evaluation metrics.
基金supported by the National Nature Science Foundation of China(71771201,72531009,71973001)the USTC Research Funds of the Double First-Class Initiative(FSSF-A-240202).
文摘Social interaction with peer pressure is widely studied in social network analysis.Game theory can be utilized to model dynamic social interaction,and one class of game network models assumes that people’s decision payoff functions hinge on individual covariates and the choices of their friends.However,peer pressure would be misidentified and induce a non-negligible bias when incomplete covariates are involved in the game model.For this reason,we develop a generalized constant peer effects model based on homogeneity structure in dynamic social networks.The new model can effectively avoid bias through homogeneity pursuit and can be applied to a wider range of scenarios.To estimate peer pressure in the model,we first present two algorithms based on the initialize expand merge method and the polynomial-time twostage method to estimate homogeneity parameters.Then we apply the nested pseudo-likelihood method and obtain consistent estimators of peer pressure.Simulation evaluations show that our proposed methodology can achieve desirable and effective results in terms of the community misclassification rate and parameter estimation error.We also illustrate the advantages of our model in the empirical analysis when compared with a benchmark model.
基金supported by the National Natural Science Foundation of China(Grant No.12231012,No.U23A20331)Key Research and Development Project in Shanxi Province,China(Grant No.202003D31011/GZ).
文摘For emerging respiratory infectious diseases like COVID-19,non-pharmaceutical interventions such as isolation are crucial for controlling the spread.From the perspective of network transmission,non-pharmaceutical interventions like isolation alter the degree distribution and other topological structures of the network,thereby controlling the spread of the infectious disease.In this paper,we establish a SEIR mean-field propagation dynamics model for the synchronous evolution of dynamic networks caused by propagation and tracing isolation.We employ the reducing-dimension method to convert the mean-field model in networks into an equivalent and simpler low-dimension model,and then calculate the exact expression of the final size.In addition,we get the differential equations of the degree distribution over time in dynamic networks under tracing isolation and the relationships between the first and second moment of the dynamic network.While the degree of a node remains constant regardless of its state in many previous studies,this paper takes into account that the degree of each node changes over time whatever its state under the disease spread and intervention measures.
基金National Natural Science Foundation of China (61773044,62073009)National key Laboratory of Science and Technology on Reliability and Environmental Engineering(WDZC2019601A301)。
文摘Delay aware routing is now widely used to provide efficient network transmission. However, for newly developing or developed mobile communication networks(MCN), only limited delay data can be obtained. In such a network, the delay is with epistemic uncertainty, which makes the traditional routing scheme based on deterministic theory or probability theory not applicable. Motivated by this problem, the MCN with epistemic uncertainty is first summarized as a dynamic uncertain network based on uncertainty theory, which is widely applied to model epistemic uncertainties. Then by modeling the uncertain end-toend delay, a new delay bounded routing scheme is proposed to find the path with the maximum belief degree that satisfies the delay threshold for the dynamic uncertain network. Finally, a lowEarth-orbit satellite communication network(LEO-SCN) is used as a case to verify the effectiveness of our routing scheme. It is first modeled as a dynamic uncertain network, and then the delay bounded paths with the maximum belief degree are computed and compared under different delay thresholds.
基金supported by the National Natural Science Foundation of China(NSFC 52432002,52372041,and 52302087)China Postdoctoral Science Foundation(Grant No.2023 M740895)+1 种基金Heilongjiang Touyan Team Programthe Fundamental Research Funds for the Central Universities(Grant No.HIT.OCEF.2021003 and HIT.DZJJ.2025002)。
文摘Aqueous Zn-metal batteries(AZMBs)performance is hampered by freezing water at low temperatures,which hampers their multi-scenario application.Hydrogen bonds(HBs)play a pivotal role in water freezing,and proton transport is indispensable for the establishment of HBs.Here,the accelerated proton transport modulates the dynamic hydrogen bonding network of a Zn(BF4)2/EMIMBF4impregnated polyacrylamide/poly(vinyl alcohol)/xanthan gum dual network eutectic gel electrolyte(PPX-ILZSE)for lowtemperature AZMBs.The PPX-ILZSE forms more HBs,shorter HBs lifetimes,higher tetrahedral entropy,and faster desolvation processes,as demonstrated by experimental and theoretical calculations.This enhanced dynamic proton transport promotes rapid cycling of HBs formation-failure,and for polyaniline cathode(PANI)abundant redox sites of proton,confers excellent low temperature electrochemical performance to the Zn//PANI full cell.Specific capacities for 1000 and 5000 cycles at 1 and 5 A g^(-1)were149.8 and 128.4 m A h g^(-1)at room temperature,respectively.Furthermore,specific capacities of 131.1 mA hg^(-1)(92.4%capacity retention)and 0.0066%capacity decay per lap were achieved for 3000and 3500 laps at-30 and 40℃,respectively,at 0.5 A g^(-1).Furthermore,in-situ protective layer of ZnOHF nano-arrays on the Zn anode surface to eliminate dendrite growth and accelerate Zn-ions adsorption and charge transfer.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.72071153 and 72231008)Laboratory of Science and Technology on Integrated Logistics Support Foundation (Grant No.6142003190102)the Natural Science Foundation of Shannxi Province (Grant No.2020JM486)。
文摘Identifying critical nodes or sets in large-scale networks is a fundamental scientific problem and one of the key research directions in the fields of data mining and network science when implementing network attacks, defense, repair and control.Traditional methods usually begin from the centrality, node location or the impact on the largest connected component after node destruction, mainly based on the network structure.However, these algorithms do not consider network state changes.We applied a model that combines a random connectivity matrix and minimal low-dimensional structures to represent network connectivity.By using mean field theory and information entropy to calculate node activity,we calculated the overlap between the random parts and fixed low-dimensional parts to quantify the influence of node impact on network state changes and ranked them by importance.We applied this algorithm and the proposed importance algorithm to the overall analysis and stratified analysis of the C.elegans neural network.We observed a change in the critical entropy of the network state and by utilizing the proposed method we can calculate the nodes that indirectly affect muscle cells through neural layers.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.62373197 and 61873326)。
文摘In many engineering networks, only a part of target state variables are required to be estimated.On the other hand,multi-layer complex network exists widely in practical situations.In this paper, the state estimation of target state variables in multi-layer complex dynamical networks with nonlinear node dynamics is studied.A suitable functional state observer is constructed with the limited measurement.The parameters of the designed functional observer are obtained from the algebraic method and the stability of the functional observer is proven by the Lyapunov theorem.Some necessary conditions that need to be satisfied for the design of the functional state observer are obtained.Different from previous studies, in the multi-layer complex dynamical network with nonlinear node dynamics, the proposed method can estimate the state of target variables on some layers directly instead of estimating all the individual states.Thus, it can greatly reduce the placement of observers and computational cost.Numerical simulations with the three-layer complex dynamical network composed of three-dimensional nonlinear dynamical nodes are developed to verify the effectiveness of the method.
基金supported by the National Natural Science Foundation of China(62172170)the Science and Technology Project of the State Grid Corporation of China(5100-202199557A-0-5-ZN).
文摘Complex networked systems,which range from biological systems in the natural world to infrastructure systems in the human-made world,can exhibit spontaneous recovery after a failure;for example,a brain may spontaneously return to normal after a seizure,and traffic flow can become smooth again after a jam.Previous studies on the spontaneous recovery of dynamical networks have been limited to undirected networks.However,most real-world networks are directed.To fill this gap,we build a model in which nodes may alternately fail and recover,and we develop a theoretical tool to analyze the recovery properties of directed dynamical networks.We find that the tool can accurately predict the final fraction of active nodes,and the prediction accuracy decreases as the fraction of bidirectional links in the network increases,which emphasizes the importance of directionality in network dynamics.Due to different initial states,directed dynamical networks may show alternative stable states under the same control parameter,exhibiting hysteresis behavior.In addition,for networks with finite sizes,the fraction of active nodes may jump back and forth between high and low states,mimicking repetitive failure-recovery processes.These findings could help clarify the system recovery mechanism and enable better design of networked systems with high resilience.
文摘This study focuses on the detection of infection sources in dynamic networks,which is very important for network analysis,cybersecurity,and public health.We aim to improve source detection in complex networks using data,computational advances,and machine learning to improve epidemic response and public health protection.We explore dynamic network analysis and recent algorithms for infection source detection,emphasizing data integration and machine learning.Our approach involves reviewing existing research,identifying gaps,and proposing dynamic network-based infectious disease source detection strategies.Our study highlights evolving infection source detection methods and underscores the potential of machine learning and artificial intelligence.We acknowledge ongoing challenges due to network complexity and outline promising research directions.Detecting infection sources in dynamic networks is vital.This study emphasizes the need for improved techniques and technology integration to address complexities effectively.Advancements will empower us to identify and mitigate epidemics,reducing their societal and public health impacts.
基金supported by the Key R&D Projects in Jiangsu Province(BE2021729)the Key Primary Research Project of Primary Strengthening Program(KYZYJKKCJC23001).
文摘Multi-agent systems often require good interoperability in the process of completing their assigned tasks.This paper first models the static structure and dynamic behavior of multiagent systems based on layered weighted scale-free community network and susceptible-infected-recovered(SIR)model.To solve the problem of difficulty in describing the changes in the structure and collaboration mode of the system under external factors,a two-dimensional Monte Carlo method and an improved dynamic Bayesian network are used to simulate the impact of external environmental factors on multi-agent systems.A collaborative information flow path optimization algorithm for agents under environmental factors is designed based on the Dijkstra algorithm.A method for evaluating system interoperability is designed based on simulation experiments,providing reference for the construction planning and optimization of organizational application of the system.Finally,the feasibility of the method is verified through case studies.
基金supported by the Natural Science Foundation of China(No.U22A2099)the Innovation Project of Guangxi Graduate Education(YCBZ2023130).
文摘Dynamic publishing of social network graphs offers insights into user behavior but brings privacy risks, notably re-identification attacks on evolving data snapshots. Existing methods based on -anonymity can mitigate these attacks but are cumbersome, neglect dynamic protection of community structure, and lack precise utility measures. To address these challenges, we present a dynamic social network graph anonymity scheme with community structure protection (DSNGA-CSP), which achieves the dynamic anonymization process by incorporating community detection. First, DSNGA-CSP categorizes communities of the original graph into three types at each timestamp, and only partitions community subgraphs for a specific category at each updated timestamp. Then, DSNGA-CSP achieves intra-community and inter-community anonymization separately to retain more of the community structure of the original graph at each timestamp. It anonymizes community subgraphs by the proposed novel -composition method and anonymizes inter-community edges by edge isomorphism. Finally, a novel information loss metric is introduced in DSNGA-CSP to precisely capture the utility of the anonymized graph through original information preservation and anonymous information changes. Extensive experiments conducted on five real-world datasets demonstrate that DSNGA-CSP consistently outperforms existing methods, providing a more effective balance between privacy and utility. Specifically, DSNGA-CSP shows an average utility improvement of approximately 30% compared to TAKG and CTKGA for three dynamic graph datasets, according to the proposed information loss metric IL.
基金supported by the National Natural Science Foundation of China (6057408860274014)
文摘This paper proposes second-order consensus protocols with time-delays and gives the measure of the robustness of the protocols to the time-delay existing in the network of agents with second-order dynamics. By employing a frequency domain method, it is proven that the information states and their time derivatives of all the agents in the network achieve consensus asymptotically, respectively, for appropriate communication timedelay if the topology of weighted network is connected. Particularly, a tight upper bound on the communication time-delay that can be tolerated in the dynamic network is found. The consensus protocols are distributed in the sense that each agent only needs information from its neighboring agents, which reduces the complexity of connections between neighboring agents significantly. Numerical simulation results are provided to demonstrate the effectiveness and the sharpness of the theoretical results for second-order consensus in networks in the presence of communication time-delays.
基金This work was supported by National Key Research and Development Program(2018YFB0904503)the National Natural Science Foundation of China(Grant Nos.61772456,U1866602,61761136020,U1736109).
文摘Multivariate dynamic networks indicate networks whose topology structure and vertex attributes are evolving along time.They are common in multimedia applications.Anomaly detection is one of the essential tasks in analyzing these networks though it is not well addressed.In this paper,we combine a rare category detection method and visualization techniques to help users to identify and analyze anomalies in multivariate dynamic networks.We conclude features of rare categories and two types of anomalies of rare categories.Then we present a novel rare category detection method,called DIRAD,to detect rare category candidates with anomalies.We develop a prototype system called iNet,which integrates two major visualization components,including a glyph-based rare category identifier,which helps users to identify rare categories among detected substructures,a major view,which assists users to analyze and interpret the anomalies of rare categories in network topology and vertex attributes.Evaluations,including an algorithm performance evaluation,a case study,and a user study,are conducted to test the effectiveness of proposed methods.
基金Supported by the National Natural Science Foundation of China (60574088, 60274014)
文摘This paper proposes second-order consensus protocols and gives a measure of the robustness of the protocols to the time-delays existing in the dynamics of agents with second-order dynamics. By employing a frequency domain method, it is proven that the information states achieve second-order consensus asymptotically for appropriate time-delay if the topology of the network is connected. Particularly, a nonconservative upper bound on the fixed time-delay that can be tolerated is found. The consensus protocols are distributed in the sense that each agent only needs information from its neighboring agents, which makes the proposed protocols scalable. It reduces the complexity of connections among agents significantly. Simulation results are provided to verify the effectiveness of the theoretical results for second-order consensus in networks in the presence of time-delays existing in the dynamics of agents.
基金supported by the Fonds De La Recherche Scientifique-FNRS
文摘Air transport systems are highly dynamic at temporal scales from minutes to years.This dynamic behavior not only characterizes the evolution of the system but also affect the system's functioning.Understanding the evolutionary mechanisms is thus fundamental in order to better design optimal air transport networks that benefits companies,passengers and the environment.In this review,we briefly present and discuss the state-of-the-art on time-evolving air transport networks.We distinguish the structural analysis of sequences of network snapshots,ideal for long-term network evolution(e.g.annual evolution),and temporal paths,preferred for short-term dynamics(e.g.hourly evolution).We emphasize that most previous research focused on the first modeling approach(i.e.long-term) whereas only a few studies look at high-resolution temporal paths.We conclude the review highlighting that much research remains to be done,both to apply already available methods and to develop new measures for temporal paths on air transport networks.In particular,we identify that the study of delays,network resilience and optimization of resources(aircraft and crew) are critical topics.
基金National Natural Science Foundation of China,Grant/Award Numbers:62173236,61876110,61806130,61976142,82304204.
文摘Network embedding(NE)tries to learn the potential properties of complex networks represented in a low-dimensional feature space.However,the existing deep learningbased NE methods are time-consuming as they need to train a dense architecture for deep neural networks with extensive unknown weight parameters.A sparse deep autoencoder(called SPDNE)for dynamic NE is proposed,aiming to learn the network structures while preserving the node evolution with a low computational complexity.SPDNE tries to use an optimal sparse architecture to replace the fully connected architecture in the deep autoencoder while maintaining the performance of these models in the dynamic NE.Then,an adaptive simulated algorithm to find the optimal sparse architecture for the deep autoencoder is proposed.The performance of SPDNE over three dynamical NE models(i.e.sparse architecture-based deep autoencoder method,DynGEM,and ElvDNE)is evaluated on three well-known benchmark networks and five real-world networks.The experimental results demonstrate that SPDNE can reduce about 70%of weight parameters of the architecture for the deep autoencoder during the training process while preserving the performance of these dynamical NE models.The results also show that SPDNE achieves the highest accuracy on 72 out of 96 edge prediction and network reconstruction tasks compared with the state-of-the-art dynamical NE algorithms.