期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
VTAN: A Novel Video Transformer Attention-Based Network for Dynamic Sign Language Recognition
1
作者 Ziyang Deng Weidong Min +2 位作者 Qing Han Mengxue Liu Longfei Li 《Computers, Materials & Continua》 2025年第2期2793-2812,共20页
Dynamic sign language recognition holds significant importance, particularly with the application of deep learning to address its complexity. However, existing methods face several challenges. Firstly, recognizing dyn... Dynamic sign language recognition holds significant importance, particularly with the application of deep learning to address its complexity. However, existing methods face several challenges. Firstly, recognizing dynamic sign language requires identifying keyframes that best represent the signs, and missing these keyframes reduces accuracy. Secondly, some methods do not focus enough on hand regions, which are small within the overall frame, leading to information loss. To address these challenges, we propose a novel Video Transformer Attention-based Network (VTAN) for dynamic sign language recognition. Our approach prioritizes informative frames and hand regions effectively. To tackle the first issue, we designed a keyframe extraction module enhanced by a convolutional autoencoder, which focuses on selecting information-rich frames and eliminating redundant ones from the video sequences. For the second issue, we developed a soft attention-based transformer module that emphasizes extracting features from hand regions, ensuring that the network pays more attention to hand information within sequences. This dual-focus approach improves effective dynamic sign language recognition by addressing the key challenges of identifying critical frames and emphasizing hand regions. Experimental results on two public benchmark datasets demonstrate the effectiveness of our network, outperforming most of the typical methods in sign language recognition tasks. 展开更多
关键词 dynamic sign language recognition TRANSFORMER soft attention attention-based visual feature aggregation
在线阅读 下载PDF
Setting up a dynamic language testing system in national language test reform:the Public English Test System(PETS)in China 被引量:6
2
作者 Michael Milanovic, University of Cambridge Local Examinations Syndicate Lynda Taylor, University of Cambridge Local iExaminations Syndicate 《外国语》 CSSCI 北大核心 1999年第3期7-13,共7页
关键词 Setting up a dynamic language testing system in national language test reform PETS)in China TEST
在线阅读 下载PDF
Statistical Debugging Effectiveness as a Fault Localization Approach: Comparative Study 被引量:1
3
作者 Ishaq Sandoqa Fawaz Alzghoul +3 位作者 Hamad Alsawalqah Isra Alzghoul Loai Alnemer Mohammad Akour 《Journal of Software Engineering and Applications》 2016年第8期412-423,共12页
Fault localization is an important topic in software testing, as it enables the developer to specify fault location in their code. One of the dynamic fault localization techniques is statistical debugging. In this stu... Fault localization is an important topic in software testing, as it enables the developer to specify fault location in their code. One of the dynamic fault localization techniques is statistical debugging. In this study, two statistical debugging algorithms are implemented, SOBER and Cause Isolation, and then the experimental works are conducted on five programs coded using Python as an example of well-known dynamic programming language. Results showed that in programs that contain only single bug, the two studied statistical debugging algorithms are very effective to localize a bug. In programs that have more than one bug, SOBER algorithm has limitations related to nested predicates, rarely observed predicates and complement predicates. The Cause Isolation has limitations related to sorting predicates based on importance and detecting bugs in predicate condition. The accuracy of both SOBER and Cause Isolation is affected by the program size. Quality comparison showed that SOBER algorithm requires more code examination than Cause Isolation to discover the bugs. 展开更多
关键词 Testing and Debugging dynamic language Statistical Debugging Fault Localization
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部