The construction period of large cable-stayed bridges is long, and the structure deformation is complicated. Any error during construction will potentially affect the cantilever alignments and the internal forces. In ...The construction period of large cable-stayed bridges is long, and the structure deformation is complicated. Any error during construction will potentially affect the cantilever alignments and the internal forces. In order to ensure safety during construction and exactly determine the cantilever alignments, dynamic deformation monitoring is needed immediately when the con struction of the superstructure starts. This paper aims at the requirement of deformation monitoring during the Sutong Bridge construction, and introduces the realization and observing schemes of the GPS and georobot based on remote real-time dynamic geometrical deformation monitoring system, then researches the data processing methods and enumerates some of the application achievements. Long-term operation during the Sutong Bridge construction indicates that the system runs steadily and the results are reliable.展开更多
A dynamic geometry system,as an important application in the field of geometric constraint solving,is widely used in elementary mathematics education;moreover,the dynamic geometry system is also a fundamental environm...A dynamic geometry system,as an important application in the field of geometric constraint solving,is widely used in elementary mathematics education;moreover,the dynamic geometry system is also a fundamental environment for automated theorem proving in geometry.In a geometric constraint solving process,a situation involving a critical point is often encountered,and geometric element degeneracy may occur at this point.Usually,the degeneracy situation must be substantively focused on during the learning and exploration process.However,many degeneracy situations cannot be completely presented even by the well-known dynamic geometry software.In this paper,the mechanisms causing the degeneracy of a geometric element are analyzed,and relevant definitions and formalized descriptions for the problem are provided according to the relevant modern Euclidean geometry theories.To solve the problem,the data structure is optimized,and a domain model design for the geometric element and the constraint relationships thereof in the dynamic geometry system are formed;furthermore,an update algorithm for the element is proposed based on the novel domain model.In addition,instances show that the proposed domain model and the update algorithm can effectively cope with the geometric element degeneracy situations in the geometric constraint solving process,thereby achieving unification of the dynamic geometry drawing and the geometric intuition of the user.展开更多
Precise control of a magnetically suspended double-gimbal control moment gyroscope (MSDGCMG) is of vital importance and challenge to the attitude positioning of spacecraft owing to its multivariable, nonlinear and s...Precise control of a magnetically suspended double-gimbal control moment gyroscope (MSDGCMG) is of vital importance and challenge to the attitude positioning of spacecraft owing to its multivariable, nonlinear and strong coupled properties. This paper proposes a novel linearization and decoupling method based on differential geometry theory and combines it with the internal model controller (IMC) to guarantee the system robustness to the external disturbance and parameter uncertainty. Furthermore, by introducing the dynamic compensation for the inner-gimbal rate-servo system and the magnetically suspended rotor (MSR) system only, we can eliminate the influence of the unmodeled dynamics to the decoupling control accuracy as well as save costs and inhibit noises effectively. The simulation results verify the nice decoupling and robustness performance of the system using the proposed method.展开更多
基金Supported by the National Key Project of Scientific and Technical Supporting Program(NO.2006BAG04B03)
文摘The construction period of large cable-stayed bridges is long, and the structure deformation is complicated. Any error during construction will potentially affect the cantilever alignments and the internal forces. In order to ensure safety during construction and exactly determine the cantilever alignments, dynamic deformation monitoring is needed immediately when the con struction of the superstructure starts. This paper aims at the requirement of deformation monitoring during the Sutong Bridge construction, and introduces the realization and observing schemes of the GPS and georobot based on remote real-time dynamic geometrical deformation monitoring system, then researches the data processing methods and enumerates some of the application achievements. Long-term operation during the Sutong Bridge construction indicates that the system runs steadily and the results are reliable.
基金the Sichuan Science and Technology Program of China under Grant Nos.2018GZDZX0041 and 2020YFG0011the National Natural Science Foundation of China under Grant No.11701118,the Guangzhou Academician and Expert Workstation under Grant No.20200115-9Key Disciplines of Guizhou Province of China-Computer Science and Technology under Grant No.ZDXK[2018]007.
文摘A dynamic geometry system,as an important application in the field of geometric constraint solving,is widely used in elementary mathematics education;moreover,the dynamic geometry system is also a fundamental environment for automated theorem proving in geometry.In a geometric constraint solving process,a situation involving a critical point is often encountered,and geometric element degeneracy may occur at this point.Usually,the degeneracy situation must be substantively focused on during the learning and exploration process.However,many degeneracy situations cannot be completely presented even by the well-known dynamic geometry software.In this paper,the mechanisms causing the degeneracy of a geometric element are analyzed,and relevant definitions and formalized descriptions for the problem are provided according to the relevant modern Euclidean geometry theories.To solve the problem,the data structure is optimized,and a domain model design for the geometric element and the constraint relationships thereof in the dynamic geometry system are formed;furthermore,an update algorithm for the element is proposed based on the novel domain model.In addition,instances show that the proposed domain model and the update algorithm can effectively cope with the geometric element degeneracy situations in the geometric constraint solving process,thereby achieving unification of the dynamic geometry drawing and the geometric intuition of the user.
文摘Precise control of a magnetically suspended double-gimbal control moment gyroscope (MSDGCMG) is of vital importance and challenge to the attitude positioning of spacecraft owing to its multivariable, nonlinear and strong coupled properties. This paper proposes a novel linearization and decoupling method based on differential geometry theory and combines it with the internal model controller (IMC) to guarantee the system robustness to the external disturbance and parameter uncertainty. Furthermore, by introducing the dynamic compensation for the inner-gimbal rate-servo system and the magnetically suspended rotor (MSR) system only, we can eliminate the influence of the unmodeled dynamics to the decoupling control accuracy as well as save costs and inhibit noises effectively. The simulation results verify the nice decoupling and robustness performance of the system using the proposed method.