Experiments of soiling effects on the performances of a PV panel have been performed using dust collected from two sites in the region of Agadir-Morocco.The optical transmittance of the front glass was found to depend...Experiments of soiling effects on the performances of a PV panel have been performed using dust collected from two sites in the region of Agadir-Morocco.The optical transmittance of the front glass was found to depend on the nature and density of dust.The nature of dust was studied by means of scanning electron microscopy and energy dispersive x-ray spectroscopy.It was found that the granulometry of dust particles depends on the study area.For a dust density of around 20 g/m^(2),the maximum power Pmax of the solar panel decreases drastically from 30 to 20 W for the(HP)site,and no more than 14 W for the(AD)site.The diversity of the behavior of the soiled panel was explained in terms of the size of the particles collected from each area.The transmission of light across the front glass of the PV panel is more affected when the sizes of particles are small.展开更多
<span style="font-family:Verdana;">This study aims to evaluate the optical losses of photovoltaic modules due to Saharan dust deposition in Dakar, Senegal, West Africa. For this purpose, an air-dust-gl...<span style="font-family:Verdana;">This study aims to evaluate the optical losses of photovoltaic modules due to Saharan dust deposition in Dakar, Senegal, West Africa. For this purpose, an air-dust-glass system is modeled to simulate optical losses in transmittance </span><span style="font-family:Verdana;">and reflectance. To do this, we have collected dust samples from Photo-Voltaic</span><span style="font-family:Verdana;"> (PV) surface in Dakar area (14<span style="white-space:nowrap;">°</span>42'N latitude, 17<span style="white-space:nowrap;">°</span>28'W longitude), Senegal. X-ray fluorescence reveals that silicon (Si), iron (Fe), calcium (Ca) and potassium (K) mainly </span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">compose</span></span></span></span></span><span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">d these dust samples. Then, dust refractive indices obtained from an ellipsometer were used as an input to be used in the model. Simulations show that for radiation (at normal incidence) arriving on a dust layer of 30 μm-thick (corresponding to a dust deposit of 1.63 g/m</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;">), 79% of the visible spectrum is transmitted</span></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">;</span></span></span></span><span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"> 19% is reflected and 2% is absorbed. Overall, the transmittance decreases by more than 50% as of dust layer of 70 μm-thick corresponding to a dust deposit of 3.3 g/m</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;">.</span></span></span></span></span>展开更多
INTRODUCTION In recent years, with the gradual improvement of road construction, the rapid increase of the number of motor vehicles, vehicle emissions and the current poor vehicle performance, poor vehicle maintenance...INTRODUCTION In recent years, with the gradual improvement of road construction, the rapid increase of the number of motor vehicles, vehicle emissions and the current poor vehicle performance, poor vehicle maintenance, higher emission factor and so on, air pollution caused by the traffic issues becomes the focus of people attention. The harmful substances are gradually accumulated to atmosphere particles surrounding roads due to dust particles (soil dusts, road dusts, construction dusts), coal emissions, industrial emissions, vehicle emissions, biomass burning, secondary particles, which has a certain harmful influence to the atmosphere, soil and plants surrounding roads.展开更多
文摘Experiments of soiling effects on the performances of a PV panel have been performed using dust collected from two sites in the region of Agadir-Morocco.The optical transmittance of the front glass was found to depend on the nature and density of dust.The nature of dust was studied by means of scanning electron microscopy and energy dispersive x-ray spectroscopy.It was found that the granulometry of dust particles depends on the study area.For a dust density of around 20 g/m^(2),the maximum power Pmax of the solar panel decreases drastically from 30 to 20 W for the(HP)site,and no more than 14 W for the(AD)site.The diversity of the behavior of the soiled panel was explained in terms of the size of the particles collected from each area.The transmission of light across the front glass of the PV panel is more affected when the sizes of particles are small.
文摘<span style="font-family:Verdana;">This study aims to evaluate the optical losses of photovoltaic modules due to Saharan dust deposition in Dakar, Senegal, West Africa. For this purpose, an air-dust-glass system is modeled to simulate optical losses in transmittance </span><span style="font-family:Verdana;">and reflectance. To do this, we have collected dust samples from Photo-Voltaic</span><span style="font-family:Verdana;"> (PV) surface in Dakar area (14<span style="white-space:nowrap;">°</span>42'N latitude, 17<span style="white-space:nowrap;">°</span>28'W longitude), Senegal. X-ray fluorescence reveals that silicon (Si), iron (Fe), calcium (Ca) and potassium (K) mainly </span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">compose</span></span></span></span></span><span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">d these dust samples. Then, dust refractive indices obtained from an ellipsometer were used as an input to be used in the model. Simulations show that for radiation (at normal incidence) arriving on a dust layer of 30 μm-thick (corresponding to a dust deposit of 1.63 g/m</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;">), 79% of the visible spectrum is transmitted</span></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">;</span></span></span></span><span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"> 19% is reflected and 2% is absorbed. Overall, the transmittance decreases by more than 50% as of dust layer of 70 μm-thick corresponding to a dust deposit of 3.3 g/m</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;">.</span></span></span></span></span>
基金financially supported by National Major Scientific Instrument Equipment Development Special(2011YQ060111)
文摘INTRODUCTION In recent years, with the gradual improvement of road construction, the rapid increase of the number of motor vehicles, vehicle emissions and the current poor vehicle performance, poor vehicle maintenance, higher emission factor and so on, air pollution caused by the traffic issues becomes the focus of people attention. The harmful substances are gradually accumulated to atmosphere particles surrounding roads due to dust particles (soil dusts, road dusts, construction dusts), coal emissions, industrial emissions, vehicle emissions, biomass burning, secondary particles, which has a certain harmful influence to the atmosphere, soil and plants surrounding roads.