期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
Anion-cation dual doping: An effective electronic modulation strategy of Ni2P for high-performance oxygen evolution
1
作者 Bo Xu Xiaodong Yang +6 位作者 Qiang Fang Linbing Du Yan Fu Yiqiang Sun Qisheng Liu Qingquan Lin Cuncheng Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第9期116-121,I0004,共7页
Developing of high-performance and low-cost electrocatalysts is of great significance to reduce the overpotential and accelerated the reaction rate of oxygen evolution in water splitting and related energy conversion ... Developing of high-performance and low-cost electrocatalysts is of great significance to reduce the overpotential and accelerated the reaction rate of oxygen evolution in water splitting and related energy conversion applications.Herein,Fe,O-dual doped Ni2P(Fe,O-Ni2P)nanoarray is successfully synthesized on carbon cloth demonstrating enhanced electrocatalytic activity and stability for oxygen evolution reaction(OER)under alkaline media.The as-synthesized Fe,O-Ni2P nanoarray exhibits obviously improved OER performance with a low overpotential of 210 mV at 10 mA cm^-2 current density and a Tafel slope of48 mV dec^-1,as well as long-term durability.The strong coupling interaction induced changes in electronic structure lead to relatively higher oxidation state and stronger oxidation ability of the Fe,O-Ni2P nanoarray,together with the high electrochemical surface area and good conductivity contribute to the superior OER performance.This work highlights the anion-cation dual doping strategy may be an effective method for fabrication of catalysts relating to energy conversion applications. 展开更多
关键词 Oxygen evolution reaction Ni2P based electrocatalyst Anion-cation dual doping
在线阅读 下载PDF
Ion-exchange-induced Bi and K dual-doping of TiOx in molten salts for high-performance electrochemical nitrogen reduction 被引量:1
2
作者 Hao Li Liqun Wang +4 位作者 Nan Li Jianmin Feng Feng Hou Sihui Wang Ji Liang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第6期26-34,I0002,共10页
Electrocatalytic nitrogen reduction reaction (e NRR) at the ambient conditions is attractive for ammonia(NH_(3)) synthesis due to its energy-efficient and eco-friendly features. However, the extremely strong N≡N trip... Electrocatalytic nitrogen reduction reaction (e NRR) at the ambient conditions is attractive for ammonia(NH_(3)) synthesis due to its energy-efficient and eco-friendly features. However, the extremely strong N≡N triple-bonds in nitrogen molecules and the competitive hydrogen evolution reaction lead to the unsatisfactory NH_(3) yield and the Faradaic efficiency (FE) of e NRR, making the development of high-performance catalysts with adequate active sites and high selectivity essential for further development of e NRR.Addressing this, we herein report a Bi and K dual-doped titanium oxide (BTO@KTO) material, which is prepared by a cation exchange reaction between K_(2)Ti_(4)O_(5) and molten BiCl_(2), for high-performance e NRR catalysts. Benefiting from the controllable molten-salt cation exchange process, a highly active surface containing Bi/K sites and rich oxygen vacancies has been obtained on titanium oxide. Under the synergy of these two merits, an efficient e NRR catalysis, with the NH_(3) yield rate of 32.02 μg h^(-1)mg_(cat)^(-1) and the FE of 12.71%, has been achieved, much superior to that of pristine K_(2)Ti_(4)O_(9). This work thus offers a highperformance electrocatalyst for e NRR, and more importantly, a versatile cation-exchange strategy for efficiently manipulating materials’ functionalities. 展开更多
关键词 Molten salt ELECTROCATALYSIS Nitrogen fixation Cation exchange dual doping
在线阅读 下载PDF
Dual-doping for enhancing chemical stability of functional anionic units in sulfide for high-performance all-solid-state lithium batteries
3
作者 Peiwen Yu Niaz Ahmad +6 位作者 Jie Yang Chaoyuan Zeng Xiaoxiao Liang Weiming Huang Mei Ni Pengcheng Mao Wen Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第11期382-390,I0009,共10页
The sulfide-based solid-state electrolytes(SEs)reactivity toward moisture and Li-metal are huge barriers that impede their large-scale manufactu ring and applications in all-solid-state lithium batteries(ASSLBs).Herei... The sulfide-based solid-state electrolytes(SEs)reactivity toward moisture and Li-metal are huge barriers that impede their large-scale manufactu ring and applications in all-solid-state lithium batteries(ASSLBs).Herein,we proposed an Al and O dual-doped strategy for Li_(3)PS_(4)SE to regulate the chemical/electrochemical stability of anionic PS_(4)^(3-)tetrahedra to mitigate structural hydrolysis and parasitic reactions at the SE/Li interface.The optimized Li_(3.08)A_(10.04)P_(0.96)S_(3.92)O_(0.08)SE presents the highestσLi+of 3.27 mS cm^(-1),which is~6.8 times higher than the pristine Li_(3)PS_(4)and excellently inhibits the structural hydrolysis for~25 min@25%humidity at RT.DFT calculations confirmed that the enhanced chemical stability was revealed to the intrinsically stable entities,e.g.,POS33-units.Moreover,Li_(3.08)Al_(0.04)P_(0.96)S_(3.92)O_(0.08)SE cycled stably in Li//Li symmetric cell over 1000 h@0.1 mA cm^(-2)/0.1 mA h cm^(-2),could be revealed to Li-Al alloy and Li_(2)Oat SE/Li interface impeding the growth of Li-dendrites during cycling.Resultantly,LNO@LCO/Li_(3.08)Al_(0.04)P_(0.96)S_(3.92)O_(0.08)/Li-In cell delivered initial discharge capacities of 129.8 mA h g^(-1)and 83.74%capacity retention over 300 cycles@0.2 C at RT.Moreover,the Li_(3.08)Al_(0.04)P_(0.96)S_(3.92)O_(0.08)SE presented>90%capacity retention over 200 and 300 cycles when the cell was tested with LiNi_(0.8)Co_(0.15)Al_(0.05)O_(2)(NCA)cathode material vs.5 and 10 mg cm^(-2)@RT. 展开更多
关键词 dual doping High Li^(+) conductivity Air-stability Pos_(3)^(3-) functional units Stable SE/electrode interface
在线阅读 下载PDF
Cooperation-doping cobalt and boron on MOF with double cone microrods structure to boost efficient nitrogen fixation in Zn-N_(2)batteries
4
作者 Xin Xu Zaihang Zheng +4 位作者 Meili Zheng Songquan Pan Yixin Li Hao Huang Jie Hu 《Journal of Energy Chemistry》 2025年第4期465-475,共11页
Zn-N_(2)batteries,which are comprised of nitrogen reduction reaction(NRR)and oxygen evolution reaction(OER),represent an emerging technology for efficient ammonia production and simultaneous power generation.Neverthel... Zn-N_(2)batteries,which are comprised of nitrogen reduction reaction(NRR)and oxygen evolution reaction(OER),represent an emerging technology for efficient ammonia production and simultaneous power generation.Nevertheless,the intrinsic limitations of NRR and OER currently preclude its advancement.In this paper,Co and B co-doped Lavoisier framework series materials(MIL)are synthesized.Rapid mass transfer is rendered feasible with B_(0.25)-MIL-88-Fe_(4)Co_(1) by the distinctive double cone microrods structure.The addition of soft acid metal node Co^(2+)and B with defective electronic structure modifies the electronic configuration of MIL-88-Fe.At the same time,doping causes defects in the metal-organic frameworks,expands effectively the pore size,and increases the specific surface area,thereby expediting the adsorption of N_(2)and the release of O_(2).The electrocatalysis results show that the dual-doping scheme increases the NH_(3)yield(127.27μg^(-1)h^(-1)mg_(cat)^(-1))and Faraday efficiency(25.81%)while reducing the overpotential of OER(330 mV),achieving a power density of 8.30 mW cm^(-2)for Zn-N_(2)batteries.This discovery implements another avenue for the exploration of Zn-N_(2)battery materials and holds broader significance for advancing the field of energy storage and conversion. 展开更多
关键词 Nitrogen reduction reaction Oxygen evolution reaction Zn-N_(2)battery dual doping MOF
在线阅读 下载PDF
Acylation-assisted N,O dual-doped hierarchical porous hard carbon with enhanced kinetics for Na-ion and K-ion storage
5
作者 Jun-Jun Wang Zhi Wang +4 位作者 Hao-Ran Zhang Peng-Da Hu Bin-Bin Fan Hua Yuan Ye-Qiang Tan 《Rare Metals》 2025年第9期6163-6174,共12页
Hard carbon (HC) is perceived as an anode candidate for sodium-ion batteries and potassium-ion batteries due to its disordered structure and cost-effectiveness,yet its capacity is restricted by limited active sites.He... Hard carbon (HC) is perceived as an anode candidate for sodium-ion batteries and potassium-ion batteries due to its disordered structure and cost-effectiveness,yet its capacity is restricted by limited active sites.Heteroatom-induced defect engineering of HC is commonly applied for enhancing its reversible capacity,but high heteroatom doping (>14 at%) is challenging due to the absence of heteroatoms in most biomasses.Not only that,the heteroatom doping strategy is also bothered with high diffusion barriers toward Na^(+)/K^(+).Herein,based on a rationally selected low-cost precursor (sodium alginateDmelamineDNaCl),a new HC with high-level N,O heteroatom dopants (21.4 at%) and well-regulated porous structure has been constructed via acylating and controllable pore engineering.Experimental proof and theoretical calculations have been conducted to clarify the influence of heteroatom dopants and porous structures on the ion storage behavior of the designed HC.The rich N,O co-doping could enable efficient Na+/K+adsorption and enhanced electron transfer behavior.Besides,benefiting from the hierarchical porous structures (micro to macropores),the interfacial reaction kinetics and electrochemical behavior can be boosted.Particularly,the optimized N,O dualdoped hierarchical porous HC (NO-HPHC-1,0.285 mol L-1NaCl in precursor) with abundant defects from macropores and moderate micropores make it exhibit excellent Na^(+)storage:127 mAh g^(-1)at 0.5 A g^(-1)even after 2000 cycles.Meanwhile,the superiority of NO-HPHC-1 can be well maintained for K^(+)storage with a reversible capacity of 199 mAh g^(-1)at 0.1 A g^(-1).More importantly,the diverse Na^(+)/K^(+)storage behaviors have been elucidated. 展开更多
关键词 Biomass-derived hard carbon N O dual doping Hierarchical porous structure Sodium-ion batteries Potassium-ion batteries
原文传递
A universal strategy to synthesize amorphous/crystalline P,Mo dual-doped CoNiS nanostructures for overall water splitting
6
作者 Xiaodong Yang Haochen Shen +4 位作者 Xiaoming Xiao Wei Yang Zhichao Li Na Yang Luhong Zhang 《Journal of Materials Science & Technology》 2025年第1期18-28,共11页
In this work,P and Mo dual-doped CoNiS(PMo-CoNiS)nanosheet arrays were successfully constructed through a common solvothermal treatment.The precise doping of P and Mo species into the CoNiS can regulate the microstruc... In this work,P and Mo dual-doped CoNiS(PMo-CoNiS)nanosheet arrays were successfully constructed through a common solvothermal treatment.The precise doping of P and Mo species into the CoNiS can regulate the microstructures and meanwhile endow with PMo-CoNiS abundant amorphous/crystalline heterointerfaces,which can adjust the electronic structure,thus enhancing the intrinsic activity of hydro-gen evolution reaction(HER)and oxygen evolution reaction(OER).As a result,ultra-low overpotentials of merely 156 and 58 mV are required to deliver a current density of 10 mA cm^(−2) for OER and HER,respec-tively,and the electrocatalysts PMo-CoNiS also exhibit low Tafel slopes and maintain robust stability for 48 h in alkaline media at a high current density of 50 mA cm^(−2).In addition,in an assembled electrolyte cell for overall water splitting,a voltage as low as 1.48 V is sufficient to yield a current density of 10 mA cm^(−2).Density functional theory(DFT)calculations further confirmed that the enhanced OER and HER result from the optimized OH^(∗)and H^(∗)adsorption energy of PMo-CoNiS due to P,Mo dual doping and generated interfacial effect.This work may offer an avenue for designing low-cost bifunctional catalysts with superior catalytic activity and provide a new application strategy for broader applications in various electrocatalytic fields. 展开更多
关键词 Transition metal sulfides dual doping Amorphous/crystalline hybrid Water splitting
原文传递
All-cellulose-based quasi-solid-state supercapacitor with nitrogen and boron dual-doped carbon electrodes exhibiting high energy density and excellent cyclic stability 被引量:6
7
作者 Kaixuan Li Ping Li +6 位作者 Zining Sun Jing Shi Minghua Huang Jingwei Chen Shuai Liu Zhicheng Shi Huanlei Wang 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第4期1091-1101,共11页
The key to construct high-energy supercapacitors is to maximize the capacitance of electrode and the voltage of the device.Realizing this purpose by utilizing sustainable and low-cost resources is still a big challeng... The key to construct high-energy supercapacitors is to maximize the capacitance of electrode and the voltage of the device.Realizing this purpose by utilizing sustainable and low-cost resources is still a big challenge.Herein,N,B co-doped carbon nanosheets are obtained through the proposed dual-template assisted approach by using methyl cellulose as the precursor.Due to the synergistic effects form the high surface area with the hierarchical porous structure,N/B dual doping,and a high degree of graphitization,the resultant carbon electrode exhibits a high capacitance of 572 F g^(-1)at 0.5 A g^(-1)and retains 281 F g^(-1)at 50 A g^(-1)in an acidic electrolyte.Furthermore,the symmetric device assembled using bacterial cellulose-based gel polymer electrolyte can deliver high energy density of 43 W h kg^(-1)and excellent cyclability with 97.8%capacity retention after 20000 cycles in“water in salt”electrolyte.This work successfully realizes the fabrication of high-performance allcellulose-based quasi-solid-state supercapacitors,which brings a cost-effective insight into jointly designing electrodes and electrolytes for supporting highly efficient energy storage. 展开更多
关键词 dual doping Carbon materials Quasi-solid-state supercapacitor Cellulose Hierarchical structure
在线阅读 下载PDF
Sn-O dual-doped Li-argyrodite electrolytes with enhanced electrochemical performance 被引量:3
8
作者 Ting Chen Dewu Zeng +4 位作者 Long Zhang Meng Yang Dawei Song Xinlin Yan Chuang Yu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第8期530-537,I0011,共9页
As a type of candidate for all-solid-state Li batteries,argyrodite solid electrolytes possess high ionic conductivity,but poor compatibility against Li metal.Here,we report novel Li_(6) PS_(5) I-based argyrodite sulfi... As a type of candidate for all-solid-state Li batteries,argyrodite solid electrolytes possess high ionic conductivity,but poor compatibility against Li metal.Here,we report novel Li_(6) PS_(5) I-based argyrodite sulfides with Sn-O dual doping,which is a powerful solution to comprehensively improve the performance of a material.The combination of O and Sn-aliovalent doping not only enables an improved ionic conductivity but more importantly realizes an intensively enhanced interfacial compatibility between argyrodite and Li metal and Li dendrite suppression capability.The assembled battery with Sn-O dual-doped electrolyte and Li anode demonstrates high capacity and decent cycling stability.Dual doping is thus believed to be an effective way to develop high performance sulfide solid electrolytes. 展开更多
关键词 Lithium dendrite suppression Interface dual doping Argyrodite solid electrolyte All-solid-state lithium-metal battery
在线阅读 下载PDF
Synergy of I-Cl co-occupation on halogen-rich argyrodites and resultant dual-layer interface for advanced all-solid-state Li metal batteries 被引量:1
9
作者 Han Yan Ruifeng Song +6 位作者 Ruonan Xu Shulin Li Qiaoquan Lin Xinlin Yan Zhenyu Wang Chuang Yu Long Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第11期499-509,I0011,共12页
The(electro)chemical stability and Li dendrite suppression capability of sulfide solid electrolytes(SEs)need further improvement for developing all-solid-state Li batteries(ASSLBs).Here,we report advanced halogen-rich... The(electro)chemical stability and Li dendrite suppression capability of sulfide solid electrolytes(SEs)need further improvement for developing all-solid-state Li batteries(ASSLBs).Here,we report advanced halogen-rich argyrodites via I and Cl co-occupation on the crystal lattice.Notably,a proper I content forms a single phase,whereas an excessive I causes precipitation of two argyrodite phases like a superlattice structure.The resultant synergistic effect of the optimized composition allows to gain high ionic conductivities at room temperature and-20℃,and enhances the(electro)chemical stability against Li and Li dendrite suppression capability.The Li|argyrodite interface is very sensitive to the ratio of I and Cl.A LiCl-and LiI-rich double-layer interface is observed from the cell using the SE with optimized composition,whereas too high I content forms only a single interface layer with a mixture of Lil and LiCl.This double-layer interface is found to effectively mitigate the Li/SE reaction.The proper designed argyrodite enables ASSLBs to achieve good electrochemical properties at a broad temperature range regardless of the electrode materials.This co-occupation strategy provides a novel exploration for advanced halogen-rich argyrodite system. 展开更多
关键词 Sulfide solid electrolytes Argyrodites dual doping Li metal anode Solid-state batteries
在线阅读 下载PDF
New strategy of S,N co‐doping of conductive‐copolymer‐derived carbon nanotubes to effectively improve the dispersion of PtCu nanocrystals for boosting the electrocatalytic oxidation of methanol 被引量:3
10
作者 Jingping Zhong Kexin Huang +6 位作者 Wentao Xu Huaguo Tang Muhammad Waqas Youjun Fan Ruixiang Wang Wei Chen Yixuan Wang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第7期1205-1215,共11页
Efficacious regulation of the geometric and electronic structures of carbon nanomaterials via the introduction of defects and their synergy is essential to achieving good electrochemical performance.However,the guidel... Efficacious regulation of the geometric and electronic structures of carbon nanomaterials via the introduction of defects and their synergy is essential to achieving good electrochemical performance.However,the guidelines for designing hybrid materials with advantageous structures and the fundamental understanding of their electrocatalytic mechanisms remain unclear.Herein,superfine Pt and PtCu nanoparticles supported by novel S,N‐co‐doped multi‐walled CNT(MWCNTs)were prepared through the innovative pyrolysis of a poly(3,4‐ethylenedioxythiophene)/polyaniline copolymer as a source of S and N.The uniform wrapping of the copolymer around the MWCNTs provides a high density of evenly distributed defects on the surface after the pyrolysis treatment,facilitating the uniform distribution of ultrafine Pt and PtCu nanoparticles.Remarkably,the Pt_(1)Cu_(2)/SN‐MWCNTs show an obviously larger electroactive surface area and higher mass activity,stability,and CO poisoning resistance in methanol oxidation compared to Pt/SN‐MWCNTs,Pt/S‐MWCNTs,Pt/N‐MWCNTs,and commercial Pt/C.Density functional theory studies confirm that the co‐doping of S and N considerably deforms the CNTs and polarizes the adjacent C atoms.Consequently,both the adsorption of Pt1Cu2 onto the SN‐MWCNTs and the subsequent adsorption of methanol are enhanced;in addition,the catalytic activity of Pt_(1)Cu_(2)/SN‐MWCNTs for methanol oxidation is thermodynamically and kinetically more favorable than that of its CNT and N‐CNT counterparts.This work provides a novel method to fabricate high‐performance fuel cell electrocatalysts with highly dispersed and stable Pt‐based nanoparticles on a carbon substrate. 展开更多
关键词 Methanol oxidation Conductive copolymers dual‐doped carbon nanotubes Pt‐based nanoparticles DFT calculation
在线阅读 下载PDF
Room Temperature Ferromagnetism in Dual Doped (Mn^(2+), Ni^(2+)) ZnO Codoped with Li^(1+) Prepared Using EDTA Sintered at Low Temperature
11
作者 R.Pugaze A.Sivagamasundari +4 位作者 D.Vanidha S.Chandrasekar A.Arunkumar S.Rajagopan R.Kannan 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2014年第3期275-279,共5页
Nanopowders of Znl_x_y_zMnxNiyLizO [(x = 0.04, y = 0, z = 0), (x = 0.04, y = 0.03, z = 0) and (x = 0.04, y = 0.03, z = 0.03)] have been synthesized by sol-gel precursor route using ethylene diamine tetraacetic a... Nanopowders of Znl_x_y_zMnxNiyLizO [(x = 0.04, y = 0, z = 0), (x = 0.04, y = 0.03, z = 0) and (x = 0.04, y = 0.03, z = 0.03)] have been synthesized by sol-gel precursor route using ethylene diamine tetraacetic acid (EDTA) as a metal chelating agent. X-ray diffraction analysis confirms the formation of wurtzite hexagonal structure for all the three compositions. Mn2+ doped ZnO exhibits room temperature ferromagnetism (RTFM), and it is found that further Ni2+ doping has decreased Ms because of limit of solid solubility of transition metal in ZnO. But codoping of monovalent Li1+, further increases the ferromagnetism (FM) value, due to introduction of free carriers compared to the dual doped samples. Photoluminescence (PL) spectra of the system, exhibit near band edge (NBE) emission peak at --464 nm due to the electron transition from interstitials to the valence band. Recombination of conduction electron with hole trapped at oxygen vacancy, leads to prominent defect emission peaks at --482 nm and 532 nm. The evidence of the formation of metaI-EDTA complexes are found from the Fourier transform infrared spectra at 2800-3800 cm-1 with shifting, splitting of the peak and also drastic variations in the intensity. 展开更多
关键词 MN-DOPED dual doped Li codoped FERROMAGNETISM Photoluminescence Fourier transform infrared (FTIR) spectroscopy
原文传递
Improving the structure and cycling stability of Ni-rich cathodes by dual modification
12
作者 ZHU Zhen-hua XU Shi-jie +3 位作者 ZHANG Qiang-feng ZHU Hai-peng MEI Lin ZHANG Chun-xiao 《Journal of Central South University》 CSCD 2024年第12期4460-4471,共12页
The irreversible phase transition and interface side reactions during the cycling process severely limit the large scale application of nickel-rich layered oxides Li[Ni_(x)Co_(y)Mn_(1−x−y)]O_(2)(NCM,x>0.8).Herein,w... The irreversible phase transition and interface side reactions during the cycling process severely limit the large scale application of nickel-rich layered oxides Li[Ni_(x)Co_(y)Mn_(1−x−y)]O_(2)(NCM,x>0.8).Herein,we have designed LiNi_(0.8)Co_(0.1)Mn 0.1 O_(2)cathodes modified by Nb/Al co-doping and LiNbO_(3)/LiAlO_(2)composite coating.Detailed characterization reveals that Nb/Al co-doping can stabilize the crystal structure of the cathodes and expand the layer spacing of the layered lattice,thereby increasing the diffusion rate and reversibility of Li^(+).And the composite coatings can improve the electrochemical kinetic and inhibit the erosion of acidic substances by hindering direct contact between the cathodes and electrolyte.As a result,the Ni-rich cathodes with dual modification can still exhibit a higher capacity of 184.02 mA·h/g after 100 cycles with a capacity retention of up to 98.1%,and can still release a capacity of 161.6 mA·h/g at a high rate of 7 C,meanwhile,it shows excellent thermal stability compared to bare NCM.This work provides a new perspective for enhancing electrochemical properties of cathodes through integrated strategies. 展开更多
关键词 Ni-rich layered cathode dual element doping composite coating structural stability electrochemical performance
在线阅读 下载PDF
P,N co-doped hollow carbon nanospheres prepared by micellar copolymerization for increased hydrogen evolution in alkaline water 被引量:1
13
作者 HAN Yi-meng XIONG Hao +2 位作者 YANG Jia-ying WANG Jian-gan XU Fei 《新型炭材料(中英文)》 北大核心 2025年第1期211-221,共11页
The design of cost-effective and efficient metal-free carbon-based catalysts for the hydrogen evolution reaction(HER)is of great significance for increasing the production of clean hydrogen by the electrolysis of alka... The design of cost-effective and efficient metal-free carbon-based catalysts for the hydrogen evolution reaction(HER)is of great significance for increasing the production of clean hydrogen by the electrolysis of alkaline water.Precise control of the electronic structure by heteroatom doping has proven to be efficient for increasing catalytic activity.Nevertheless,both the structural characteristics and the underlying mechanism are not well understood,especially for doping with two different atoms,thus limiting the use of these catalysts.We report the production of phosphorus and nitrogen co-doped hollow carbon nanospheres(HCNs)by the copolymerization of pyrrole and aniline at a Triton X-100 micelle-interface,followed by doping with phytic acid and carbonization.The unique pore structure and defect-rich framework of the HCNs expose numerous active sites.Crucially,the combined effect of graphitic nitrogen and phosphorus-carbon bonds modulate the local electronic structure of adjacent C atoms and facilitates electron transfer.As a res-ult,the HCN carbonized at 1100°C exhibited superior HER activity and an outstanding stability(70 h at a current density of 10 mA cm^(−2))in alkaline water,because of the large number of graphitic nitrogen and phosphorus-carbon bonds. 展开更多
关键词 Alkaline hydrogen evolution ELECTROCATALYSTS Hollow carbon nanospheres dual atoms doping Combined effect
在线阅读 下载PDF
Microstructure and thermoelectric properties of Bi_(0.5)Na_(0.02)Sb_(1.48-x)In_xTe_3 alloys fabricated by vacuum melting and hot pressing 被引量:7
14
作者 Xing-Kai Duan Kong-Gang Hu +3 位作者 Da-Hu Ma Wang-Nian Zhang Yue-Zhen Jiang Shu-Chao Guo 《Rare Metals》 SCIE EI CAS CSCD 2015年第11期770-775,共6页
The Bi0.5Na0.02Sb1.48-xInxTe3alloys(x =0.02-0.20) were synthesized by vacuum melting and hot pressing methods at 753 K,60 MPa for 30 min.Effects of Na and In dual partial substitutions for Sb on the thermoelectric p... The Bi0.5Na0.02Sb1.48-xInxTe3alloys(x =0.02-0.20) were synthesized by vacuum melting and hot pressing methods at 753 K,60 MPa for 30 min.Effects of Na and In dual partial substitutions for Sb on the thermoelectric properties were investigated from 300 to 500 K.Substituting Sb with Na and In can enhance the Seebeck coefficient effectively near room temperature.The electrical resistivity of the Na and In dual-doping samples is higher within the whole test temperature range.The Bi0.5Na0.02Sb1.48-xInxTe3samples(x = 0.02,0.06) play a great role in optimizing the thermal conductivity.As for the Bi0.5Na0.02Sb1.46In0.02Te3alloy,the minimum value of thermal conductivity reaches 0.53 W·m-1·K-1at 320 K.The thermoelectric performance of the Na and In dualdoped samples is greatly improved,and a figure of merit ZT of 1.26 is achieved at 300 K for the Bi0.5Na0.02Sb1.42In0.06Te3,representing 26%enhancement with respect to ZT = 1.0 of the undoped sample. 展开更多
关键词 MICROSTRUCTURE dual doping Hot pressing Thermal co
原文传递
Dual cation doping enabling simultaneously boosted capacity and rate capability of MnO_(2)cathodes for Zn//MnO_(2)batteries 被引量:2
15
作者 Chongze Wang Hao Yang +8 位作者 Bin Wang Peibin Ding Yi Wan Wenjing Bao Yanan Li Suyan Ma Yang Liu Yukun Lu Han Hu 《Nano Research》 SCIE EI CSCD 2023年第7期9488-9495,共8页
Aqueous rechargeable Zn//MnO_(2)batteries show promising prospects for grid-scale energy storage due to their intrinsic safety,abundant resource,and potential high performance.Unfortunately,the real capability of thes... Aqueous rechargeable Zn//MnO_(2)batteries show promising prospects for grid-scale energy storage due to their intrinsic safety,abundant resource,and potential high performance.Unfortunately,the real capability of these devices is far from satisfactory thanks to the low capacity and sluggish kinetics of the MnO_(2)cathode.Herein,we report a dual cation doping strategy by synthesis of MnO_(2)in the presence of Ti_(3)_(2)X MXenes and Ni^(2+)ions to essentially address these drawbacks.Such a process contributes to a Ti,Ni co-dopedα-MnO_(2)anchored on MXenes.The Ti^(3+)ions incorporated in the framework allow a partial multivalent variation for a large capacity while the Ni^(2+)ions promote the H^(+)transfer within the MnO_(2)matrix via the Grotthuss proton transport manner.As a result,the optimal dual cation doped MnO_(2)exhibits a large reversible capacity of 378 mAh·g-1 at 0.1 C and a high rate capability.Moreover,capacity retention as high as 92%is observed after cycling at 4 C for 1000 times,far superior to many of the previously reported results.This facile strategy demonstrated here may shed new insight into the rational design of electrodes based on high-performance Zn//MnO_(2)batteries. 展开更多
关键词 Zn//MnO_(2)batteries dual cation doping MXenes high capacity
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部