The microencapsulation of the extractant was studied by drying-in-liquid with a [(O_Ⅰ/W_Ⅰ)/O_Ⅱ]/W_Ⅱ multi-emulsion. The microcapsules were characterized by the release efficiency of the extractants to discuss the ...The microencapsulation of the extractant was studied by drying-in-liquid with a [(O_Ⅰ/W_Ⅰ)/O_Ⅱ]/W_Ⅱ multi-emulsion. The microcapsules were characterized by the release efficiency of the extractants to discuss the effect of Tween 60, gelatin, and EC on the experimental results. The size dispersity of microcapsules with the different concentrations of gelatin was also discussed. The results show that microcapsules with good membrane tension for several extractants can be obtained with this method.展开更多
It was tried to prepare composite particles made of polymer and two kinds of solid powders by forming Pickeringemulsion followed by the drying-in-liquid method and to investigate how the stepwise addition of solid pow...It was tried to prepare composite particles made of polymer and two kinds of solid powders by forming Pickeringemulsion followed by the drying-in-liquid method and to investigate how the stepwise addition of solid powders affected the contained ratio and adhesion ratio of solid powders and the structure of composite particles. Limonene oil dissolving expanded polystyrene and ethylene glycol were adopted as the dispersed phase and the continuous phase, respectively. Magnetite and titanium dioxide were used as solid powders. Magnetite was added before or after formation of the (O/W) dispersion. Titanium dioxide was added at the various elapsed times from addition of magnetite. Titanium dioxide adhered only on the surface of composite particles irrespective of addition time. At the earlier addition of both solid powders, the surface-covering type composite particles were prepared. At the latter addition of titanium dioxide, a part of magnetite adhered on the surface and the remainder was dispersed into composite particle.展开更多
It was tried to prepare the biodegradable composite particles by the phase separation method followed by the drying-in-liquid method. The composite particles were made of poly-ε-caprolac-tone, quaternary ammonium, ca...It was tried to prepare the biodegradable composite particles by the phase separation method followed by the drying-in-liquid method. The composite particles were made of poly-ε-caprolac-tone, quaternary ammonium, carbon black and wax. In the experiment, acetone and water were selected as a good solvent and a poor solvent for poly-ε-caprolactone, quaternary ammonium and wax, respectively. The composite particles were prepared by changing the surfactant species and their concentration, the feeding velocity of water and the weight ratio of poly-ε-caprolactone with larger molecular weight to one with smaller molecular weight. The composite particles with the inner structure in which carbon black, quaternary ammonium and wax were coated well with poly-ε-caprolactone could be prepared by the preparation method presented in this study. The structure and the mean diameter of composite particles were strongly affected by the feeding velocity of water. The higher the feeding velocity of water, the larger the mean diameter of composite particles. The mean diameter was drastically decreased with the surfactant concentration and increased with the added amount of poly-ε-caprolactant with larger molecular weight.展开更多
文摘The microencapsulation of the extractant was studied by drying-in-liquid with a [(O_Ⅰ/W_Ⅰ)/O_Ⅱ]/W_Ⅱ multi-emulsion. The microcapsules were characterized by the release efficiency of the extractants to discuss the effect of Tween 60, gelatin, and EC on the experimental results. The size dispersity of microcapsules with the different concentrations of gelatin was also discussed. The results show that microcapsules with good membrane tension for several extractants can be obtained with this method.
文摘It was tried to prepare composite particles made of polymer and two kinds of solid powders by forming Pickeringemulsion followed by the drying-in-liquid method and to investigate how the stepwise addition of solid powders affected the contained ratio and adhesion ratio of solid powders and the structure of composite particles. Limonene oil dissolving expanded polystyrene and ethylene glycol were adopted as the dispersed phase and the continuous phase, respectively. Magnetite and titanium dioxide were used as solid powders. Magnetite was added before or after formation of the (O/W) dispersion. Titanium dioxide was added at the various elapsed times from addition of magnetite. Titanium dioxide adhered only on the surface of composite particles irrespective of addition time. At the earlier addition of both solid powders, the surface-covering type composite particles were prepared. At the latter addition of titanium dioxide, a part of magnetite adhered on the surface and the remainder was dispersed into composite particle.
文摘It was tried to prepare the biodegradable composite particles by the phase separation method followed by the drying-in-liquid method. The composite particles were made of poly-ε-caprolac-tone, quaternary ammonium, carbon black and wax. In the experiment, acetone and water were selected as a good solvent and a poor solvent for poly-ε-caprolactone, quaternary ammonium and wax, respectively. The composite particles were prepared by changing the surfactant species and their concentration, the feeding velocity of water and the weight ratio of poly-ε-caprolactone with larger molecular weight to one with smaller molecular weight. The composite particles with the inner structure in which carbon black, quaternary ammonium and wax were coated well with poly-ε-caprolactone could be prepared by the preparation method presented in this study. The structure and the mean diameter of composite particles were strongly affected by the feeding velocity of water. The higher the feeding velocity of water, the larger the mean diameter of composite particles. The mean diameter was drastically decreased with the surfactant concentration and increased with the added amount of poly-ε-caprolactant with larger molecular weight.