Projective synchronization problems of a drive system and a particular response network were investigated,where the drive system is an arbitrary system with n+1 dimensions;it may be a linear or nonlinear system,and ev...Projective synchronization problems of a drive system and a particular response network were investigated,where the drive system is an arbitrary system with n+1 dimensions;it may be a linear or nonlinear system,and even a chaotic or hyperchaotic system,the response network is complex system coupled by N nodes,and every node is showed by the approximately linear part of the drive system.Only controlling any one node of the response network by designed controller can achieve the projective synchronization.Some numerical examples were employed to verify the effectiveness and correctness of the designed controller.展开更多
This paper deeply discusses the causes of gear howling noise,the identification and analysis of multi-source excitation,the transmission path of dynamic noise,simulation and experimental research,case analysis,optimiz...This paper deeply discusses the causes of gear howling noise,the identification and analysis of multi-source excitation,the transmission path of dynamic noise,simulation and experimental research,case analysis,optimization effect,etc.,aiming to better provide a certain guideline and reference for relevant researchers.展开更多
The jointed shaft in the drivelines of the rolling mill, with its angle continuously varying in the production, has obvious impact on the stability of the main drive system. Considering the effect caused by the joint ...The jointed shaft in the drivelines of the rolling mill, with its angle continuously varying in the production, has obvious impact on the stability of the main drive system. Considering the effect caused by the joint angle and friction force of roller gap, the nonlinear vibration model of the main drive system which contains parametric excitation stiffness and nonlinear friction damping was established. The amplitude-frequency characteristic equation and bifurcation response equation were obtained by using the method of multiple scales. Depending on the bifurcation response equation, the transition set and the topology structure of bifurcation curve of the system were obtained by using the singularity theory. The transition set can separate the system into seven areas, which has different bifurcation forms respectively. By taking the 1 780 rolling mill of Chengde Steel Co for example, the simulation and analysis were performed. The amplitude-frequency curves under different joint angles, damping coefficients, and nonlinear stiffness were given. The variations of these parameters have strong influences on the stability of electromechanical resonances and the characteristic of the response curves. The best angle of the jointed shaft is 4.761 3° in this rolling mill.展开更多
Drive system is the key device of armored chassis. Its working state and reliability influence the maneuver performance of armored chassis directly. In order to simulate the failure process and evaluate the service re...Drive system is the key device of armored chassis. Its working state and reliability influence the maneuver performance of armored chassis directly. In order to simulate the failure process and evaluate the service reliability of drive system in training or battle missions,a new kind of dynamic simulation model and driving simulation platform of the complete drive system were established based on virtual prototype and finite element technology in this paper. Using the platform, the kinematics and dynamic characteristics of drive system were studied and analyzed in detail,the dynamic load spectrum of key components was obtained,the service life was predicted, and the service reliability evaluation results were provided. A simulation example of transmission gear was shown to illustrate the simulation and evaluation process. The result proves that the simulation method not only can be used to compute and evaluate the service reliability of complex mechanical mechanism, but also has high precision and reasonable computational cost. Therefore,simulation and reliability analysis based on virtual prototype of the armored chassis drive system will provide scientific reference for the formulation of armored chassis reasonable repair cycle.展开更多
Synchronization errors directly deteriorate the machining accuracy of metal parts and the existed method cannot keep high synchronization precision because of external disturbances. A new double position servo synchro...Synchronization errors directly deteriorate the machining accuracy of metal parts and the existed method cannot keep high synchronization precision because of external disturbances. A new double position servo synchronous driving scheme based on semi-closed-loop cross- coupling integrated feedforward control is proposed. The scheme comprises a position error cross-coupling feedfor-ward control and a load torque identification with feed- forward control. A digital integrated simulation system for the dual servo synchronous drive system is established. Using a 20 t servo broacher, performance analysis of the scheme is conducted based on this simulation system and the simulation results show that systems with traditional parallel or single control have problems when the work- table works with an unbalanced load. However, the system with proposed scheme shows good synchronous perfor- mance and positional accuracy. Broaching tests are performed and the experimental results show that the maximum dual axis synchronization error of the system is only 8μm during acceleration and deceleration processes and the error between the actual running position and the given position is almost zero. A double position servo synchronous driving scheme is presented based on crosscoupled integrated feedforward compensation control, which can improve the synchronization precision.展开更多
To diagnose the Open-Circuit(OC)fault in the novel fault-tolerant electric drive system,based on d-q-axis current signal,a strong robustness diagnosis strategy is proposed and investigated.Fewer independent power supp...To diagnose the Open-Circuit(OC)fault in the novel fault-tolerant electric drive system,based on d-q-axis current signal,a strong robustness diagnosis strategy is proposed and investigated.Fewer independent power supplies and converters are required in the novel fault-tolerant electric drive system based on Dual-Winding Permanent Magnet Motor(DWPMM),and the system’s reliability,usage ratio and power density have been improved compared to the conventional fault-tolerant motor drive system.However,the novel fault-tolerant electric drive system has the OC fault diagnostic false alarms issue when load changes suddenly or under light-load condition.And it lacks the research on the diagnostic method when the system encounters intermittent OC fault in power switches.By theory derivation,simulation and experimental verification,it can be concluded that the proposed strong robustness OC fault diagnosis strategy based on d-q-axis current signal can overcome the OC fault diagnostic false alarms issue when load changes suddenly or under light-load condition.And it can detect and locate the OC fault of single-phase winding in real time,and diagnose the intermittent OC fault of power switches.展开更多
The modal method is applied to analyze coupled vibration of belt drive systems. A belt drive system is a hybrid system consisting of continuous belts modeled as strings as well as discrete pulleys and a tensioner arm....The modal method is applied to analyze coupled vibration of belt drive systems. A belt drive system is a hybrid system consisting of continuous belts modeled as strings as well as discrete pulleys and a tensioner arm. The characteristic equation of the system is derived from the governing equation. Numerical results demenstrate the effects of the transport speed and the initial tension on natural frequencies.展开更多
A novel double extended state observer(DESO)based on model predictive torque control(MPTC)strategy is developed for three-phase permanent magnet synchronous motor(PMSM)drive system without current sensor.In general,to...A novel double extended state observer(DESO)based on model predictive torque control(MPTC)strategy is developed for three-phase permanent magnet synchronous motor(PMSM)drive system without current sensor.In general,to achieve high-precision control,two-phase current sensors are necessary for successful implementation of MPTC.For this purpose,two ESOs are used to estimate q-axis current and stator resistance respectively,and then based on this,d-axis current is estimated.Moreover,to reduce torque and flux ripple and to improve the performance of the torque and speed,MPTC strategy is designed.The simulation results validate the feasibility and effectiveness of the proposed scheme.展开更多
The underwater tapping machine is composed of a center bit, a tapping cutter, a seal box, a main drive box, a boring bar assembly, a envelop, a gear case, a counter and so on. The drive system in underwater tapping ma...The underwater tapping machine is composed of a center bit, a tapping cutter, a seal box, a main drive box, a boring bar assembly, a envelop, a gear case, a counter and so on. The drive system in underwater tapping machine consists of a worm drive, a gear drive system and a screw drive. The worm drive is in the main drive box. The worm is connected with a hydraulic motor and driven by the hydraulic motor. The gear drive system is a combined gear train which is the combinations of the fixed axes and differential gear train in the gear case. On the one hand, by means of the fixed axes gear trains the turn and power of transmission shaft are transferred to the boring bar and the screw rod, causing differential turn between the boring bar and the screw rod. On the other hand, the turns of the boring bar and the screw rod are transferred to the differential gear train. The differential gear train is used to drive a special counter to count axial travel of the boring bar. The screw drive is composed of a feed screw and a nut on the boring bar. There is the differential turn between the boring bar and the feed screw. By means of the nut, the boring bar can feed automatically. With the movement of the sliding gear 7 in the gear case, the designed drive system can also be provided with the ability of fast forward and fast backward movement of the boring bar in its idle motion, resulting in the increase of the tapping efficiency.展开更多
In the pump-controlled motor hydraulic transmission system,when the pressure pulsation frequencies seperately generated by the pump and the motor are close to each other,the hydraulic system will generate a strong pre...In the pump-controlled motor hydraulic transmission system,when the pressure pulsation frequencies seperately generated by the pump and the motor are close to each other,the hydraulic system will generate a strong pressure beat vibration phenomenon,which will seriously affect the smooth running of the hydraulic system.However,the modulated pressure signal also carries information related to the operating state of the hydraulic system,and a accurate extraction of pressure vibration characteristics is the key to obtain the operating state information of the hydraulic system.In order to extract the pressure beat vibration signal component effectively from the multi-component time-varying aliasing pressure signal and reconstruct the time domain characteristics,an extraction method of the pressure beat vibration characteristics of the hydraulic transmission system based on variational mode decomposition(VMD)is proposed.The experimental results show that the VMD method can accurately extract the pressure beat vibration characteristics from the high-pressure oil pressure signal of the hydraulic system,and the extraction effect is preferable to that of the traditional signal processing methods such as empirical mode decomposition(EMD).展开更多
The superconducting tokamak HT-7U [1] has been designed by the Institute of Plasma Physics since 1998 and will be set up before 2003. The 1.2 MW /2.45 GHz HT-7U LHCD (Lower hybrid current drive) system which being the...The superconducting tokamak HT-7U [1] has been designed by the Institute of Plasma Physics since 1998 and will be set up before 2003. The 1.2 MW /2.45 GHz HT-7U LHCD (Lower hybrid current drive) system which being the most efficient non-induction device can heat the plasma and drive the plasma current has been efficiently in operation 'owl and a particular design of the 2.8 MW/-35 kV high-voltage DC power supply has been already completed and will apply to the klystron of LHCD on HT-7 and the future HT-7U, and the project of the power supply has been examined and approved professionally by an authorized group of high-level specialist in the institute of Plasma Physics. The detailed design of the power supply and the simulation results are referred in the paper.展开更多
A robust torsional vibration suppression strategy is proposed for the main drive system of the rolling mill subject to uncertainties,disturbances and input saturation.With given model information incorporated into obs...A robust torsional vibration suppression strategy is proposed for the main drive system of the rolling mill subject to uncertainties,disturbances and input saturation.With given model information incorporated into observer design,an extended state observer that relies only on roller speed measurements is developed to estimate the system states and lumped uncertainties of the rolling mill main drive system.To handle the motor torque saturation,an auxiliary signal system with the same order as the plant is constructed.The error between the control input and plant input is taken as the input of the constructed auxiliary system,and a number of signals are generated to compensate for the effect of the motor torque saturation.Furthermore,a robust output feedback controller is introduced to obtain better transient and steady-state performance of the rolling mill main drive system and the stability of the closed-loop system is strictly proved via Lyapunov theory.Finally,comparative simulations are performed to verify the effectiveness and superiority of the proposed control strategy.展开更多
The paper deals with active drive system for colonoscope. The system is mainly composed of soft mobile mechanism for earthworm locomotion and turning mechanism based on shape memory effect. The soft mobile mechanism c...The paper deals with active drive system for colonoscope. The system is mainly composed of soft mobile mechanism for earthworm locomotion and turning mechanism based on shape memory effect. The soft mobile mechanism contacts colon wall with air in inflatable balloons, so the robot has better soft and non invasive properties. The turning mechanism can be actively bent by shape memory alloy components. It ensures the colonoscope to adapt to the tortuous shape of colon. Some experiment results are given in the paper.展开更多
With the aim to apply the electric fish into practice to assist coal mine water disaster life detection and rescue work, based on the analysis on swing propulsion movements of tail fin, this paper integrates the elect...With the aim to apply the electric fish into practice to assist coal mine water disaster life detection and rescue work, based on the analysis on swing propulsion movements of tail fin, this paper integrates the electromagnet technology with tail fin drive system by analyzing how the fish swims with tail fin under the law of progression. The principle, structure, and drive signals of tail fin electromagnetic drive are researched, the enforced situation of fish under eIectromagnetic driving modes are analyzed, and the experimental plat-form of tail fin electromagnetic drive is established. The best distance between electro- magnet and armature, which can realize the swing of tail fin, was researched in the experiment under water. The robotic fish structure parameters of tail fin electromagnetic drive was finalized by theoretical analysis and experimental measurement.展开更多
When the induction motor is fed from the PWM VSI inverter, with and without torque enhancing function, the variations of the starting torque and the starting current versus the starting frequency are analyzed, base...When the induction motor is fed from the PWM VSI inverter, with and without torque enhancing function, the variations of the starting torque and the starting current versus the starting frequency are analyzed, based on the steady state equivalent circuit of the induction motor.The corresponding expressions are derived, and the corresponding curves are also drawn, from which the initial starting frequency range can be determined properly and easily. The initial starting frequency range is the common range, in which the starting torque should be high enough and the starting current low enough.Some other useful formulas are also derived.These results are significant for electrical drive designers to make the starting schemes. The effects of the increase of the stator and the rotor resistances on the starting torque and the initial starting frequency range are also discussed, which is caused by the skin effects of the high order harmonics present in the PWM inverter output voltage.展开更多
A novel double extended state observers(ESOs)-based field-oriented control(FOC)strategy is developed for three-phase permanent magnet synchronous motor(PMSM)drive systems without any phase current sensor.In principle,...A novel double extended state observers(ESOs)-based field-oriented control(FOC)strategy is developed for three-phase permanent magnet synchronous motor(PMSM)drive systems without any phase current sensor.In principle,two current sensors are essential parts of the drive system for implementation of the feedback to achieve high accuracy control.For this purpose,the double ESOs are created to provide feedback stator currents instead of actual current sensors.The first one of the double ESOs is designed to estimate the benchmark value of q-axis stator current,which is a primary premise;While the second is designed to estimate real-time stator currents of d-axis and q-axis simultaneously.The resultant double ESOs can rapidly and accurately give estimation of the actual currents of a-axis,b-axis and c-axis,and the synthesized double ESOs-based FOC strategy for PMSM drive system without any current sensors has satisfactory control performance and strong robustness.Numerical experiments validate the feasibility and effectiveness of the proposed scheme.展开更多
Design and optimization of electrical drive systems often involve simultaneous consideration of multiple objectives that usually contradict to each other and multiple disciplines that normally coupled to each other.Th...Design and optimization of electrical drive systems often involve simultaneous consideration of multiple objectives that usually contradict to each other and multiple disciplines that normally coupled to each other.This paper aims to present efficient system-level multiobjective optimization methods for the multidisciplinary design optimization of electrical drive systems.From the perspective of quality control,deterministic and robust approaches will be investigated for the development of the optimization models for the proposed methods.Meanwhile,two approximation methods,Kriging model and Taylor expansion are employed to decrease the computation/simulation cost.To illustrate the advantages of the proposed methods,a drive system with a permanent magnet synchronous motor driven by a field oriented control system is investigated.Deterministic and robust Pareto optimal solutions are presented and compared in terms of several steady-state and dynamic performances(like average torque and speed overshoot)of the drive system.The robust multiobjective optimization method can produce optimal Pareto solutions with high manufacturing quality for the drive system.展开更多
The drive control system of the permanent magnetic direct current motor with the enhanced magnetism windings used in the electric transit bus is developed. The mathematics model of the drive control system for this mo...The drive control system of the permanent magnetic direct current motor with the enhanced magnetism windings used in the electric transit bus is developed. The mathematics model of the drive control system for this motor is established. The new mode that the added exiting magnetism field could be weakened and the speed of the motor could be controlled automatically is proposed and realized. The method of root locus design is applied to analyze the acceleration control characteristic. The results of simulation show that the new drive motor control system has extraordinary response characteristic and adjustable performance. Experiments of vehicle running show that the drive control system's antijamming ability is strong and the adjustable performance is fast and smooth, it can meet the demand of power characteristic very well.展开更多
A nonlinear rotational motion model for n-pulley damped serpentine belt drive systems (SBDSs) was developed.The effects of the belt deflection along the contact arc of pulleys on the belt span tensions were consider...A nonlinear rotational motion model for n-pulley damped serpentine belt drive systems (SBDSs) was developed.The effects of the belt deflection along the contact arc of pulleys on the belt span tensions were considered.The methods for calculating the tensioner arm vibration and belt slipping on pulleys were introduced.The effects of belt damping on rotational vibration of tensioner arm and belt slipping on pulleys were studied.Numerical solutions for a 3-pulley SBDS indicate that the belt slipping at the steady states should be controlled to avoid belt slipping at transient states.The slip factors tend to decrease when the belt damping increases,and the possibility of the belt slipping can be controlled through adjusting the wrap angles of pulleys and the preload of the tensioner when the design parameters of SBDS remain constant.展开更多
To investigate the re-adhesion and dynamic characteristics of the locomotive drive system with wheel slip controller,a co-simulation model of the train system was established by SIMPACK and MATLAB/SIMULINK.The uniform...To investigate the re-adhesion and dynamic characteristics of the locomotive drive system with wheel slip controller,a co-simulation model of the train system was established by SIMPACK and MATLAB/SIMULINK.The uniform running and starting conditions were considered,and the influence of structural stiffness of the drive system and the wheel slip controller on the re-adhesion and acceleration performance of the locomotive was investigated.The simulation results demonstrated that the stick-slip vibration is more likely to occur in locomotives with smaller structural stiffnesses during adhesion reduction and recovery processes.There are many frequency components in the vibration acceleration spectrum of the drive system,because the longitudinal and rotational vibrations of the wheelset are coupled by the wheel‒rail tangential force when stick-slip vibration occurs.In general,increasing the structural stiffness of the drive system and reducing the input energy in time are effective measures to suppress stick-slip vibration.It should also be noted that inappropriate matching of the wheel slip controller and drive system parameters may lead to electro-mechanical coupling vibration of the drive system,resulting in traction force fluctuation and poor acceleration performance.展开更多
基金Supported by the National Natural Science Foundation of China (11161027)。
文摘Projective synchronization problems of a drive system and a particular response network were investigated,where the drive system is an arbitrary system with n+1 dimensions;it may be a linear or nonlinear system,and even a chaotic or hyperchaotic system,the response network is complex system coupled by N nodes,and every node is showed by the approximately linear part of the drive system.Only controlling any one node of the response network by designed controller can achieve the projective synchronization.Some numerical examples were employed to verify the effectiveness and correctness of the designed controller.
文摘This paper deeply discusses the causes of gear howling noise,the identification and analysis of multi-source excitation,the transmission path of dynamic noise,simulation and experimental research,case analysis,optimization effect,etc.,aiming to better provide a certain guideline and reference for relevant researchers.
基金Item Sponsored by National Natural Science Foundation of China(51005196)Natural Science Foundation of Hebei Province of China(F2010001317,E2012203194)
文摘The jointed shaft in the drivelines of the rolling mill, with its angle continuously varying in the production, has obvious impact on the stability of the main drive system. Considering the effect caused by the joint angle and friction force of roller gap, the nonlinear vibration model of the main drive system which contains parametric excitation stiffness and nonlinear friction damping was established. The amplitude-frequency characteristic equation and bifurcation response equation were obtained by using the method of multiple scales. Depending on the bifurcation response equation, the transition set and the topology structure of bifurcation curve of the system were obtained by using the singularity theory. The transition set can separate the system into seven areas, which has different bifurcation forms respectively. By taking the 1 780 rolling mill of Chengde Steel Co for example, the simulation and analysis were performed. The amplitude-frequency curves under different joint angles, damping coefficients, and nonlinear stiffness were given. The variations of these parameters have strong influences on the stability of electromechanical resonances and the characteristic of the response curves. The best angle of the jointed shaft is 4.761 3° in this rolling mill.
文摘Drive system is the key device of armored chassis. Its working state and reliability influence the maneuver performance of armored chassis directly. In order to simulate the failure process and evaluate the service reliability of drive system in training or battle missions,a new kind of dynamic simulation model and driving simulation platform of the complete drive system were established based on virtual prototype and finite element technology in this paper. Using the platform, the kinematics and dynamic characteristics of drive system were studied and analyzed in detail,the dynamic load spectrum of key components was obtained,the service life was predicted, and the service reliability evaluation results were provided. A simulation example of transmission gear was shown to illustrate the simulation and evaluation process. The result proves that the simulation method not only can be used to compute and evaluate the service reliability of complex mechanical mechanism, but also has high precision and reasonable computational cost. Therefore,simulation and reliability analysis based on virtual prototype of the armored chassis drive system will provide scientific reference for the formulation of armored chassis reasonable repair cycle.
基金Supported by National Natural Science Foundation of China(Grant No.51307151)Zhejiang Provincial Public Welfare Technology Application Research Project of China(Grant No.2015C31078)+2 种基金Zhejiang Provincial Natural Science Foundation of China(Grant No.LY14E070008)Zhejiang Postdoctoral Science Foundation of China(Grant No.BSH1402065)Science Foundation of Zhejiang SciTech University(Grant No.13022151-Y)
文摘Synchronization errors directly deteriorate the machining accuracy of metal parts and the existed method cannot keep high synchronization precision because of external disturbances. A new double position servo synchronous driving scheme based on semi-closed-loop cross- coupling integrated feedforward control is proposed. The scheme comprises a position error cross-coupling feedfor-ward control and a load torque identification with feed- forward control. A digital integrated simulation system for the dual servo synchronous drive system is established. Using a 20 t servo broacher, performance analysis of the scheme is conducted based on this simulation system and the simulation results show that systems with traditional parallel or single control have problems when the work- table works with an unbalanced load. However, the system with proposed scheme shows good synchronous perfor- mance and positional accuracy. Broaching tests are performed and the experimental results show that the maximum dual axis synchronization error of the system is only 8μm during acceleration and deceleration processes and the error between the actual running position and the given position is almost zero. A double position servo synchronous driving scheme is presented based on crosscoupled integrated feedforward compensation control, which can improve the synchronization precision.
基金supported by the National Natural Science Foundation of China(No.51807094)China Postdoctoral Science Foundation(No.2020M671499)+2 种基金Program for HighLevel Entrepreneurial and Innovative Talents Introduction of Jiangsu Province,China(No.[2019]20)Aeronautical Science Foundation of China(No.20200028059001)Jiangsu Planned Projects for Postdoctoral Research Funds,China(No.2020Z145)。
文摘To diagnose the Open-Circuit(OC)fault in the novel fault-tolerant electric drive system,based on d-q-axis current signal,a strong robustness diagnosis strategy is proposed and investigated.Fewer independent power supplies and converters are required in the novel fault-tolerant electric drive system based on Dual-Winding Permanent Magnet Motor(DWPMM),and the system’s reliability,usage ratio and power density have been improved compared to the conventional fault-tolerant motor drive system.However,the novel fault-tolerant electric drive system has the OC fault diagnostic false alarms issue when load changes suddenly or under light-load condition.And it lacks the research on the diagnostic method when the system encounters intermittent OC fault in power switches.By theory derivation,simulation and experimental verification,it can be concluded that the proposed strong robustness OC fault diagnosis strategy based on d-q-axis current signal can overcome the OC fault diagnostic false alarms issue when load changes suddenly or under light-load condition.And it can detect and locate the OC fault of single-phase winding in real time,and diagnose the intermittent OC fault of power switches.
基金Project supported by the National Natural Science Foundation of China(Nos.10672092 and 10725209)Scientific Research Project of Shanghai Municipal Education Commission(No.07ZZ07)Shanghai Leading Academic Discipline Project(No.Y0103)
文摘The modal method is applied to analyze coupled vibration of belt drive systems. A belt drive system is a hybrid system consisting of continuous belts modeled as strings as well as discrete pulleys and a tensioner arm. The characteristic equation of the system is derived from the governing equation. Numerical results demenstrate the effects of the transport speed and the initial tension on natural frequencies.
基金National Natural Science Foundation of China(No.61463025)Opening Foundation of Key Laboratory of Opto-technology and Intelligent Control(Lanzhou Jiaotong University),Ministry of Education(No.KFKT2018-8)
文摘A novel double extended state observer(DESO)based on model predictive torque control(MPTC)strategy is developed for three-phase permanent magnet synchronous motor(PMSM)drive system without current sensor.In general,to achieve high-precision control,two-phase current sensors are necessary for successful implementation of MPTC.For this purpose,two ESOs are used to estimate q-axis current and stator resistance respectively,and then based on this,d-axis current is estimated.Moreover,to reduce torque and flux ripple and to improve the performance of the torque and speed,MPTC strategy is designed.The simulation results validate the feasibility and effectiveness of the proposed scheme.
基金supported by the National High Technology Research and Development Program of China(863 Program, Grant No.2002AA602012-2)
文摘The underwater tapping machine is composed of a center bit, a tapping cutter, a seal box, a main drive box, a boring bar assembly, a envelop, a gear case, a counter and so on. The drive system in underwater tapping machine consists of a worm drive, a gear drive system and a screw drive. The worm drive is in the main drive box. The worm is connected with a hydraulic motor and driven by the hydraulic motor. The gear drive system is a combined gear train which is the combinations of the fixed axes and differential gear train in the gear case. On the one hand, by means of the fixed axes gear trains the turn and power of transmission shaft are transferred to the boring bar and the screw rod, causing differential turn between the boring bar and the screw rod. On the other hand, the turns of the boring bar and the screw rod are transferred to the differential gear train. The differential gear train is used to drive a special counter to count axial travel of the boring bar. The screw drive is composed of a feed screw and a nut on the boring bar. There is the differential turn between the boring bar and the feed screw. By means of the nut, the boring bar can feed automatically. With the movement of the sliding gear 7 in the gear case, the designed drive system can also be provided with the ability of fast forward and fast backward movement of the boring bar in its idle motion, resulting in the increase of the tapping efficiency.
基金National Natural Science Foundation of China(No.51675399)。
文摘In the pump-controlled motor hydraulic transmission system,when the pressure pulsation frequencies seperately generated by the pump and the motor are close to each other,the hydraulic system will generate a strong pressure beat vibration phenomenon,which will seriously affect the smooth running of the hydraulic system.However,the modulated pressure signal also carries information related to the operating state of the hydraulic system,and a accurate extraction of pressure vibration characteristics is the key to obtain the operating state information of the hydraulic system.In order to extract the pressure beat vibration signal component effectively from the multi-component time-varying aliasing pressure signal and reconstruct the time domain characteristics,an extraction method of the pressure beat vibration characteristics of the hydraulic transmission system based on variational mode decomposition(VMD)is proposed.The experimental results show that the VMD method can accurately extract the pressure beat vibration characteristics from the high-pressure oil pressure signal of the hydraulic system,and the extraction effect is preferable to that of the traditional signal processing methods such as empirical mode decomposition(EMD).
文摘The superconducting tokamak HT-7U [1] has been designed by the Institute of Plasma Physics since 1998 and will be set up before 2003. The 1.2 MW /2.45 GHz HT-7U LHCD (Lower hybrid current drive) system which being the most efficient non-induction device can heat the plasma and drive the plasma current has been efficiently in operation 'owl and a particular design of the 2.8 MW/-35 kV high-voltage DC power supply has been already completed and will apply to the klystron of LHCD on HT-7 and the future HT-7U, and the project of the power supply has been examined and approved professionally by an authorized group of high-level specialist in the institute of Plasma Physics. The detailed design of the power supply and the simulation results are referred in the paper.
基金supported by the National Natural Science Foundation of China(Grant Nos.U20A20187 and 61933009)the Top talents of Hebei provincial Education Department(Grant No.BJ2019047).
文摘A robust torsional vibration suppression strategy is proposed for the main drive system of the rolling mill subject to uncertainties,disturbances and input saturation.With given model information incorporated into observer design,an extended state observer that relies only on roller speed measurements is developed to estimate the system states and lumped uncertainties of the rolling mill main drive system.To handle the motor torque saturation,an auxiliary signal system with the same order as the plant is constructed.The error between the control input and plant input is taken as the input of the constructed auxiliary system,and a number of signals are generated to compensate for the effect of the motor torque saturation.Furthermore,a robust output feedback controller is introduced to obtain better transient and steady-state performance of the rolling mill main drive system and the stability of the closed-loop system is strictly proved via Lyapunov theory.Finally,comparative simulations are performed to verify the effectiveness and superiority of the proposed control strategy.
文摘The paper deals with active drive system for colonoscope. The system is mainly composed of soft mobile mechanism for earthworm locomotion and turning mechanism based on shape memory effect. The soft mobile mechanism contacts colon wall with air in inflatable balloons, so the robot has better soft and non invasive properties. The turning mechanism can be actively bent by shape memory alloy components. It ensures the colonoscope to adapt to the tortuous shape of colon. Some experiment results are given in the paper.
文摘With the aim to apply the electric fish into practice to assist coal mine water disaster life detection and rescue work, based on the analysis on swing propulsion movements of tail fin, this paper integrates the electromagnet technology with tail fin drive system by analyzing how the fish swims with tail fin under the law of progression. The principle, structure, and drive signals of tail fin electromagnetic drive are researched, the enforced situation of fish under eIectromagnetic driving modes are analyzed, and the experimental plat-form of tail fin electromagnetic drive is established. The best distance between electro- magnet and armature, which can realize the swing of tail fin, was researched in the experiment under water. The robotic fish structure parameters of tail fin electromagnetic drive was finalized by theoretical analysis and experimental measurement.
文摘When the induction motor is fed from the PWM VSI inverter, with and without torque enhancing function, the variations of the starting torque and the starting current versus the starting frequency are analyzed, based on the steady state equivalent circuit of the induction motor.The corresponding expressions are derived, and the corresponding curves are also drawn, from which the initial starting frequency range can be determined properly and easily. The initial starting frequency range is the common range, in which the starting torque should be high enough and the starting current low enough.Some other useful formulas are also derived.These results are significant for electrical drive designers to make the starting schemes. The effects of the increase of the stator and the rotor resistances on the starting torque and the initial starting frequency range are also discussed, which is caused by the skin effects of the high order harmonics present in the PWM inverter output voltage.
基金National Natural Science Foundation of China(No.61463025)Opening Foundation of Key Laboratory of Opto-technology and Intelligent Control(Lanzhou Jiaotong University),Ministry of Education(No.KFKT2018-8)Program for Excellent Team of Scientific Research in Lanzhou Jiaotong University(No.201701)
文摘A novel double extended state observers(ESOs)-based field-oriented control(FOC)strategy is developed for three-phase permanent magnet synchronous motor(PMSM)drive systems without any phase current sensor.In principle,two current sensors are essential parts of the drive system for implementation of the feedback to achieve high accuracy control.For this purpose,the double ESOs are created to provide feedback stator currents instead of actual current sensors.The first one of the double ESOs is designed to estimate the benchmark value of q-axis stator current,which is a primary premise;While the second is designed to estimate real-time stator currents of d-axis and q-axis simultaneously.The resultant double ESOs can rapidly and accurately give estimation of the actual currents of a-axis,b-axis and c-axis,and the synthesized double ESOs-based FOC strategy for PMSM drive system without any current sensors has satisfactory control performance and strong robustness.Numerical experiments validate the feasibility and effectiveness of the proposed scheme.
文摘Design and optimization of electrical drive systems often involve simultaneous consideration of multiple objectives that usually contradict to each other and multiple disciplines that normally coupled to each other.This paper aims to present efficient system-level multiobjective optimization methods for the multidisciplinary design optimization of electrical drive systems.From the perspective of quality control,deterministic and robust approaches will be investigated for the development of the optimization models for the proposed methods.Meanwhile,two approximation methods,Kriging model and Taylor expansion are employed to decrease the computation/simulation cost.To illustrate the advantages of the proposed methods,a drive system with a permanent magnet synchronous motor driven by a field oriented control system is investigated.Deterministic and robust Pareto optimal solutions are presented and compared in terms of several steady-state and dynamic performances(like average torque and speed overshoot)of the drive system.The robust multiobjective optimization method can produce optimal Pareto solutions with high manufacturing quality for the drive system.
文摘The drive control system of the permanent magnetic direct current motor with the enhanced magnetism windings used in the electric transit bus is developed. The mathematics model of the drive control system for this motor is established. The new mode that the added exiting magnetism field could be weakened and the speed of the motor could be controlled automatically is proposed and realized. The method of root locus design is applied to analyze the acceleration control characteristic. The results of simulation show that the new drive motor control system has extraordinary response characteristic and adjustable performance. Experiments of vehicle running show that the drive control system's antijamming ability is strong and the adjustable performance is fast and smooth, it can meet the demand of power characteristic very well.
基金Sponsored by the National Natural Science Foundation of China(50975091)Science Fund of State Key Laboratory of Automotive Safety and Energy(KF10162)
文摘A nonlinear rotational motion model for n-pulley damped serpentine belt drive systems (SBDSs) was developed.The effects of the belt deflection along the contact arc of pulleys on the belt span tensions were considered.The methods for calculating the tensioner arm vibration and belt slipping on pulleys were introduced.The effects of belt damping on rotational vibration of tensioner arm and belt slipping on pulleys were studied.Numerical solutions for a 3-pulley SBDS indicate that the belt slipping at the steady states should be controlled to avoid belt slipping at transient states.The slip factors tend to decrease when the belt damping increases,and the possibility of the belt slipping can be controlled through adjusting the wrap angles of pulleys and the preload of the tensioner when the design parameters of SBDS remain constant.
基金the National Natural Science Foundation of China(No.U2268211)the Sichuan Provincial Natural Science Foundation(Nos.2022NSFSC0034 and 2022NSFSC1901)+1 种基金the Independent Research and Development Projects of the State Key Laboratory of Traction Power(No.2022TPL_T02)the Opening Foundation of The State Key Laboratory of Heavy Duty AC Drive Electric Locomotive Systems Integration.
文摘To investigate the re-adhesion and dynamic characteristics of the locomotive drive system with wheel slip controller,a co-simulation model of the train system was established by SIMPACK and MATLAB/SIMULINK.The uniform running and starting conditions were considered,and the influence of structural stiffness of the drive system and the wheel slip controller on the re-adhesion and acceleration performance of the locomotive was investigated.The simulation results demonstrated that the stick-slip vibration is more likely to occur in locomotives with smaller structural stiffnesses during adhesion reduction and recovery processes.There are many frequency components in the vibration acceleration spectrum of the drive system,because the longitudinal and rotational vibrations of the wheelset are coupled by the wheel‒rail tangential force when stick-slip vibration occurs.In general,increasing the structural stiffness of the drive system and reducing the input energy in time are effective measures to suppress stick-slip vibration.It should also be noted that inappropriate matching of the wheel slip controller and drive system parameters may lead to electro-mechanical coupling vibration of the drive system,resulting in traction force fluctuation and poor acceleration performance.