We applied the double-difference earthquake rdocation algorithm to 1348 earthquakes with Ms ≥2.0 that occurred in the northern Tianshan region, Xinjiang, from April 1988 to June 2003, using a total of 28701 P- and S-...We applied the double-difference earthquake rdocation algorithm to 1348 earthquakes with Ms ≥2.0 that occurred in the northern Tianshan region, Xinjiang, from April 1988 to June 2003, using a total of 28701 P- and S-wave arrival times recorded by 32 seismic stations in Xinjiang. Aiming to obtain most of these Ms ≥ 2.0 earthquakes relocations, and considering the requirements of the DD method and the condition of data, we added the travel time data of another 437 earthquakes with 1.5 ≤ Ms 〈 2.0. Finally, we obtained the relocation results for 1253 earthquakes with Ms ≥2.0, which account for 93 % of all the 1348 earthquakes with Ms ≥ 2.0 and includes all the Ms ≥ 3.0 earthquakes. The reason for not relocating the 95 earthquakes with 2.0 ≤ Ms 〈 3.0 is analyzed in the paper. After relocation, the RMS residual decreased from 0.83s to 0.14s, the average error is 0.993 km in E-W direction, 1.10 km in N- S direction, and 1.33 km in vertical direction. The hypocenter depths are more convergent than before and distributed from 5 km to 35 kin, with 94% being from 5km to 35 kin, 68.2% from 10 km to 25 kin. The average hypocenter depth is 19 kin.展开更多
The problem of dynamic relocation and phase-out of combined manufacturingplant and warehousing facilities in the supply chain are concerned. A multiple time/multipleobjective model is proposed to maximize total profit...The problem of dynamic relocation and phase-out of combined manufacturingplant and warehousing facilities in the supply chain are concerned. A multiple time/multipleobjective model is proposed to maximize total profit during the time horizon, minimize total accesstime from the plant/warehouse facilities to its suppliers and customers and maximize aggregatedlocal incentives during the time horizon. The relocation problem keeps the feature of NP-hard andwith the traditional method the optimal result cannot be got easily. So a compact genetic algorithm(CGA) is introduced to solve the problem. In order to accelerate the convergence speed of the CGA,the least square approach is introduced and a fast compact genetic algorithm (fCGA) is proposed.Finally, simulation results with the fCGA are compared with the CGA and classical integerprogramming (IP). The results show that the fCGA proposed is of high efficiency for Paretooptimality problem.展开更多
On January 10, 1998, at 11h50min Beijing Time (03h50min UTC), an earthquake of ML=6.2 occurred in the border region between the Zhangbei County and Shangyi County of Hebei Province. This earthquake is the most signifi...On January 10, 1998, at 11h50min Beijing Time (03h50min UTC), an earthquake of ML=6.2 occurred in the border region between the Zhangbei County and Shangyi County of Hebei Province. This earthquake is the most significant event to have occurred in northern China in the recent years. The earthquake-generating structure of this event was not clear due to no active fault capable of generating a moderate earthquake was found in the epicentral area, nor surface ruptures with any predominate orientation were observed, no distinct orientation of its aftershock distribution given by routine earthquake location was shown. To study the seismogenic structure of the Zhangbei- Shangyi earthquake, the main shock and its aftershocks with ML3.0 of the Zhangbei-Shangyi earthquake sequence were relocated by the authors of this paper in 2002 using the master event relative relocation technique. The relocated epicenter of the main shock was located at 41.145癗, 114.462癊, which was located 4 km to the NE of the macro-epicenter of this event. The relocated focal depth of the main shock was 15 km. Hypocenters of the aftershocks distributed in a nearly vertical plane striking 180~200 and its vicinity. The relocated results of the Zhangbei-Shangyi earthquake sequence clearly indicated that the seismogenic structure of this event was a NNE-SSW-striking fault with right-lateral and reverse slip. In this paper, a relocation of the Zhangbei-Shangyi earthquake sequence has been done using the double difference earthquake location algorithm (DD algorithm), and consistent results with that obtained by the master event technique were obtained. The relocated hypocenters of the main shock are located at 41.131癗, 114.456癊, which was located 2.5 km to the NE of the macro-epicenter of the main shock. The relocated focal depth of the main shock was 12.8 km. Hypocenters of the aftershocks also distributed in a nearly vertical N10E-striking plane and its vicinity. The relocated results using DD algorithm clearly indicated that the seismogenic structure of this event was a NNE-striking fault again.展开更多
An earthquake with Ms5.8 occurred on 10 March 2011 in Yingjiang county, western Yunnan, China. This earthquake caused 25 deaths and over 250 injuries. In order to better understand the seismotectonics in the region, w...An earthquake with Ms5.8 occurred on 10 March 2011 in Yingjiang county, western Yunnan, China. This earthquake caused 25 deaths and over 250 injuries. In order to better understand the seismotectonics in the region, we collected the arrival time data from the Yunnan seismic observational bulletins during 1 January to 25 March 2011, and precisely hand-picked the arrival times from high-quality seismograms that were recorded by the temporary seismic stations deployed by our Institute of Crustal Dynamics, China Earthquake Administration. Using these arrival times, we relocated all the earthquakes including the Yingjiang mainshock and its aftershocks using the double-difference relocation algorithm. Our results show that the relocated earthquakes dominantly occurred along the ENE direction and formed an upside-down bow-shaped structure in depth. It is also observed that after the Yingjiang mainshock, some aftershocks extended toward the SSE over about 10 km. These results may indicate that the Yingjiang mainshock ruptured a conjugate fault system consisting of the ENE trending Da Yingjiang fault and a SSE trending blind fault. Such structural features could contribute to severely seismic hazards during the moderate-size Yingjiang earthquake.展开更多
The 2022 Menyuan M_(S)6.9 earthquake,which occurred on January 8,is the most destructive earthquake to occur near the Lenglongling(LLL)fault since the 2016 Menyuan M_(S)6.4 earthquake.We relocated the mainshock and af...The 2022 Menyuan M_(S)6.9 earthquake,which occurred on January 8,is the most destructive earthquake to occur near the Lenglongling(LLL)fault since the 2016 Menyuan M_(S)6.4 earthquake.We relocated the mainshock and aftershocks with phase arrival time observations for three days after the mainshock from the Qinghai Seismic Network using the double-difference method.The total length and width of the aftershock sequence are approximately 32 km and 5 km,respectively,and the aftershocks are mainly concentrated at a depth of 7-12 km.The relocated sequence can be divided into 18 km west and 13 km east segments with a boundary approximately 5 km east of the mainshock,where aftershocks are sparse.The east and west fault structures revealed by aftershock locations differ significantly.The west fault strikes EW and inclines to the south at a 71°-90°angle,whereas the east fault strikes 133°and has a smaller dip angle.Elastic strain accumulates at conjunctions of faults with different slip rates where it is prone to large earthquakes.Based on surface traces of faults,the distribution of relocated earthquake sequence and surface ruptures,the mainshock was determined to have occurred at the conjunction of the Tuolaishan(TLS)fault and LLL fault,and the west and east segments of the aftershock sequence were on the TLS fault and LLL fault,respectively.Aftershocks migrate in the early and late stages of the earthquake sequence.In the first 1.5 h after the mainshock,aftershocks expand westward from the mainshock.In the late stage,seismicity on the northeast side of the east fault is higher than that in other regions.The migration rate of the west segment of the aftershock sequence is approximately 4.5 km/decade and the afterslip may exist in the source region.展开更多
An Ms 6.4 earthquake occurred in Yangbi,Yunnan,China on May 21,2021,which has obvious foreshock activity and abundant aftershocks.Based on the seismic observation data recorded by the Yunnan Seismic Network three days...An Ms 6.4 earthquake occurred in Yangbi,Yunnan,China on May 21,2021,which has obvious foreshock activity and abundant aftershocks.Based on the seismic observation data recorded by the Yunnan Seismic Network three days before and seven days after the mainshock,a doubledifference location method was used to relocate 2133 earthquakes of the Yangbi sequence.Aftershocks are mostly distributed to the southeast of the mainshock in a unilateral rupture pattern.This sequence exhibits a SE-trending linear alignment with a length of about 25 km,and most of the focal depth is above 12 km.Integrated with the seismic distribution and focal mechanism results,we infer that the strike of the seismogenic fault is about 140°,and dipping to the SW.The fault structure revealed by the seismic sequence is complex,with the NW segment exhibiting a steep dip and relatively simple structure of strike-slip rupture and the SE segment consisting of several branching ruptures.The Yangbi Earthquake is a typical foreshock-mainshock-aftershock sequence,and the mainshock is likely triggered by the largest foreshock.This earthquake occurred in the boundary between high-and lowvelocity anomalous zone,where is susceptible to generate large earthquakes.展开更多
In this paper, we present a multiobjective approach for solving the one-way car relocation problem.We fix three objectives that include the number of remaining rejected demands, the number of jockeys used for the relo...In this paper, we present a multiobjective approach for solving the one-way car relocation problem.We fix three objectives that include the number of remaining rejected demands, the number of jockeys used for the relocation operations, and the total time used by these jockeys. For this sake, we propose to apply two algorithms namely NSGA-Ⅱ and an adapted memetic algorithm(MA) that we call MARPOCS which stands for memetic algorithm for the one-way carsharing system. The NSGA-Ⅱ is used as a reference to compare the performance of MARPOCS. The comparison of the approximation sets obtained by both algorithms shows that the hybrid algorithm outperforms the classical NSGA-Ⅱ and so solutions generated by the MARPOCS are much better than the solutions generated by NSGA-Ⅱ. This observation is proved by the comparison of different quality indicators’ values that are used to compare the performance of each algorithm. Results show that the MARPOCS is promising to generate very good solutions for the multiobjective car relocation problem in one-way carsharing system. It shows a good performance in exploring the search space and in finding solution with very good fitness values.展开更多
Earthquakes taking place from 1975 to 2010 in and around Shandong Province are relocated using double-difference(HypoDD)and Hypoinvers 2000(Hypo2000)methods,after correction of the onset times of seismic phases.The re...Earthquakes taking place from 1975 to 2010 in and around Shandong Province are relocated using double-difference(HypoDD)and Hypoinvers 2000(Hypo2000)methods,after correction of the onset times of seismic phases.The results show that the relocated seismicity is clearly associated with regional tectonics in space,and is also in agreement with the existence of deep faults imaged by wide-angle and deep seismic reflection profiling;most of the focal depths are in the range of 5~25km,and there are clearly two predominant depths:10km and 16km,which are inferred to be on the bottom of the upper crust and in the middle crust,respectively.The pattern of seismic activity indicates that moderate and strong earthquakes are likely to occur in the brittle-ductile transition zone between the upper and the lower crust,as the outcome of the deep tectonic dynamic process and the movement and deformation of faults in the upper and shallow crust under the regional stress field.展开更多
136 earthquakes,taking place in the west of Xietan area,recorded by portable stations deployed in the Three Georges reservoir area were relocated using the double difference algorithm.The relocations show that the roo...136 earthquakes,taking place in the west of Xietan area,recorded by portable stations deployed in the Three Georges reservoir area were relocated using the double difference algorithm.The relocations show that the root-mean-square deviations of the relocations in the directions of E-W,N-S and U-D are 0.38km,0.33km and 0.98km,respectively.The earthquakes in clasolite area with focal depths of about 4km~5km take on linear distributions from the shallow to deep parts.These earthquakes were deduced to be reservoir-induced earthquakes of fault fracture type.In contrast,the earthquakes in limestone pavement with the focal depths about 2km~3km take on slightly divergent distributions and have the characteristics of reservoir-induced earthquakes of the karst collapse type.展开更多
The locations of about 400 earthquakes in Yangjiang, Guangdong Province are determined using the double, difference earthquake location algorithm (DDA). The seismicity pattern becomes concentrated from discrete grid...The locations of about 400 earthquakes in Yangjiang, Guangdong Province are determined using the double, difference earthquake location algorithm (DDA). The seismicity pattern becomes concentrated from discrete grids. The rupture characteristics of the Yangjiang earthquake sequence show a conjugated distribution in NW and NE directions. The major distribution trends NE and dips NE with an angle of 30^o and a length of 30km,and the minor distribution trends NW and dips SE with an angle of 30^o and a length of 20km. The focal depth is 5km - 15km. The distribution of the Enping earthquake sequence,which is not far from Yangjiang,is NW-trending. The relationship between hypocenter distribution and geological structure is discussed.展开更多
Based on relocating the Jiujiang-Ruichang earthquake sequence which occurred on November 26, 2005 in Jiangxi Province with the double-difference (DD) algorithm and master event technique, the paper discusses the foc...Based on relocating the Jiujiang-Ruichang earthquake sequence which occurred on November 26, 2005 in Jiangxi Province with the double-difference (DD) algorithm and master event technique, the paper discusses the focal mechanism of the main shock (MsS.7) and the probable seismo-tectonics. The precise relocation results indicate that the average horizontal error is 0.31kin in a EW direction and 0.40kin in a NS direction, and the average depth error is 0.48kin. The focal depths vary from 8kin to 14kin, with the predominant distribution at 10kin - 12kin. The epicenter of the main shock is relocated to be 29.69^oN, 115.74^oE and the focal depth is about 10.Skin. Combining the predominant distribution of the earthquake sequence, the focal mechanism of the main shock and the tectonic conditions of N-E- and NW-strike faults growth in the seismic region, we infer that the main shock of the earthquake sequence was caused by a NW striking buried fault in the Rnichang basin. The nature of seismic faults needs to be further explored.展开更多
The double-difference earthquake relocation algorithm (DD algorithm) has been applied to the accurate relocation of 10057 earthquakes in the central-western China (21°-36°N, 98°-112E°) during the p...The double-difference earthquake relocation algorithm (DD algorithm) has been applied to the accurate relocation of 10057 earthquakes in the central-western China (21°-36°N, 98°-112E°) during the period of 1992-1999. In total, 79706 readings for P waves and 72169 readings for S waves were used in the relocation, and the source parameters of 6496 events were obtained. The relocation results revealed a more complete picture of the hypocentral distribution in the central-western China. In several seismic belts the relocated epicenters present a more defined lineation feature, reflecting the close correlation between the seismicity and the active tectonic structures. The relocated focal depths confirmed that most earthquakes (91 percent of the 6496 relocated events) in the central-western China were located at shallower depths not deeper than 20 km. The distribution of focal depths indicates that the seismogenic layer in the central-western China is located in the upper-mid crust with its thickness no deeper than 20 km.展开更多
基金Joint Earthquake Science Foundation of China (104001)
文摘We applied the double-difference earthquake rdocation algorithm to 1348 earthquakes with Ms ≥2.0 that occurred in the northern Tianshan region, Xinjiang, from April 1988 to June 2003, using a total of 28701 P- and S-wave arrival times recorded by 32 seismic stations in Xinjiang. Aiming to obtain most of these Ms ≥ 2.0 earthquakes relocations, and considering the requirements of the DD method and the condition of data, we added the travel time data of another 437 earthquakes with 1.5 ≤ Ms 〈 2.0. Finally, we obtained the relocation results for 1253 earthquakes with Ms ≥2.0, which account for 93 % of all the 1348 earthquakes with Ms ≥ 2.0 and includes all the Ms ≥ 3.0 earthquakes. The reason for not relocating the 95 earthquakes with 2.0 ≤ Ms 〈 3.0 is analyzed in the paper. After relocation, the RMS residual decreased from 0.83s to 0.14s, the average error is 0.993 km in E-W direction, 1.10 km in N- S direction, and 1.33 km in vertical direction. The hypocenter depths are more convergent than before and distributed from 5 km to 35 kin, with 94% being from 5km to 35 kin, 68.2% from 10 km to 25 kin. The average hypocenter depth is 19 kin.
基金This project is supported by National Natural Science Foundation of China (No.59889505, 70071017).
文摘The problem of dynamic relocation and phase-out of combined manufacturingplant and warehousing facilities in the supply chain are concerned. A multiple time/multipleobjective model is proposed to maximize total profit during the time horizon, minimize total accesstime from the plant/warehouse facilities to its suppliers and customers and maximize aggregatedlocal incentives during the time horizon. The relocation problem keeps the feature of NP-hard andwith the traditional method the optimal result cannot be got easily. So a compact genetic algorithm(CGA) is introduced to solve the problem. In order to accelerate the convergence speed of the CGA,the least square approach is introduced and a fast compact genetic algorithm (fCGA) is proposed.Finally, simulation results with the fCGA are compared with the CGA and classical integerprogramming (IP). The results show that the fCGA proposed is of high efficiency for Paretooptimality problem.
文摘On January 10, 1998, at 11h50min Beijing Time (03h50min UTC), an earthquake of ML=6.2 occurred in the border region between the Zhangbei County and Shangyi County of Hebei Province. This earthquake is the most significant event to have occurred in northern China in the recent years. The earthquake-generating structure of this event was not clear due to no active fault capable of generating a moderate earthquake was found in the epicentral area, nor surface ruptures with any predominate orientation were observed, no distinct orientation of its aftershock distribution given by routine earthquake location was shown. To study the seismogenic structure of the Zhangbei- Shangyi earthquake, the main shock and its aftershocks with ML3.0 of the Zhangbei-Shangyi earthquake sequence were relocated by the authors of this paper in 2002 using the master event relative relocation technique. The relocated epicenter of the main shock was located at 41.145癗, 114.462癊, which was located 4 km to the NE of the macro-epicenter of this event. The relocated focal depth of the main shock was 15 km. Hypocenters of the aftershocks distributed in a nearly vertical plane striking 180~200 and its vicinity. The relocated results of the Zhangbei-Shangyi earthquake sequence clearly indicated that the seismogenic structure of this event was a NNE-SSW-striking fault with right-lateral and reverse slip. In this paper, a relocation of the Zhangbei-Shangyi earthquake sequence has been done using the double difference earthquake location algorithm (DD algorithm), and consistent results with that obtained by the master event technique were obtained. The relocated hypocenters of the main shock are located at 41.131癗, 114.456癊, which was located 2.5 km to the NE of the macro-epicenter of the main shock. The relocated focal depth of the main shock was 12.8 km. Hypocenters of the aftershocks also distributed in a nearly vertical N10E-striking plane and its vicinity. The relocated results using DD algorithm clearly indicated that the seismogenic structure of this event was a NNE-striking fault again.
基金supported by National Natural Science Foundation of China(Nos.40974201 and 40774044)to J.Lei
文摘An earthquake with Ms5.8 occurred on 10 March 2011 in Yingjiang county, western Yunnan, China. This earthquake caused 25 deaths and over 250 injuries. In order to better understand the seismotectonics in the region, we collected the arrival time data from the Yunnan seismic observational bulletins during 1 January to 25 March 2011, and precisely hand-picked the arrival times from high-quality seismograms that were recorded by the temporary seismic stations deployed by our Institute of Crustal Dynamics, China Earthquake Administration. Using these arrival times, we relocated all the earthquakes including the Yingjiang mainshock and its aftershocks using the double-difference relocation algorithm. Our results show that the relocated earthquakes dominantly occurred along the ENE direction and formed an upside-down bow-shaped structure in depth. It is also observed that after the Yingjiang mainshock, some aftershocks extended toward the SSE over about 10 km. These results may indicate that the Yingjiang mainshock ruptured a conjugate fault system consisting of the ENE trending Da Yingjiang fault and a SSE trending blind fault. Such structural features could contribute to severely seismic hazards during the moderate-size Yingjiang earthquake.
基金jointly funded by the National Key Research and Development Program of China (No. 2021YFC3000702)the Special Fund of the Institute of Geophysics, China Earthquake Administration (No. DQJB21Z05)the National Natural Science Foundation of China (No. 41804062)
文摘The 2022 Menyuan M_(S)6.9 earthquake,which occurred on January 8,is the most destructive earthquake to occur near the Lenglongling(LLL)fault since the 2016 Menyuan M_(S)6.4 earthquake.We relocated the mainshock and aftershocks with phase arrival time observations for three days after the mainshock from the Qinghai Seismic Network using the double-difference method.The total length and width of the aftershock sequence are approximately 32 km and 5 km,respectively,and the aftershocks are mainly concentrated at a depth of 7-12 km.The relocated sequence can be divided into 18 km west and 13 km east segments with a boundary approximately 5 km east of the mainshock,where aftershocks are sparse.The east and west fault structures revealed by aftershock locations differ significantly.The west fault strikes EW and inclines to the south at a 71°-90°angle,whereas the east fault strikes 133°and has a smaller dip angle.Elastic strain accumulates at conjunctions of faults with different slip rates where it is prone to large earthquakes.Based on surface traces of faults,the distribution of relocated earthquake sequence and surface ruptures,the mainshock was determined to have occurred at the conjunction of the Tuolaishan(TLS)fault and LLL fault,and the west and east segments of the aftershock sequence were on the TLS fault and LLL fault,respectively.Aftershocks migrate in the early and late stages of the earthquake sequence.In the first 1.5 h after the mainshock,aftershocks expand westward from the mainshock.In the late stage,seismicity on the northeast side of the east fault is higher than that in other regions.The migration rate of the west segment of the aftershock sequence is approximately 4.5 km/decade and the afterslip may exist in the source region.
基金financially supported by National Science Foundation of China(No.41774067)the National Key R&D Program of China(No.2018YFC1503400)+1 种基金the Special Fund of the Institute of GeophysicsChina Earthquake Administration(No.DQJB20X07)。
文摘An Ms 6.4 earthquake occurred in Yangbi,Yunnan,China on May 21,2021,which has obvious foreshock activity and abundant aftershocks.Based on the seismic observation data recorded by the Yunnan Seismic Network three days before and seven days after the mainshock,a doubledifference location method was used to relocate 2133 earthquakes of the Yangbi sequence.Aftershocks are mostly distributed to the southeast of the mainshock in a unilateral rupture pattern.This sequence exhibits a SE-trending linear alignment with a length of about 25 km,and most of the focal depth is above 12 km.Integrated with the seismic distribution and focal mechanism results,we infer that the strike of the seismogenic fault is about 140°,and dipping to the SW.The fault structure revealed by the seismic sequence is complex,with the NW segment exhibiting a steep dip and relatively simple structure of strike-slip rupture and the SE segment consisting of several branching ruptures.The Yangbi Earthquake is a typical foreshock-mainshock-aftershock sequence,and the mainshock is likely triggered by the largest foreshock.This earthquake occurred in the boundary between high-and lowvelocity anomalous zone,where is susceptible to generate large earthquakes.
文摘In this paper, we present a multiobjective approach for solving the one-way car relocation problem.We fix three objectives that include the number of remaining rejected demands, the number of jockeys used for the relocation operations, and the total time used by these jockeys. For this sake, we propose to apply two algorithms namely NSGA-Ⅱ and an adapted memetic algorithm(MA) that we call MARPOCS which stands for memetic algorithm for the one-way carsharing system. The NSGA-Ⅱ is used as a reference to compare the performance of MARPOCS. The comparison of the approximation sets obtained by both algorithms shows that the hybrid algorithm outperforms the classical NSGA-Ⅱ and so solutions generated by the MARPOCS are much better than the solutions generated by NSGA-Ⅱ. This observation is proved by the comparison of different quality indicators’ values that are used to compare the performance of each algorithm. Results show that the MARPOCS is promising to generate very good solutions for the multiobjective car relocation problem in one-way carsharing system. It shows a good performance in exploring the search space and in finding solution with very good fitness values.
基金funded by the National Science Foundation of Shandong Province(Grant No.ZR2012DQ009)the National Science&Technology Pillar Program in 2012(Grant No.2012BAK19B04)the Research Key Fund of Earthquake Administration of Shandong Province of 2012(No.JJ1207Y)
文摘Earthquakes taking place from 1975 to 2010 in and around Shandong Province are relocated using double-difference(HypoDD)and Hypoinvers 2000(Hypo2000)methods,after correction of the onset times of seismic phases.The results show that the relocated seismicity is clearly associated with regional tectonics in space,and is also in agreement with the existence of deep faults imaged by wide-angle and deep seismic reflection profiling;most of the focal depths are in the range of 5~25km,and there are clearly two predominant depths:10km and 16km,which are inferred to be on the bottom of the upper crust and in the middle crust,respectively.The pattern of seismic activity indicates that moderate and strong earthquakes are likely to occur in the brittle-ductile transition zone between the upper and the lower crust,as the outcome of the deep tectonic dynamic process and the movement and deformation of faults in the upper and shallow crust under the regional stress field.
基金funded jointly by special fund forthe National Key Technology R&D Program (Grant No. 2008BAC38B0401)basic scientific research of Institute of Geology,CEA (DF-IGCEA060828),China
文摘136 earthquakes,taking place in the west of Xietan area,recorded by portable stations deployed in the Three Georges reservoir area were relocated using the double difference algorithm.The relocations show that the root-mean-square deviations of the relocations in the directions of E-W,N-S and U-D are 0.38km,0.33km and 0.98km,respectively.The earthquakes in clasolite area with focal depths of about 4km~5km take on linear distributions from the shallow to deep parts.These earthquakes were deduced to be reservoir-induced earthquakes of fault fracture type.In contrast,the earthquakes in limestone pavement with the focal depths about 2km~3km take on slightly divergent distributions and have the characteristics of reservoir-induced earthquakes of the karst collapse type.
基金The research was sponsored by the Key Science and Technology R&D Program of Guangdong Province(Grant No. 2005B32601003)
文摘The locations of about 400 earthquakes in Yangjiang, Guangdong Province are determined using the double, difference earthquake location algorithm (DDA). The seismicity pattern becomes concentrated from discrete grids. The rupture characteristics of the Yangjiang earthquake sequence show a conjugated distribution in NW and NE directions. The major distribution trends NE and dips NE with an angle of 30^o and a length of 30km,and the minor distribution trends NW and dips SE with an angle of 30^o and a length of 20km. The focal depth is 5km - 15km. The distribution of the Enping earthquake sequence,which is not far from Yangjiang,is NW-trending. The relationship between hypocenter distribution and geological structure is discussed.
基金This research was supported by the Joint Earthquake Science Foundation (A07124)the project of"Application of Digital Seismic Data to Short-impending Tracing"of China Earthquake Administration (120602-06-114)
文摘Based on relocating the Jiujiang-Ruichang earthquake sequence which occurred on November 26, 2005 in Jiangxi Province with the double-difference (DD) algorithm and master event technique, the paper discusses the focal mechanism of the main shock (MsS.7) and the probable seismo-tectonics. The precise relocation results indicate that the average horizontal error is 0.31kin in a EW direction and 0.40kin in a NS direction, and the average depth error is 0.48kin. The focal depths vary from 8kin to 14kin, with the predominant distribution at 10kin - 12kin. The epicenter of the main shock is relocated to be 29.69^oN, 115.74^oE and the focal depth is about 10.Skin. Combining the predominant distribution of the earthquake sequence, the focal mechanism of the main shock and the tectonic conditions of N-E- and NW-strike faults growth in the seismic region, we infer that the main shock of the earthquake sequence was caused by a NW striking buried fault in the Rnichang basin. The nature of seismic faults needs to be further explored.
文摘The double-difference earthquake relocation algorithm (DD algorithm) has been applied to the accurate relocation of 10057 earthquakes in the central-western China (21°-36°N, 98°-112E°) during the period of 1992-1999. In total, 79706 readings for P waves and 72169 readings for S waves were used in the relocation, and the source parameters of 6496 events were obtained. The relocation results revealed a more complete picture of the hypocentral distribution in the central-western China. In several seismic belts the relocated epicenters present a more defined lineation feature, reflecting the close correlation between the seismicity and the active tectonic structures. The relocated focal depths confirmed that most earthquakes (91 percent of the 6496 relocated events) in the central-western China were located at shallower depths not deeper than 20 km. The distribution of focal depths indicates that the seismogenic layer in the central-western China is located in the upper-mid crust with its thickness no deeper than 20 km.