This study is devoted to the analysis of a one-dimensional time-dependent double-diffusive flow over a semi-infinite vertical plate, under a convective surface boundary condition. Using similarity variable, the govern...This study is devoted to the analysis of a one-dimensional time-dependent double-diffusive flow over a semi-infinite vertical plate, under a convective surface boundary condition. Using similarity variable, the governing nonlinear partial differential equations have been transformed into a set of coupled nonlinear ordinary differential equations, which are solved numerically by using shooting method alongside with Runge-Kutta integration scheme as embedded in Maple software programme. The numerical results of the skin-friction coefficient, the Nusselt and Sherwood numbers are discussed and depicted graphically.展开更多
A numerical analysis has been carried out to study the problem of plane stagnation double-diffusive MHD convective flow with convective boundary condition in a porous media. The governing nonlinear partial differentia...A numerical analysis has been carried out to study the problem of plane stagnation double-diffusive MHD convective flow with convective boundary condition in a porous media. The governing nonlinear partial differential equations have been reduced to systems of nonlinear ordinary differential equations by the similarity transformations. The transformed equations are solved numerically by using the classical fourth order Runge-Kutta method together with the shooting technique implemented on a computer program. The effects of the physical parameters are examined on the velocity, temperature and concentration profiles. Numerical data for the skin-friction coefficients, Nusselt and Sherwood numbers have been tabulated for various parametric conditions and are also shown graphically and discussed.展开更多
The application of mathematical modeling to biological fluids is of utmost importance, as it has diverse applicationsin medicine. The peristaltic mechanism plays a crucial role in understanding numerous biological flo...The application of mathematical modeling to biological fluids is of utmost importance, as it has diverse applicationsin medicine. The peristaltic mechanism plays a crucial role in understanding numerous biological flows. In thispaper, we present a theoretical investigation of the double diffusion convection in the peristaltic transport of aPrandtl nanofluid through an asymmetric tapered channel under the combined action of thermal radiation andan induced magnetic field. The equations for the current flow scenario are developed, incorporating relevantassumptions, and considering the effect of viscous dissipation. The impact of thermal radiation and doublediffusion on public health is of particular interest. For instance, infrared radiation techniques have been used totreat various skin-related diseases and can also be employed as a measure of thermotherapy for some bones toenhance blood circulation, with radiation increasing blood flow by approximately 80%. To solve the governingequations, we employ a numerical method with the aid of symbolic software such as Mathematica and MATLAB.The velocity, magnetic force function, pressure rise, temperature, solute (species) concentration, and nanoparticlevolume fraction profiles are analytically derived and graphically displayed. The results outcomes are compared withthe findings of limiting situations for verification.展开更多
Vortex-induced vibration(VIV)of an underwater manipulator in pulsating flow presents a notable engineering problem in precise control due to the velocity variation in the flow.This study investigates the VIV response ...Vortex-induced vibration(VIV)of an underwater manipulator in pulsating flow presents a notable engineering problem in precise control due to the velocity variation in the flow.This study investigates the VIV response of an underwater manipulator subjected to pulsating flow,focusing on how different postures affect the behavior of the system.The effects of pulsating parameters and manipulator arrangement on the hydrodynamic coefficient,vibration response,motion trajectory,and vortex shedding behaviors were analyzed.Results indicated that the cross flow vibration displacement in pulsating flow increased by 32.14%compared to uniform flow,inducing a shift in the motion trajectory from a crescent shape to a sideward vase shape.In the absence of interference between the upper and lower arms,the lift coefficient of the manipulator substantially increased with rising pulsating frequency,reaching a maximum increment of 67.0%.This increase in the lift coefficient led to a 67.05%rise in the vibration frequency of the manipulator in the in-line direction.As the pulsating amplitude increased,the drag coefficient of the underwater manipulator rose by 36.79%,but the vibration frequency in the cross-flow direction decreased by 56.26%.Additionally,when the upper and lower arms remained in a state of mutual interference,the cross-flow vibration amplitudes of the upper and lower arms were approximately 1.84 and 4.82 times higher in a circular-elliptical arrangement compared to an elliptical-circular arrangement,respectively.Consequently,the flow field shifted from a P+S pattern to a disordered pattern,disrupting the regularity of the motion trajectory.展开更多
Automated classification of gas flow states in blast furnaces using top-camera imagery typically demands a large volume of labeled data,whose manual annotation is both labor-intensive and cost-prohibitive.To mitigate ...Automated classification of gas flow states in blast furnaces using top-camera imagery typically demands a large volume of labeled data,whose manual annotation is both labor-intensive and cost-prohibitive.To mitigate this challenge,we present an enhanced semi-supervised learning approach based on the Mean Teacher framework,incorporating a novel feature loss module to maximize classification performance with limited labeled samples.The model studies show that the proposed model surpasses both the baseline Mean Teacher model and fully supervised method in accuracy.Specifically,for datasets with 20%,30%,and 40%label ratios,using a single training iteration,the model yields accuracies of 78.61%,82.21%,and 85.2%,respectively,while multiple-cycle training iterations achieves 82.09%,81.97%,and 81.59%,respectively.Furthermore,scenario-specific training schemes are introduced to support diverse deployment need.These findings highlight the potential of the proposed technique in minimizing labeling requirements and advancing intelligent blast furnace diagnostics.展开更多
Almost half of the oceanic water columns exhibit double-diffusion. The importance of double-diffusion in global oceans’ salt and heat fluxes, water-mass formation and mixing, and circulation is increasingly recognize...Almost half of the oceanic water columns exhibit double-diffusion. The importance of double-diffusion in global oceans’ salt and heat fluxes, water-mass formation and mixing, and circulation is increasingly recognized. However, such an important physical process in the ocean has not been well studied. One of the reasons is the difficulty of parameterizing and quantifying the processes. The paper presented here attempts to quantify the double-diffusive fluxes of salt and heat in the ocean. Previous qualitative analysis by applying the water-mass Turner angle, mTu, to the North Pacific Intermediate Water (NPIW) layer showed a favorable condition for salt-fingering in the upper NPIW due to the overlying warm/salty water above the cold/fresh NPIW core, and a doubly-stable condition in the lower NPIW where potential temperature decreases with depth while salinity increases, inducing double stratification with respect to both potential temperature and salinity. The present study gives a quantitative estimate of double-diffusive fluxes of salt and heat contributed by salt-fingering in the upper NPIW layer.展开更多
The temperature-concentration lattice Bhatnagar-Gross-Krook (TCLBGK) model with a robust boundary scheme is developed for two-dimensional hydromagnetic double-diffusive convective flow of a binary gas mixture in a r...The temperature-concentration lattice Bhatnagar-Gross-Krook (TCLBGK) model with a robust boundary scheme is developed for two-dimensional hydromagnetic double-diffusive convective flow of a binary gas mixture in a rectangular enclosure, in which the upper and lower walls are insulated, while the left and right walls are constant temperature and constant concentration, and a uniform magnetic field is applied in the x-direction. In the model the velocity, temperature and concentration fields are solved by three independent LBGK equations, which are combined into a coupled equation for the whole system. In our simulations, we take the Prandtl number Pr = 1.0, the Lewis number Le = 2.0, the thermal Rayleigh number RaT = 10^5, and the aspect ratio A = 2 for the enclosure. The numerical results are found to be in good agreement with those of previous studies.展开更多
This article brings into focus the hybrid effects of thermal and concentration convection on peristaltic pumping of fourth grade nanofluids in an inclined tapered channel.First,the brief mathematical modelling of the ...This article brings into focus the hybrid effects of thermal and concentration convection on peristaltic pumping of fourth grade nanofluids in an inclined tapered channel.First,the brief mathematical modelling of the fourth grade nanofluids is provided along with thermal and concentration convection.The Lubrication method is used to simplify the partial differential equations which are tremendously nonlinear.Further,analytical technique is applied to solve the differential equations that are strongly nonlinear in nature,and exact solutions of temperature,volume fraction of nanoparticles,and concentration are studied.Numerical and graphical findings manifest the influence of various physical flow-quantity parameters.It is observed that the nanoparticle fraction decreases because of the increasing values of Brownian motion parameter and Dufour parameter,whereas the behaviour of nanoparticle fraction is quite opposite for thermophoresis parameter.It is also noted that the temperature profile decreases with increasing Brownian motion parameter values and rises with Dufour parameter values.Moreover,the concentration profile ascends with increasing thermophoresis parameter and Soret parameter values.展开更多
This paper describes experimental results on the solidification process over the vertically positioned circular cylinder, placed in an aqueous solution of sodium nitrate, where the aqueous solution in the vessel is he...This paper describes experimental results on the solidification process over the vertically positioned circular cylinder, placed in an aqueous solution of sodium nitrate, where the aqueous solution in the vessel is heated from the bottom. After the initiation of solidification by cooling the cylinder below the liquidus temperature, the pure ice formation on the cylinder causes the rejection of solute into the surrounding aqueous solution. The solute enriched vertical fluid layer over the ice then falls on the bottom of the vessel due to its higher density, and accumulates there. This process results in the formation of solute rich and hot horizontal layer (heavy layer), underlying the relatively cold but less concentrated fluid layer (light layer). As this process advances, however, because of the continuing influx of solute rich fluid, the lower heavy layer occupies more space, and the interface of the two layers rises slowly. The pH indicator method has been successfully employed in order to visualize the flows during this process. In this report, we document the evolution of both temperature and flow fields in the aqueous solution quantitatively, as the solidification progresses and the density discontinuity of the two layers rises.展开更多
Double-diffusive stationary and oscillatory instabilities at the marginal state in a saturated porous horizontal fluid layer heated and salted from above are investigated theoretically under the Darcy's framework for...Double-diffusive stationary and oscillatory instabilities at the marginal state in a saturated porous horizontal fluid layer heated and salted from above are investigated theoretically under the Darcy's framework for a porous medium. The contributions of Soret and Dufour coefficients are taken into account in the analysis. Linear stability analysis shows that the critical value of the Darcy-Rayleigh number depends on cross-diffusive parameters at marginally stationary convec- tion, while the marginal state characterized by oscillatory convection does not depend on the cross-diffusion terms even if the condition and frequency of oscillatory convection depends on the cross-diffusive parameters. The critical value of the Darcy-Rayleigh number increases with increasing value of the solutal Darcy-Rayleigh number in the absence of cross- diffusive parameters. The critical Darcy-Rayleigh number decreases with increasing Soret number, resulting in destabiliza- tion of the system, while its value increases with increasing Dufour number, resulting in stabilization of the system at the marginal state characterized by stationary convection. The analysis reveals that the Dufour and Soret parameters as well as the porosity parameter play an important role in deciding the type of instability at the onset. This analysis also indicates that the stationary convection is followed by the oscillatory convection for certain fluid mixtures. It is interesting to note that the roles of cross-diffusive parameters on the double-diffusive system heated and salted from above are reciprocal to the double-diffusive system heated and salted from below.展开更多
The multi-terminal direct current(DC)grid has extinctive superiorities over the traditional alternating current system in integrating large-scale renewable energy.Both the DC circuit breaker(DCCB)and the current flow ...The multi-terminal direct current(DC)grid has extinctive superiorities over the traditional alternating current system in integrating large-scale renewable energy.Both the DC circuit breaker(DCCB)and the current flow controller(CFC)are demanded to ensure the multiterminal DC grid to operates reliably and flexibly.However,since the CFC and the DCCB are all based on fully controlled semiconductor switches(e.g.,insulated gate bipolar transistor,integrated gate commutated thyristor,etc.),their separation configuration in the multiterminal DC grid will lead to unaffordable implementation costs and conduction power losses.To solve these problems,integrated equipment with both current flow control and fault isolation abilities is proposed,which shares the expensive and duplicated components of CFCs and DCCBs among adjacent lines.In addition,the complicated coordination control of CFCs and DCCBs can be avoided by adopting the integrated equipment in themultiterminal DC grid.In order to examine the current flow control and fault isolation abilities of the integrated equipment,the simulation model of a specific meshed four-terminal DC grid is constructed in the PSCAD/EMTDC software.Finally,the comparison between the integrated equipment and the separate solution is presented a specific result or conclusion needs to be added to the abstract.展开更多
文摘This study is devoted to the analysis of a one-dimensional time-dependent double-diffusive flow over a semi-infinite vertical plate, under a convective surface boundary condition. Using similarity variable, the governing nonlinear partial differential equations have been transformed into a set of coupled nonlinear ordinary differential equations, which are solved numerically by using shooting method alongside with Runge-Kutta integration scheme as embedded in Maple software programme. The numerical results of the skin-friction coefficient, the Nusselt and Sherwood numbers are discussed and depicted graphically.
文摘A numerical analysis has been carried out to study the problem of plane stagnation double-diffusive MHD convective flow with convective boundary condition in a porous media. The governing nonlinear partial differential equations have been reduced to systems of nonlinear ordinary differential equations by the similarity transformations. The transformed equations are solved numerically by using the classical fourth order Runge-Kutta method together with the shooting technique implemented on a computer program. The effects of the physical parameters are examined on the velocity, temperature and concentration profiles. Numerical data for the skin-friction coefficients, Nusselt and Sherwood numbers have been tabulated for various parametric conditions and are also shown graphically and discussed.
基金Institutional Fund Projects under No.(IFP-A-2022-2-5-24)by Ministry of Education and University of Hafr Al Batin,Saudi Arabia.
文摘The application of mathematical modeling to biological fluids is of utmost importance, as it has diverse applicationsin medicine. The peristaltic mechanism plays a crucial role in understanding numerous biological flows. In thispaper, we present a theoretical investigation of the double diffusion convection in the peristaltic transport of aPrandtl nanofluid through an asymmetric tapered channel under the combined action of thermal radiation andan induced magnetic field. The equations for the current flow scenario are developed, incorporating relevantassumptions, and considering the effect of viscous dissipation. The impact of thermal radiation and doublediffusion on public health is of particular interest. For instance, infrared radiation techniques have been used totreat various skin-related diseases and can also be employed as a measure of thermotherapy for some bones toenhance blood circulation, with radiation increasing blood flow by approximately 80%. To solve the governingequations, we employ a numerical method with the aid of symbolic software such as Mathematica and MATLAB.The velocity, magnetic force function, pressure rise, temperature, solute (species) concentration, and nanoparticlevolume fraction profiles are analytically derived and graphically displayed. The results outcomes are compared withthe findings of limiting situations for verification.
基金Supported by the National Natural Science Foundation of China(No.51905211)A Project of the“20 Regulations for New Universities”Funding Program of Jinan(No.202228116).
文摘Vortex-induced vibration(VIV)of an underwater manipulator in pulsating flow presents a notable engineering problem in precise control due to the velocity variation in the flow.This study investigates the VIV response of an underwater manipulator subjected to pulsating flow,focusing on how different postures affect the behavior of the system.The effects of pulsating parameters and manipulator arrangement on the hydrodynamic coefficient,vibration response,motion trajectory,and vortex shedding behaviors were analyzed.Results indicated that the cross flow vibration displacement in pulsating flow increased by 32.14%compared to uniform flow,inducing a shift in the motion trajectory from a crescent shape to a sideward vase shape.In the absence of interference between the upper and lower arms,the lift coefficient of the manipulator substantially increased with rising pulsating frequency,reaching a maximum increment of 67.0%.This increase in the lift coefficient led to a 67.05%rise in the vibration frequency of the manipulator in the in-line direction.As the pulsating amplitude increased,the drag coefficient of the underwater manipulator rose by 36.79%,but the vibration frequency in the cross-flow direction decreased by 56.26%.Additionally,when the upper and lower arms remained in a state of mutual interference,the cross-flow vibration amplitudes of the upper and lower arms were approximately 1.84 and 4.82 times higher in a circular-elliptical arrangement compared to an elliptical-circular arrangement,respectively.Consequently,the flow field shifted from a P+S pattern to a disordered pattern,disrupting the regularity of the motion trajectory.
基金financial support provided by the Natural Science Foundation of Hebei Province,China(No.E2024105036)the Tangshan Talent Funding Project,China(Nos.B202302007 and A2021110015)+1 种基金the National Natural Science Foundation of China(No.52264042)the Australian Research Council(No.IH230100010)。
文摘Automated classification of gas flow states in blast furnaces using top-camera imagery typically demands a large volume of labeled data,whose manual annotation is both labor-intensive and cost-prohibitive.To mitigate this challenge,we present an enhanced semi-supervised learning approach based on the Mean Teacher framework,incorporating a novel feature loss module to maximize classification performance with limited labeled samples.The model studies show that the proposed model surpasses both the baseline Mean Teacher model and fully supervised method in accuracy.Specifically,for datasets with 20%,30%,and 40%label ratios,using a single training iteration,the model yields accuracies of 78.61%,82.21%,and 85.2%,respectively,while multiple-cycle training iterations achieves 82.09%,81.97%,and 81.59%,respectively.Furthermore,scenario-specific training schemes are introduced to support diverse deployment need.These findings highlight the potential of the proposed technique in minimizing labeling requirements and advancing intelligent blast furnace diagnostics.
基金a result of my short visit to the Physical Oceanography Laboratory of Ocean University of ChinaQingdao with support from the Foundation for Open Projects of the Key Lab.of Physical Oceanography,the Ministry of Education,China(No.200401).
文摘Almost half of the oceanic water columns exhibit double-diffusion. The importance of double-diffusion in global oceans’ salt and heat fluxes, water-mass formation and mixing, and circulation is increasingly recognized. However, such an important physical process in the ocean has not been well studied. One of the reasons is the difficulty of parameterizing and quantifying the processes. The paper presented here attempts to quantify the double-diffusive fluxes of salt and heat in the ocean. Previous qualitative analysis by applying the water-mass Turner angle, mTu, to the North Pacific Intermediate Water (NPIW) layer showed a favorable condition for salt-fingering in the upper NPIW due to the overlying warm/salty water above the cold/fresh NPIW core, and a doubly-stable condition in the lower NPIW where potential temperature decreases with depth while salinity increases, inducing double stratification with respect to both potential temperature and salinity. The present study gives a quantitative estimate of double-diffusive fluxes of salt and heat contributed by salt-fingering in the upper NPIW layer.
基金Supported by the National Natural Science Foundation of China under Grant No 10361003, the China Postdoctoral Science Foundation under Grant No 2004036133, and the Cuangxi Science Foundation under Grant No 0640165.
文摘The temperature-concentration lattice Bhatnagar-Gross-Krook (TCLBGK) model with a robust boundary scheme is developed for two-dimensional hydromagnetic double-diffusive convective flow of a binary gas mixture in a rectangular enclosure, in which the upper and lower walls are insulated, while the left and right walls are constant temperature and constant concentration, and a uniform magnetic field is applied in the x-direction. In the model the velocity, temperature and concentration fields are solved by three independent LBGK equations, which are combined into a coupled equation for the whole system. In our simulations, we take the Prandtl number Pr = 1.0, the Lewis number Le = 2.0, the thermal Rayleigh number RaT = 10^5, and the aspect ratio A = 2 for the enclosure. The numerical results are found to be in good agreement with those of previous studies.
文摘目的基于4D Flow MRI技术探究急性心肌梗死患者左心室(left ventricular,LV)腔内局部血流动能(kinetic energy,KE)改变。方法纳入30名急性心肌梗死(acute myocardial infarction,AMI)患者和20名对照者。应用4D Flow MRI技术定量评价左心室腔内血流动能,包括左心室平均动能、最小动能、收缩期动能、舒张期动能以及平面内动能(in-plane kinetic energy,In-plane KE)百分比。比较心肌梗死组和对照组之间以及梗死节段与非梗死节段之间血流动能参数的差异。结果与对照组相比,急性心肌梗死组左心室整体平均动能(10.7μJ/mL±3.3 vs 14.7μJ/mL±3.6,P<0.001)、收缩期动能(14.6μJ/mL±5.1 vs 18.9μJ/mL±3.9,P=0.003)及舒张期动能(7.9μJ/mL±2.5 vs 10.6μJ/mL±3.8,P=0.018)均显著降低,其中梗死节段较非梗死节段邻近心腔血流的平均动能降低而收缩期平面内动能百分比增加(49.5μJ/mL±18.7 vs 126.3μJ/mL±50.7,P<0.001;61.8%±11.5 vs 42.9%±14.4,P=0.001)。结论4D Flow MRI技术可定量评价左心室腔内局部血流动能参数。急性心肌梗死后整体心腔血流动能减低,而梗死节段邻近心腔局部血流平面内动能百分比增加。
文摘This article brings into focus the hybrid effects of thermal and concentration convection on peristaltic pumping of fourth grade nanofluids in an inclined tapered channel.First,the brief mathematical modelling of the fourth grade nanofluids is provided along with thermal and concentration convection.The Lubrication method is used to simplify the partial differential equations which are tremendously nonlinear.Further,analytical technique is applied to solve the differential equations that are strongly nonlinear in nature,and exact solutions of temperature,volume fraction of nanoparticles,and concentration are studied.Numerical and graphical findings manifest the influence of various physical flow-quantity parameters.It is observed that the nanoparticle fraction decreases because of the increasing values of Brownian motion parameter and Dufour parameter,whereas the behaviour of nanoparticle fraction is quite opposite for thermophoresis parameter.It is also noted that the temperature profile decreases with increasing Brownian motion parameter values and rises with Dufour parameter values.Moreover,the concentration profile ascends with increasing thermophoresis parameter and Soret parameter values.
文摘This paper describes experimental results on the solidification process over the vertically positioned circular cylinder, placed in an aqueous solution of sodium nitrate, where the aqueous solution in the vessel is heated from the bottom. After the initiation of solidification by cooling the cylinder below the liquidus temperature, the pure ice formation on the cylinder causes the rejection of solute into the surrounding aqueous solution. The solute enriched vertical fluid layer over the ice then falls on the bottom of the vessel due to its higher density, and accumulates there. This process results in the formation of solute rich and hot horizontal layer (heavy layer), underlying the relatively cold but less concentrated fluid layer (light layer). As this process advances, however, because of the continuing influx of solute rich fluid, the lower heavy layer occupies more space, and the interface of the two layers rises slowly. The pH indicator method has been successfully employed in order to visualize the flows during this process. In this report, we document the evolution of both temperature and flow fields in the aqueous solution quantitatively, as the solidification progresses and the density discontinuity of the two layers rises.
基金support received from UGC, DSA-I in the Department of Mathematics, the University of Burdwan
文摘Double-diffusive stationary and oscillatory instabilities at the marginal state in a saturated porous horizontal fluid layer heated and salted from above are investigated theoretically under the Darcy's framework for a porous medium. The contributions of Soret and Dufour coefficients are taken into account in the analysis. Linear stability analysis shows that the critical value of the Darcy-Rayleigh number depends on cross-diffusive parameters at marginally stationary convec- tion, while the marginal state characterized by oscillatory convection does not depend on the cross-diffusion terms even if the condition and frequency of oscillatory convection depends on the cross-diffusive parameters. The critical value of the Darcy-Rayleigh number increases with increasing value of the solutal Darcy-Rayleigh number in the absence of cross- diffusive parameters. The critical Darcy-Rayleigh number decreases with increasing Soret number, resulting in destabiliza- tion of the system, while its value increases with increasing Dufour number, resulting in stabilization of the system at the marginal state characterized by stationary convection. The analysis reveals that the Dufour and Soret parameters as well as the porosity parameter play an important role in deciding the type of instability at the onset. This analysis also indicates that the stationary convection is followed by the oscillatory convection for certain fluid mixtures. It is interesting to note that the roles of cross-diffusive parameters on the double-diffusive system heated and salted from above are reciprocal to the double-diffusive system heated and salted from below.
基金supported in part by Natural Science Foundation of Jiangsu Province under Grant BK20230255Natural Science Foundation of Shandong Province under Grant ZR2023QE281.
文摘The multi-terminal direct current(DC)grid has extinctive superiorities over the traditional alternating current system in integrating large-scale renewable energy.Both the DC circuit breaker(DCCB)and the current flow controller(CFC)are demanded to ensure the multiterminal DC grid to operates reliably and flexibly.However,since the CFC and the DCCB are all based on fully controlled semiconductor switches(e.g.,insulated gate bipolar transistor,integrated gate commutated thyristor,etc.),their separation configuration in the multiterminal DC grid will lead to unaffordable implementation costs and conduction power losses.To solve these problems,integrated equipment with both current flow control and fault isolation abilities is proposed,which shares the expensive and duplicated components of CFCs and DCCBs among adjacent lines.In addition,the complicated coordination control of CFCs and DCCBs can be avoided by adopting the integrated equipment in themultiterminal DC grid.In order to examine the current flow control and fault isolation abilities of the integrated equipment,the simulation model of a specific meshed four-terminal DC grid is constructed in the PSCAD/EMTDC software.Finally,the comparison between the integrated equipment and the separate solution is presented a specific result or conclusion needs to be added to the abstract.