We applied adaptive dynamics to double slit interference phenomenon using particle model and obtained partial successful results in our previous report. The patterns qualitatively corresponded well with experiments. S...We applied adaptive dynamics to double slit interference phenomenon using particle model and obtained partial successful results in our previous report. The patterns qualitatively corresponded well with experiments. Several properties such as concave single slit pattern and large influence of slight displacement of the emission position were different from the experimental results. In this study we tried other slit conditions and obtained consistent patterns with experiments. We do not claim that the adaptive dynamics is the principle of quantum mechanics, but the present results support the probability of adaptive dynamics as the candidate of the basis of quantum mechanics. We discuss the advantages of the adaptive dynamical view for foundations of quantum mechanics.展开更多
Optical orbital angular momentum(OAM) is a special property of photons and has evoked research onto the light–matter interaction in both classical and quantum regimes. In classical optics, OAM is related to an optica...Optical orbital angular momentum(OAM) is a special property of photons and has evoked research onto the light–matter interaction in both classical and quantum regimes. In classical optics, OAM is related to an optical vortex with a helical phase structure. In quantum optics, photons with a twisted or helical phase structure will carry a quantized OAM. To our knowledge, however, so far, no experiment has demonstrated the fundamental property of the OAM at the single-photon level. In this Letter, we have demonstrated the average photon trajectories of twisted photons in a double-slit interference. We have experimentally captured the double-slit interference process of twisted photons by a time-gated intensified charge-coupled device camera, which is trigged by a heralded detection. Our work provides new perspectives for understanding the micro-behaviors of twisted particles and enables new applications in imaging and sensing.展开更多
文摘We applied adaptive dynamics to double slit interference phenomenon using particle model and obtained partial successful results in our previous report. The patterns qualitatively corresponded well with experiments. Several properties such as concave single slit pattern and large influence of slight displacement of the emission position were different from the experimental results. In this study we tried other slit conditions and obtained consistent patterns with experiments. We do not claim that the adaptive dynamics is the principle of quantum mechanics, but the present results support the probability of adaptive dynamics as the candidate of the basis of quantum mechanics. We discuss the advantages of the adaptive dynamical view for foundations of quantum mechanics.
基金supported by the National Key R&D Program of China (Nos. 2017YFA0303800 and 2017YFA0303700)the National Natural Science Foundation of China (Nos. 11534006,11674184,and 11774183)+1 种基金the Natural Science Foundation of Tianjin(No. 16JCZDJC31300)the Collaborative Innovation Center of Extreme Optics
文摘Optical orbital angular momentum(OAM) is a special property of photons and has evoked research onto the light–matter interaction in both classical and quantum regimes. In classical optics, OAM is related to an optical vortex with a helical phase structure. In quantum optics, photons with a twisted or helical phase structure will carry a quantized OAM. To our knowledge, however, so far, no experiment has demonstrated the fundamental property of the OAM at the single-photon level. In this Letter, we have demonstrated the average photon trajectories of twisted photons in a double-slit interference. We have experimentally captured the double-slit interference process of twisted photons by a time-gated intensified charge-coupled device camera, which is trigged by a heralded detection. Our work provides new perspectives for understanding the micro-behaviors of twisted particles and enables new applications in imaging and sensing.