This work studied the magnetic,dielectric,and mechanical parameters of lanthanum doped cobalt-magnesium ferrite nanoparticles Co_(0.5)Mg_(0.5)La_(x)Fe_(2-x)O4(CMLF)prepared by citrate combustion route.Fourier transfor...This work studied the magnetic,dielectric,and mechanical parameters of lanthanum doped cobalt-magnesium ferrite nanoparticles Co_(0.5)Mg_(0.5)La_(x)Fe_(2-x)O4(CMLF)prepared by citrate combustion route.Fourier transform infrared spectroscopy(FTIR)spectra show lower band(v_(2))at 391-386 cm^(-1) and upper band(v_(1))at 572-570 cm^(-1),which demonstrate the cubic spinel structure formation for all CMLF nanoferrites.Magnetic parameters such as saturation magnetization,remanent magnetization,coer-civity,magnetic moment,anisotropy constant,and initial permittivity were investigated using a vibrating sample magnetometer(VSM).The sample Co_(0.5)Mg_(0.5)La_(0.03)Fe_(1.97)O4 has the optimal saturation magnetization of 47.78 emu/g,whereas the sample Co_(0.5)Mg_(0.5)La_(0.15)Fe_(1.85)O4 has a maximum coercivity of 1031 Oe.The dielectric constant,dielectric loss tangent,ac conductivity and impedance(Z)were also investigated with the addition of La ions.With La doping,the dielectric loss value decreases with 52%compared to the pristine sample,indicating it to be a potential candidate for high frequency appli-cations.The ac conductivity graphs exhibit adherence to Jonscher's single power law,indicating that the conduction process is primarily driven by the small polaron tunneling mechanism.Analytical investigation was conducted on the impedance spectroscopy and electric modulus for the CMLF nanoferrites.The nanoferrite Co_(0.5)Mg_(0.5)La_(0.15)Fe_(1.9)O_(4)has the optimum longitudinal modulus(4.60 GPa),shear modulus(0.85 GPa),Young's modulus(2.37 GPa),and bulk modulus(3.46 GPa)compared tothepristine sample.展开更多
The Fe_(1−x)Ni_(x)VO_(4)(x=0,0.05,0.10,and 0.20)nanoparticles in this work were successfully synthesized via a co-precipitation method.The structural,magnetic and electrochemical properties of the prepared Fe_(1−x)Ni_...The Fe_(1−x)Ni_(x)VO_(4)(x=0,0.05,0.10,and 0.20)nanoparticles in this work were successfully synthesized via a co-precipitation method.The structural,magnetic and electrochemical properties of the prepared Fe_(1−x)Ni_(x)VO_(4) nanoparticles were studied as a function of Ni content.The experimental results show that the prepared Ni-doped FeVO_(4) samples have a triclinic structure.Scanning electron microscopy(SEM)images reveal a decrease in average nanoparticle size with increasing Ni content,leading to an enhancement in both specific surface area and magnetization values.X-ray absorption near edge structure(XANES)analysis confirms the substitution of Ni^(2+)ions into Fe^(3+)sites.The magnetic investigation reveals that Ni-doped FeVO_(4) exhibits weak ferromagnetic behavior at room temperature,in contrast to the antiferromagnetic behavior observed in the undoped FeVO_(4).Electrochemical studies demonstrate that the Fe_(0.95)Ni_(0.05)VO_(4) electrode achieves the highest specific capacitance of 334.05 F·g^(−1) at a current density of 1 A·g^(−1),which is attributed to its smallest average pore diameter.In addition,the enhanced specific surface of the Fe_(0.8)Ni_(0.2)VO_(4) electrode is responsible for its outstanding cyclic stability.Overall,our results suggest that the magnetic and electrochemical properties of FeVO_(4) nanoparticles could be effectively tuned by varying Ni doping contents.展开更多
The poor corrosion resistance of magnesium(Mg)and its alloys limits their application in various fields.Micro arc oxidation(MAO)coatings can improve the corrosion resistance,but the pore defects and low surface hardne...The poor corrosion resistance of magnesium(Mg)and its alloys limits their application in various fields.Micro arc oxidation(MAO)coatings can improve the corrosion resistance,but the pore defects and low surface hardness make them susceptible to wear and accelerated corrosion during usage.In this study,a ZrO_(2)nanoparticles doped-MAO coating is prepared on the ZK61 Mg alloy by utilizing an MgF_(2)passivation layer to prevent ablation.The ZrO_(2)nanoparticles re-melt and precipitate due to local discharging,which produces evenly dispersed nanocrystals in the MAO coating.As a result,the hardness of the MAO coating with the appropriate ZrO_(2)concentration increases by over 10 times,while the wear rate decreases and corrosion resistance increases.With increasing ZrO_(2)concentrations,the corrosion potentials increase from−1.528 V of the bare ZK61 Mg alloy to−1.184 V,the corrosion current density decreases from 1.065×10^(–4)A cm^(–2)to 3.960×10^(–8)A cm^(–2),and the charge transfer resistance increases from 3.41×10^(2)Ωcm^(2)to 6.782×10^(5)Ωcm^(2).Immersion tests conducted in a salt solution for 28 d reveal minimal corrosion in contrast to severe corrosion on the untreated ZK61 Mg alloy.ZrO_(2)nanoparticles improve the corrosion resistance of MAO coatings by sealing pores and secondary strengthening of the corrosion product layer.展开更多
Transfection efficiency of hydroxyapatite nanoparticles(HAnps)is relative to the particle size,morphology,surface charge,surface modifier and so on.This study prepared HAnps with doped Tb/Mg by hydrothermal synthesis ...Transfection efficiency of hydroxyapatite nanoparticles(HAnps)is relative to the particle size,morphology,surface charge,surface modifier and so on.This study prepared HAnps with doped Tb/Mg by hydrothermal synthesis method(HTSM)and investigated the effects of different Tb/Mg contents on the morphology,particle size,surface charge,composition and cellular endocytosis of HAnps.The results showed that Mg-HAnps possessed better dispersion ability than Tb-HAnps.With increasing doping content of Tb/Mg-HAnps,the granularity of Tb-HAnps increased,while that of Mg-HAnps declined.Both particle size and zeta potential of Mg-HAnps were lower than those of Tb-HAnps.7.5%Mg-doping HAnps presented relatively uniform slender rod morphology with average size of30nm,while10%Mg-doping HAnps were prone to agglomeration.Moreover,Mg-HAnps-GFP(green fluorescent protein)endocytosed by MG63cells was dotted in the perinuclear region,while Tb-HAnps were more likely to aggregate.In conclusion,as gene vectors,Mg-HAnps showed enhanced properties compared to Tb-HAnps.展开更多
Calcium fluoride nanoparticles with various amounts of erbium ion dopants were prepared by CTAB/C_4 H_9OH/C_7H_(16)/H_2O reverse micro-emulsion method.The nanoparticles were studied by X-ray diffraction(XRD),transmiss...Calcium fluoride nanoparticles with various amounts of erbium ion dopants were prepared by CTAB/C_4 H_9OH/C_7H_(16)/H_2O reverse micro-emulsion method.The nanoparticles were studied by X-ray diffraction(XRD),transmission electron microscopy(TEM),fourier transform infrared spectroscopy(FTIR),absorption and fluorescence spectra.The XRD patterns indicate a typical cubic fluorite structure and no other impurities.TEM results show the synthesized particles having uniform grain size and without agglomeration.FTIR spectra reveal that there are some amounts of-OH,NO_3^-and other organic functional groups on the particle surfaces before the annealing process.Many absorption peaks and bands are present in the absorption spectra,corresponding to the rich energy levels of erbium ion.The Red-Shift of absorption bands and Blue-Shift of fluorescence peaks can be attributed to the weakened energy level split as a result of the decrease in crystal field strength.展开更多
Graphene oxide(GO)is a two-dimensional carbon material with a graphene-like structure and many oxygen-containing functional groups,and in recent years from research into the unique optical properties of GO,GO-based co...Graphene oxide(GO)is a two-dimensional carbon material with a graphene-like structure and many oxygen-containing functional groups,and in recent years from research into the unique optical properties of GO,GO-based composite materials formed by combining with other materials have shown improved overall performance.Reported here is an investigation of how doping with Ni,Fe,and Ag nanoparticles affects the linear and nonlinear optical properties of GO films.The morphology and structure of films of GO,GO with Ni nanoparticles,GO with Fe nanoparticles,and GO with Ag nanoparticles were studied by laser scanning confocal microscopy,SEM,energy dispersive spectroscopy,XRD,and Raman spectroscopy.UV-visible absorption spectra were used to study the optical absorption properties,and the optical band gaps of GO and the composites were calculated from those spectra via Tauc plots.The results show that the band gaps of GO films can be effectively regulated by metal nanoparticles,and so the properties of GO composites can be manipulated.The nonlinear optical properties of GO and GO-metal-nanoparticle composite films were studied by femtosecond laser Z-scanning.The results show that the femtosecond laser power can be tuned to the optical limiting behavior of GO.The strong synergistic coupling effect between metal nanoparticles and GO enhances the nonlinear absorption and nonlinear refraction of composite thin films.The nonlinear absorption coefficient of the composite thin films is improved significantly,and the optical limiting properties are excellent.GO-metal-nanoparticle composite materials have potential applications and advantages in improving optical absorption,band-gap control,and optical limiting.They can promote the expansion of GO composite materials in various practical applications and are candidates for good optical materials,opening the way to GO photonics.展开更多
Li metal is the most ideal anode material for next-generation high energy lithium-ion batteries.The uncontrollable growth of Li dendrites,however,hinders its practical application.Herein,we propose the adoption of Zn ...Li metal is the most ideal anode material for next-generation high energy lithium-ion batteries.The uncontrollable growth of Li dendrites,however,hinders its practical application.Herein,we propose the adoption of Zn nanoparticles uniformly embedded in N-doped carbon polyhedra homogeneously built on carbon cloth(Zn@NC@CC)to prevent the formation of Li dendrites.Based on theoretical calculation and experimental observation,lithiophilic Zn nanoparticles and N-doping inside of the assynthesized Zn@NC play a synergistic role in enhancing the adsorption capacity with Li,thus resulting in uniform Li deposition and complete suppression of Li dendrites.Moreover,the porous N-doped carbon polyhedras uniformly distributed on carbon cloth effectively relieves the volume change of Li upon repeated Li stripping/plating process,which contributes to preserving the structural integrity of the whole electrode and hence enhancing its long-term cycling stability.Benefiting from these synergistic effects,the Li-Zn@NC@CC electrode delivers a prolonged lifespan of over 1200 h at 1 mA cm^(-2) with an areal capacity of 1 mA h cm^(-2) in symmetric cells and high Coulombic efficiencies of 95.4%under an ultrahigh capacity of 12 mA h cm^(-2).Remarkably,Li-Zn@NC@CC//LiFePO_(4) full cells deliver a high reversible capacity of 110.2 mA h g^(-1) at 1 C over 200 cycles.展开更多
Extremely small-sized iron oxide nanoparticles(IONPs) are of great interest in magnetic resonance imaging(MRI) due to their biosafety as an alternative to clinical gadolinium(Ⅲ) complexes-based contrast agents.Especi...Extremely small-sized iron oxide nanoparticles(IONPs) are of great interest in magnetic resonance imaging(MRI) due to their biosafety as an alternative to clinical gadolinium(Ⅲ) complexes-based contrast agents.Especially when the particle size is less than 10 nm,it has strong diffusion ability and deep penetration distance in tumor tissue.Substitution doping can significantly enhance the T_(1)contrast effect of nanoparticles by regulating the surface exposed atoms.However,the nucleation and growth processes of multi-component synthesis systems are complex and difficult to be accurately controlled,leading to great challenges in the synthesis of ultra-small-sized nanoparticles with different components and sizes.Here,extremely smallsized superparamagnetic gadolinium-doped iron oxide nanoparticles(GdIONPs,Gd_(x)Fe_(3-x)O_(4) NPs) with adjustable doping amount and controllable size in the range of 3.5-7.5 nm were synthesized by thermal decomposition.Then,as-synthesized GdIONPs were surface modified with a highly water-soluble and biocompatible carboxyl-polyethylene glycol-phosphoric acid ligand with high binding affinity.Gd_(0.65)Fe_(2.35)O_(4) NPs exhibited very high r_(1) relaxivity of 10.6 mmol^(-1)·L·s^(-1) in terms of all metal concentrations and 49.0 mmol^(-1)·L·s^(-1) in terms of gadolinium alone,respectively,3 and 14 times higher than clinical T_(1) contrast agents(Gd-DTPA).GdIONPs can continuously obtain high resolution images of blood vessels,and can be used as an efficient and multifunctional contrast agent for MR T_(1)imaging.This stable and efficient doping strategy provides an easy and effective method to individually optimize the magnetic properties of complex oxides and their relaxation effects for a variety of biomedical applications.展开更多
Recycling of waste sintered Nd-Fe-B permanent magnets by doping DyH3 nanoparticles was investigated. The effect of the DyH3 nanoparticles on the microstructure and magnetic properties of the recycled magnets was studi...Recycling of waste sintered Nd-Fe-B permanent magnets by doping DyH3 nanoparticles was investigated. The effect of the DyH3 nanoparticles on the microstructure and magnetic properties of the recycled magnets was studied. As the DyH3 nanoparticles additive increased, the coercivity of recycled magnet increased gradually. The recycled magnets with DyH3 nanoparticle content between 0.0 wt.% and 1.0 wt.% maintained the remanence (Br), but, with higher additions, the Br began to decrease rapidly. The best recycled magnet produced contained 1.0 wt.% of DyH3 nanoparticles when compared to the properties of the starting waste sintering magnet. The Hcj, Br and (BH)max values of 101.7%, 95.4%, and 88.58%, respectively, were recovered.展开更多
The modification of nanostructured materials is of great interest due to controllable and unusual inherent properties in such materials. Single phase Fe doped Zn O nanostructures have been fabricated through simple, v...The modification of nanostructured materials is of great interest due to controllable and unusual inherent properties in such materials. Single phase Fe doped Zn O nanostructures have been fabricated through simple, versatile and quick low temperature solution route with reproducible results. The amount of Fe dopant is found to play a significant role for the growth of crystal dimension. The effect of changes in the morphology can be obviously observed in the structural and micro-structural investigations, which may be due to a driving force induced by dipole-dipole interaction. The band gap of Zn O nanostructures is highly shifted towards the visible range with increase of Fe contents, while ferromagnetic properties have been significantly improved.The prepared nanostructures have been found to be nontoxic to SH-SY5 Y Cells. The present study clearly indicates that the Fe doping provides an effective way of tailoring the crystal dimension, optical band-gap and ferromagnetic properties of Zn O nanostructure-materials with nontoxic nature, which make them potential for visible light activated photocatalyst to overcome environmental pollution, fabricate spintronics devices and biosafe drug delivery agent.展开更多
Doped and undoped TiCh nanoparticles were prepared by Stober method and thermally treated at 600 ℃.The effect of Nd^(3+) ion on the structure and micro structure of anatase-phase TiCh nanocrystals was studied by R...Doped and undoped TiCh nanoparticles were prepared by Stober method and thermally treated at 600 ℃.The effect of Nd^(3+) ion on the structure and micro structure of anatase-phase TiCh nanocrystals was studied by Rietveld refinement method using X-ray powder diffraction data.Bond lengths,bond angles,and edges distances were analyzed.The phase formation was confirmed by high-resolution transmission electron microscopy.The adjustment of Ti-0 bond length induced by the addition of Nd^(3+) ions,reduced the octahedral distortion and altered the octahedral array in the anatase-phase TiCh nanocrystal.The changes of structure and microstructure were mainly observed for TiCh nanoparticles doped with 0.1 at.%of Nd^(3+) ions and attributed to the cationic substitution of Ti^(4+) ions which promoted changes in the density of states and gap band of TiCh.The dopant insertion resulted in a better structural stability of the nanocrystals that enhanced their charge transference and photocatalytic efficiency.展开更多
Cu doped Mg(OH)_(2) nanoparticles were synthesized with varying concentrations from 0 to 10%by a chemical synthesis technique of coprecipitation.X-rays diffraction (XRD) of the samples confirms that all the samples ac...Cu doped Mg(OH)_(2) nanoparticles were synthesized with varying concentrations from 0 to 10%by a chemical synthesis technique of coprecipitation.X-rays diffraction (XRD) of the samples confirms that all the samples acquire the hexagonal crystal structure.XRD results indicated the solubility limit of dopant in the host material and the secondary phase of CuO was observed beyond 3%Cu doping in Mg(OH)_(2).The reduction in the size of nanoparticles was observed from 166 to 103 nm for Mg(OH)_(2) and 10% Cu doped Mg(OH)_(2)samples,respectively.The shift in absorption spectra exhibited the systematical enhancement in optical bandgap from 5.25 to 6.085 eV.A good correlation was observed between the bandgap energy and crystallite size of the nanocrystals which confirmed the size induced effect in the nanoparticles.The transformation in the sample morphology was observed from irregular spherical particles to sepals like shapes with increasing the Cu concentration in the host material.The energy dispersive X-Ray (EDX) analysis confirmed the purity of mass percentage composition of the elements present in the samples.展开更多
Cu- and Ni-codoped FeZnO particles with the wurzite structure were successfully synthesized at low temperature by a co-precipitation method. The samples were characterized using a vibrating sample magnetometer, X-ray ...Cu- and Ni-codoped FeZnO particles with the wurzite structure were successfully synthesized at low temperature by a co-precipitation method. The samples were characterized using a vibrating sample magnetometer, X-ray diffraction, energy dispersive X-ray spectroscopy, UV-Vis spectrophotometry and electron spin resonance. The results demonstrated that room temperature ferromagnetic order was observed in both samples and the magnetization was higher than that of Fe-doped ZnO. The correlation between the structural and magnetic properties is discussed.展开更多
The top-seeded infiltration and growth process (TSIG) is very effective method for the preparation of YBa2Cu3O7-x (YBCO) bulk superconductors. In order to improve the levitation force of the samples, a series of singl...The top-seeded infiltration and growth process (TSIG) is very effective method for the preparation of YBa2Cu3O7-x (YBCO) bulk superconductors. In order to improve the levitation force of the samples, a series of single domain YBCO bulk superconductors with different ratios of nanoscale Y2Ba4CuBiOy (YBi2411) inclusions in the solid phase pellet is successfully fabricated by the TSIG technique on the basis of previous research. In the present work, the results of YBCO bulk superconductors with YBi2411 and CeO2 (1 wt%) codoping system indicate that, the optimum doping of YBi2411 is 2 wt%, the size of Y211 particles is reduced compared with the samples without CeO2 doping;the largest levitation force is about 15 N obtained in the samples with optimum YBi2411, which is about two times higher than that of the sample without CeO2 doping. The results are very helpful for the fabrication of high quality single domain YBCO bulk superconductors.展开更多
Rare earth(RE)low doping has a significant influence on the structural,morphological,and magnetic properties of spinel ferrite nanoparticles.Therefore,rare earth neodymium(Nd)oxide was fully doped into spinel ferrite ...Rare earth(RE)low doping has a significant influence on the structural,morphological,and magnetic properties of spinel ferrite nanoparticles.Therefore,rare earth neodymium(Nd)oxide was fully doped into spinel ferrite with a composition of Co_(0.80)Ni_(0.20)Nd_xFe_(2-x)O_4(x=0.0,0.05,0.10,and 0.15)using the sol-gel auto combustion method.Structural analysis of the synthesized samples with low doping of Nd using X-ray diffraction(XRD)and Rietveld refinements reveals a pure single-phase cubic structure,while the second phase appears with increasing content of Nd^(3+)at x=0.10 and 0.15.Scanning electron microscopy(SEM)and high-resolution transmission electron microscopy(HR-TEM)show well-shaped spherical grains within the nanometer range of the pure Co_(0.80)Ni_(0.20)Fe_(2)O_(4) sample,while larger grains with the presence of agglomeration are observed with doping of Nd^(3+)into the spinel ferrite nanoparticles.The magnetic parameters,i.e.,saturation magnetization M_s,remanence and magnetic moments exhibit decreasing trend with Nd^(3+)doping and M_s values are in 65.69 to 53.34 emu/g range.The coercivity of the Nd-doped Co-Ni spinel ferrite sample was calculated to be 1037.76 to~827.24 Oe.This work demonstrates remarkable improvements in the structural and magnetic characteristics of Nddoped Co-Ni spinel ferrite nanoparticles for multiple versatile applications.展开更多
The search for non-precious and efficient electrocatalysts towards the oxygen evolution reaction(OER)is of vital importance for the future advancement of multifarious renewable energy conversion/storage technologies.E...The search for non-precious and efficient electrocatalysts towards the oxygen evolution reaction(OER)is of vital importance for the future advancement of multifarious renewable energy conversion/storage technologies.Electronic modulation via heteroatom doping is recognized as one of the most forceful leverages to enhance the electrocatalytic activity.Herein,we demonstrate a delicate strategy for the in-situ confinement of S-doped Ni O nanoparticles into N-doped carbon nanotube/nanofiber-coupled hierarchical branched superstructures(labeled as S-Ni O@N-C NT/NFs).The developed strategy simultaneously combines enhanced thermodynamics via electronic regulation with accelerated kinetics via nanoarchitectonics.The S-doping into Ni O lattice and the 1 D/1 D-integrated hierarchical branched carbon substrate confer the resultant S-Ni O@N-C NT/NFs with regulated electronic configuration,enriched oxygen vacancies,convenient mass diffusion pathways and superior architectural robustness.Thereby,the SNi O@N-C NT/NFs display outstanding OER properties with an overpotential of 277 m V at 10 m A cm^(-2)and impressive long-term durability in KOH medium.Density functional theory(DFT)calculations further corroborate that introducing S-dopant significantly enhances the interaction with key oxygenate intermediates and narrow the band gap.More encouragingly,a rechargeable Zn-air battery using an air-cathode of Pt/C+S-Ni O@N-C NT/NFs exhibits a lower charge voltage and preferable cycling stability in comparison with the commercial Pt/C+Ru O_(2)counterpart.This study highlighting the concurrent consideration of electronic regulation,architectural design and nanocarbon hybridization may shed light on the future exploration of economical and efficient electrocatalysts.展开更多
Pure ZnO and indium-doped ZnO(In–ZO)nanoparticles with concentrations of In ranging from 0 to 5%are synthesized by a sol–gel processing technique.The structural and optical properties of ZnO and In–ZO nanoparticles...Pure ZnO and indium-doped ZnO(In–ZO)nanoparticles with concentrations of In ranging from 0 to 5%are synthesized by a sol–gel processing technique.The structural and optical properties of ZnO and In–ZO nanoparticles are characterized by different techniques.The structural study confirms the presence of hexagonal wurtzite phase and indicates the incorporation of In^(3+)ions at the Zn^(2+)sites.However,the optical study shows a high absorption in the UV range and an important reflectance in the visible range.The optical band gap of In–ZnO sample varies between 3.16 e V and 3.22 e V.The photoluminescence(PL)analysis reveals that two emission peaks appear:one is located at 381 nm corresponding to the near-band-edge(NBE)and the other is observed in the green region.The aim of this work is to study the effect of indium doping on the structural,morphological,and optical properties of ZnO nanoparticles.展开更多
Designing the highly catalytic activity and durable bifunctional catalysts toward oxygen reduction/evolution reaction(ORR/OER) is paramount for metal–air batteries. Metal–organic frameworks(MOFs)-based materials hav...Designing the highly catalytic activity and durable bifunctional catalysts toward oxygen reduction/evolution reaction(ORR/OER) is paramount for metal–air batteries. Metal–organic frameworks(MOFs)-based materials have attracted a great deal of attention as the potential candidate for effectively catalyzing ORR/OER due to their adjustable composition and porous structure. Herein, we first introduce the Mn species into zeolitic-imidazole frameworks(ZIFs) and then further pyrolyze the Mn-containing bimetallic ZIFs to synthesize core-shell-structured Co@Co4N nanoparticles embedded into MnO-modified porous N-doped carbon nanocubes(Co@Co4N/MnO–NC). Co@Co4N/MnO–NC exhibits the outstanding catalytic activity toward ORR and OER which is attributed to its abundant pyridinic/graphitic N and Co4N,the optimized content of MnO species, highly dispersed catalytic sites and porous carbon matrix. As a result, the Co@Co4N/MnO–NC-based Zn–air battery exhibits enhanced performances, including the high discharge capacity(762 mA h gZn-1), large power density(200.5 mW cm-2), stable potential profile over 72 h, low overpotential(<1.0 V) and superior cycling life(2800 cycles). Moreover, the belt-shaped Co@Co4N/MnO–NC cathode-based Zn–air batteries are also designed which exhibit the superb electrochemical properties at different bending/twisting conditions.展开更多
Multiferroic material as a photovoltaic material has gained considerable attention in recent years.Nanoparticles(NPs)La_(0.1)Bi_(0.9-x)Sr_xFeO_y(LBSF,x = 0,0.2,0.4) with dopant Sr^(2+)ions were synthesized ...Multiferroic material as a photovoltaic material has gained considerable attention in recent years.Nanoparticles(NPs)La_(0.1)Bi_(0.9-x)Sr_xFeO_y(LBSF,x = 0,0.2,0.4) with dopant Sr^(2+)ions were synthesized by the sol–gel method.A systematic change in the crystal structure from rhombohedral to tetragonal upon increasing Sr doping was observed.There is an obvious change in the particle size from 180 nm to 50 nm with increasing Sr substitution into LBFO.It was found that Sr doping effectively narrows the band gap from~2.08 e V to~1.94 e V,while it leads to an apparent enhancement in the electrical conductivity of LBSF NPs,making a transition from insulator to semiconductor.This suggests an effective way to modulate the conductivity of BiFeO_(3-)based multiferroic materials with pure phase by co-doping with La and Sr at the A sites of BiFeO_3.展开更多
文摘This work studied the magnetic,dielectric,and mechanical parameters of lanthanum doped cobalt-magnesium ferrite nanoparticles Co_(0.5)Mg_(0.5)La_(x)Fe_(2-x)O4(CMLF)prepared by citrate combustion route.Fourier transform infrared spectroscopy(FTIR)spectra show lower band(v_(2))at 391-386 cm^(-1) and upper band(v_(1))at 572-570 cm^(-1),which demonstrate the cubic spinel structure formation for all CMLF nanoferrites.Magnetic parameters such as saturation magnetization,remanent magnetization,coer-civity,magnetic moment,anisotropy constant,and initial permittivity were investigated using a vibrating sample magnetometer(VSM).The sample Co_(0.5)Mg_(0.5)La_(0.03)Fe_(1.97)O4 has the optimal saturation magnetization of 47.78 emu/g,whereas the sample Co_(0.5)Mg_(0.5)La_(0.15)Fe_(1.85)O4 has a maximum coercivity of 1031 Oe.The dielectric constant,dielectric loss tangent,ac conductivity and impedance(Z)were also investigated with the addition of La ions.With La doping,the dielectric loss value decreases with 52%compared to the pristine sample,indicating it to be a potential candidate for high frequency appli-cations.The ac conductivity graphs exhibit adherence to Jonscher's single power law,indicating that the conduction process is primarily driven by the small polaron tunneling mechanism.Analytical investigation was conducted on the impedance spectroscopy and electric modulus for the CMLF nanoferrites.The nanoferrite Co_(0.5)Mg_(0.5)La_(0.15)Fe_(1.9)O_(4)has the optimum longitudinal modulus(4.60 GPa),shear modulus(0.85 GPa),Young's modulus(2.37 GPa),and bulk modulus(3.46 GPa)compared tothepristine sample.
文摘The Fe_(1−x)Ni_(x)VO_(4)(x=0,0.05,0.10,and 0.20)nanoparticles in this work were successfully synthesized via a co-precipitation method.The structural,magnetic and electrochemical properties of the prepared Fe_(1−x)Ni_(x)VO_(4) nanoparticles were studied as a function of Ni content.The experimental results show that the prepared Ni-doped FeVO_(4) samples have a triclinic structure.Scanning electron microscopy(SEM)images reveal a decrease in average nanoparticle size with increasing Ni content,leading to an enhancement in both specific surface area and magnetization values.X-ray absorption near edge structure(XANES)analysis confirms the substitution of Ni^(2+)ions into Fe^(3+)sites.The magnetic investigation reveals that Ni-doped FeVO_(4) exhibits weak ferromagnetic behavior at room temperature,in contrast to the antiferromagnetic behavior observed in the undoped FeVO_(4).Electrochemical studies demonstrate that the Fe_(0.95)Ni_(0.05)VO_(4) electrode achieves the highest specific capacitance of 334.05 F·g^(−1) at a current density of 1 A·g^(−1),which is attributed to its smallest average pore diameter.In addition,the enhanced specific surface of the Fe_(0.8)Ni_(0.2)VO_(4) electrode is responsible for its outstanding cyclic stability.Overall,our results suggest that the magnetic and electrochemical properties of FeVO_(4) nanoparticles could be effectively tuned by varying Ni doping contents.
基金supported by the Postdoctoral Fellowship Program of CPSF(No.GZC20231545)the China Postdoctoral Science Foundation(Nos.2024T170557 and 2023M742224)+6 种基金the Shanghai Post-doctoral Excellence Program(No.2023440)the National Natural Science Foundation of China(Nos.52127801,52401101,and 22205012)the Shenzhen Basic Research Project(Nos.JCYJ20210324120001003,JCYJ20200109144608205)the Guangdong Basic and Applied Basic Research Foundation(Nos.2020A1515011301 and 2021A1515012246)the IER Foundation(Nos.IERF202201 andIERF202202),the City University of Hong Kong Donation Research(No.DON-RMG 9229021)the Hong Kong PDFS-RGC Postdoctoral Fellowship Scheme(Nos.PDFS2122–1S08 and CityU 9061014)the Hong Kong HMRF(Health and Medical Research Fund)(Nos.2120972 and CityU 9211320).
文摘The poor corrosion resistance of magnesium(Mg)and its alloys limits their application in various fields.Micro arc oxidation(MAO)coatings can improve the corrosion resistance,but the pore defects and low surface hardness make them susceptible to wear and accelerated corrosion during usage.In this study,a ZrO_(2)nanoparticles doped-MAO coating is prepared on the ZK61 Mg alloy by utilizing an MgF_(2)passivation layer to prevent ablation.The ZrO_(2)nanoparticles re-melt and precipitate due to local discharging,which produces evenly dispersed nanocrystals in the MAO coating.As a result,the hardness of the MAO coating with the appropriate ZrO_(2)concentration increases by over 10 times,while the wear rate decreases and corrosion resistance increases.With increasing ZrO_(2)concentrations,the corrosion potentials increase from−1.528 V of the bare ZK61 Mg alloy to−1.184 V,the corrosion current density decreases from 1.065×10^(–4)A cm^(–2)to 3.960×10^(–8)A cm^(–2),and the charge transfer resistance increases from 3.41×10^(2)Ωcm^(2)to 6.782×10^(5)Ωcm^(2).Immersion tests conducted in a salt solution for 28 d reveal minimal corrosion in contrast to severe corrosion on the untreated ZK61 Mg alloy.ZrO_(2)nanoparticles improve the corrosion resistance of MAO coatings by sealing pores and secondary strengthening of the corrosion product layer.
基金Project(2015WK3012) supported by the Hunan Provincial Science and Technology Department Project,ChinaProject(81571021) supported by the National Natural Science Foundation of China+2 种基金Project(225) supported by the High Level Health Personnel in Hunan Province,ChinaProject(621020094) supported by the State Key Laboratory of Powder Metallurgy of Central South University,ChinaProject(20160301) supported by New Talent Project of the Third Xiangya Hospital of Central South University,China
文摘Transfection efficiency of hydroxyapatite nanoparticles(HAnps)is relative to the particle size,morphology,surface charge,surface modifier and so on.This study prepared HAnps with doped Tb/Mg by hydrothermal synthesis method(HTSM)and investigated the effects of different Tb/Mg contents on the morphology,particle size,surface charge,composition and cellular endocytosis of HAnps.The results showed that Mg-HAnps possessed better dispersion ability than Tb-HAnps.With increasing doping content of Tb/Mg-HAnps,the granularity of Tb-HAnps increased,while that of Mg-HAnps declined.Both particle size and zeta potential of Mg-HAnps were lower than those of Tb-HAnps.7.5%Mg-doping HAnps presented relatively uniform slender rod morphology with average size of30nm,while10%Mg-doping HAnps were prone to agglomeration.Moreover,Mg-HAnps-GFP(green fluorescent protein)endocytosed by MG63cells was dotted in the perinuclear region,while Tb-HAnps were more likely to aggregate.In conclusion,as gene vectors,Mg-HAnps showed enhanced properties compared to Tb-HAnps.
基金funded by the National Natural Science Foundation of China(NO.51072144)State Key Laboratory of Advanced Technology for Materials Synthesis and Processing(Wuhan University of Technology)(NO.2009-ZT-1)
文摘Calcium fluoride nanoparticles with various amounts of erbium ion dopants were prepared by CTAB/C_4 H_9OH/C_7H_(16)/H_2O reverse micro-emulsion method.The nanoparticles were studied by X-ray diffraction(XRD),transmission electron microscopy(TEM),fourier transform infrared spectroscopy(FTIR),absorption and fluorescence spectra.The XRD patterns indicate a typical cubic fluorite structure and no other impurities.TEM results show the synthesized particles having uniform grain size and without agglomeration.FTIR spectra reveal that there are some amounts of-OH,NO_3^-and other organic functional groups on the particle surfaces before the annealing process.Many absorption peaks and bands are present in the absorption spectra,corresponding to the rich energy levels of erbium ion.The Red-Shift of absorption bands and Blue-Shift of fluorescence peaks can be attributed to the weakened energy level split as a result of the decrease in crystal field strength.
基金funded by the Henan Key Laboratory of Intelligent Manufacturing Equipment Integration for Superhard Materials(Grant No.JDKJ2022-01)the Key Lab of Modern Optical Technologies of Education Ministry of China,Soochow University。
文摘Graphene oxide(GO)is a two-dimensional carbon material with a graphene-like structure and many oxygen-containing functional groups,and in recent years from research into the unique optical properties of GO,GO-based composite materials formed by combining with other materials have shown improved overall performance.Reported here is an investigation of how doping with Ni,Fe,and Ag nanoparticles affects the linear and nonlinear optical properties of GO films.The morphology and structure of films of GO,GO with Ni nanoparticles,GO with Fe nanoparticles,and GO with Ag nanoparticles were studied by laser scanning confocal microscopy,SEM,energy dispersive spectroscopy,XRD,and Raman spectroscopy.UV-visible absorption spectra were used to study the optical absorption properties,and the optical band gaps of GO and the composites were calculated from those spectra via Tauc plots.The results show that the band gaps of GO films can be effectively regulated by metal nanoparticles,and so the properties of GO composites can be manipulated.The nonlinear optical properties of GO and GO-metal-nanoparticle composite films were studied by femtosecond laser Z-scanning.The results show that the femtosecond laser power can be tuned to the optical limiting behavior of GO.The strong synergistic coupling effect between metal nanoparticles and GO enhances the nonlinear absorption and nonlinear refraction of composite thin films.The nonlinear absorption coefficient of the composite thin films is improved significantly,and the optical limiting properties are excellent.GO-metal-nanoparticle composite materials have potential applications and advantages in improving optical absorption,band-gap control,and optical limiting.They can promote the expansion of GO composite materials in various practical applications and are candidates for good optical materials,opening the way to GO photonics.
基金partially supported by the National Science Fund for Distinguished Young Scholars(51625102)the National Natural Science Foundation of China(51971065,51901045)+3 种基金the National Natural Science Foundation of China(NSFCàU1903217)the National Natural Science Foundation of China(No.21978073)the Innovation Program of Shanghai Municipal Education Commission(2019-01-07-00-07-E00028)the Programs for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning。
文摘Li metal is the most ideal anode material for next-generation high energy lithium-ion batteries.The uncontrollable growth of Li dendrites,however,hinders its practical application.Herein,we propose the adoption of Zn nanoparticles uniformly embedded in N-doped carbon polyhedra homogeneously built on carbon cloth(Zn@NC@CC)to prevent the formation of Li dendrites.Based on theoretical calculation and experimental observation,lithiophilic Zn nanoparticles and N-doping inside of the assynthesized Zn@NC play a synergistic role in enhancing the adsorption capacity with Li,thus resulting in uniform Li deposition and complete suppression of Li dendrites.Moreover,the porous N-doped carbon polyhedras uniformly distributed on carbon cloth effectively relieves the volume change of Li upon repeated Li stripping/plating process,which contributes to preserving the structural integrity of the whole electrode and hence enhancing its long-term cycling stability.Benefiting from these synergistic effects,the Li-Zn@NC@CC electrode delivers a prolonged lifespan of over 1200 h at 1 mA cm^(-2) with an areal capacity of 1 mA h cm^(-2) in symmetric cells and high Coulombic efficiencies of 95.4%under an ultrahigh capacity of 12 mA h cm^(-2).Remarkably,Li-Zn@NC@CC//LiFePO_(4) full cells deliver a high reversible capacity of 110.2 mA h g^(-1) at 1 C over 200 cycles.
基金financially supported by the Project of High-level Teachers in Beijing Municipal Universities in the Period of 13th Five-Year Plan (No.CIT&TCD201804025)Beijing Municipal Education Commission (No.KM201910011009)the Graduate Student Scientific Research Ability Promotion of BTBU。
文摘Extremely small-sized iron oxide nanoparticles(IONPs) are of great interest in magnetic resonance imaging(MRI) due to their biosafety as an alternative to clinical gadolinium(Ⅲ) complexes-based contrast agents.Especially when the particle size is less than 10 nm,it has strong diffusion ability and deep penetration distance in tumor tissue.Substitution doping can significantly enhance the T_(1)contrast effect of nanoparticles by regulating the surface exposed atoms.However,the nucleation and growth processes of multi-component synthesis systems are complex and difficult to be accurately controlled,leading to great challenges in the synthesis of ultra-small-sized nanoparticles with different components and sizes.Here,extremely smallsized superparamagnetic gadolinium-doped iron oxide nanoparticles(GdIONPs,Gd_(x)Fe_(3-x)O_(4) NPs) with adjustable doping amount and controllable size in the range of 3.5-7.5 nm were synthesized by thermal decomposition.Then,as-synthesized GdIONPs were surface modified with a highly water-soluble and biocompatible carboxyl-polyethylene glycol-phosphoric acid ligand with high binding affinity.Gd_(0.65)Fe_(2.35)O_(4) NPs exhibited very high r_(1) relaxivity of 10.6 mmol^(-1)·L·s^(-1) in terms of all metal concentrations and 49.0 mmol^(-1)·L·s^(-1) in terms of gadolinium alone,respectively,3 and 14 times higher than clinical T_(1) contrast agents(Gd-DTPA).GdIONPs can continuously obtain high resolution images of blood vessels,and can be used as an efficient and multifunctional contrast agent for MR T_(1)imaging.This stable and efficient doping strategy provides an easy and effective method to individually optimize the magnetic properties of complex oxides and their relaxation effects for a variety of biomedical applications.
基金supported by the National High Technology Research and Development Program of China(2012AA063201)National Natural Science Foundation of China(51001002,51371002)
文摘Recycling of waste sintered Nd-Fe-B permanent magnets by doping DyH3 nanoparticles was investigated. The effect of the DyH3 nanoparticles on the microstructure and magnetic properties of the recycled magnets was studied. As the DyH3 nanoparticles additive increased, the coercivity of recycled magnet increased gradually. The recycled magnets with DyH3 nanoparticle content between 0.0 wt.% and 1.0 wt.% maintained the remanence (Br), but, with higher additions, the Br began to decrease rapidly. The best recycled magnet produced contained 1.0 wt.% of DyH3 nanoparticles when compared to the properties of the starting waste sintering magnet. The Hcj, Br and (BH)max values of 101.7%, 95.4%, and 88.58%, respectively, were recovered.
基金supported by Higher Education Commission of Pakistan, National Basic Research Program of China (2010CB934602)National Science Foundation of China (51171007 and 51271009)
文摘The modification of nanostructured materials is of great interest due to controllable and unusual inherent properties in such materials. Single phase Fe doped Zn O nanostructures have been fabricated through simple, versatile and quick low temperature solution route with reproducible results. The amount of Fe dopant is found to play a significant role for the growth of crystal dimension. The effect of changes in the morphology can be obviously observed in the structural and micro-structural investigations, which may be due to a driving force induced by dipole-dipole interaction. The band gap of Zn O nanostructures is highly shifted towards the visible range with increase of Fe contents, while ferromagnetic properties have been significantly improved.The prepared nanostructures have been found to be nontoxic to SH-SY5 Y Cells. The present study clearly indicates that the Fe doping provides an effective way of tailoring the crystal dimension, optical band-gap and ferromagnetic properties of Zn O nanostructure-materials with nontoxic nature, which make them potential for visible light activated photocatalyst to overcome environmental pollution, fabricate spintronics devices and biosafe drug delivery agent.
基金supported by Consejo Nacional de Ciencia yTecnologia or National Council of Science and Technology(CONACYT,175925)
文摘Doped and undoped TiCh nanoparticles were prepared by Stober method and thermally treated at 600 ℃.The effect of Nd^(3+) ion on the structure and micro structure of anatase-phase TiCh nanocrystals was studied by Rietveld refinement method using X-ray powder diffraction data.Bond lengths,bond angles,and edges distances were analyzed.The phase formation was confirmed by high-resolution transmission electron microscopy.The adjustment of Ti-0 bond length induced by the addition of Nd^(3+) ions,reduced the octahedral distortion and altered the octahedral array in the anatase-phase TiCh nanocrystal.The changes of structure and microstructure were mainly observed for TiCh nanoparticles doped with 0.1 at.%of Nd^(3+) ions and attributed to the cationic substitution of Ti^(4+) ions which promoted changes in the density of states and gap band of TiCh.The dopant insertion resulted in a better structural stability of the nanocrystals that enhanced their charge transference and photocatalytic efficiency.
文摘Cu doped Mg(OH)_(2) nanoparticles were synthesized with varying concentrations from 0 to 10%by a chemical synthesis technique of coprecipitation.X-rays diffraction (XRD) of the samples confirms that all the samples acquire the hexagonal crystal structure.XRD results indicated the solubility limit of dopant in the host material and the secondary phase of CuO was observed beyond 3%Cu doping in Mg(OH)_(2).The reduction in the size of nanoparticles was observed from 166 to 103 nm for Mg(OH)_(2) and 10% Cu doped Mg(OH)_(2)samples,respectively.The shift in absorption spectra exhibited the systematical enhancement in optical bandgap from 5.25 to 6.085 eV.A good correlation was observed between the bandgap energy and crystallite size of the nanocrystals which confirmed the size induced effect in the nanoparticles.The transformation in the sample morphology was observed from irregular spherical particles to sepals like shapes with increasing the Cu concentration in the host material.The energy dispersive X-Ray (EDX) analysis confirmed the purity of mass percentage composition of the elements present in the samples.
文摘Cu- and Ni-codoped FeZnO particles with the wurzite structure were successfully synthesized at low temperature by a co-precipitation method. The samples were characterized using a vibrating sample magnetometer, X-ray diffraction, energy dispersive X-ray spectroscopy, UV-Vis spectrophotometry and electron spin resonance. The results demonstrated that room temperature ferromagnetic order was observed in both samples and the magnetization was higher than that of Fe-doped ZnO. The correlation between the structural and magnetic properties is discussed.
文摘The top-seeded infiltration and growth process (TSIG) is very effective method for the preparation of YBa2Cu3O7-x (YBCO) bulk superconductors. In order to improve the levitation force of the samples, a series of single domain YBCO bulk superconductors with different ratios of nanoscale Y2Ba4CuBiOy (YBi2411) inclusions in the solid phase pellet is successfully fabricated by the TSIG technique on the basis of previous research. In the present work, the results of YBCO bulk superconductors with YBi2411 and CeO2 (1 wt%) codoping system indicate that, the optimum doping of YBi2411 is 2 wt%, the size of Y211 particles is reduced compared with the samples without CeO2 doping;the largest levitation force is about 15 N obtained in the samples with optimum YBi2411, which is about two times higher than that of the sample without CeO2 doping. The results are very helpful for the fabrication of high quality single domain YBCO bulk superconductors.
基金Project supported by the Industry-University-Research Cooperation Project of Jiangsu Province in China (BY2021057)the Qing Lan Project of Jiangsu Province (BY2021011)Jiangsu Province Higher Vocational College Young Teachers Enterprise Practice Training Funding Project (2021QYSJ048)。
文摘Rare earth(RE)low doping has a significant influence on the structural,morphological,and magnetic properties of spinel ferrite nanoparticles.Therefore,rare earth neodymium(Nd)oxide was fully doped into spinel ferrite with a composition of Co_(0.80)Ni_(0.20)Nd_xFe_(2-x)O_4(x=0.0,0.05,0.10,and 0.15)using the sol-gel auto combustion method.Structural analysis of the synthesized samples with low doping of Nd using X-ray diffraction(XRD)and Rietveld refinements reveals a pure single-phase cubic structure,while the second phase appears with increasing content of Nd^(3+)at x=0.10 and 0.15.Scanning electron microscopy(SEM)and high-resolution transmission electron microscopy(HR-TEM)show well-shaped spherical grains within the nanometer range of the pure Co_(0.80)Ni_(0.20)Fe_(2)O_(4) sample,while larger grains with the presence of agglomeration are observed with doping of Nd^(3+)into the spinel ferrite nanoparticles.The magnetic parameters,i.e.,saturation magnetization M_s,remanence and magnetic moments exhibit decreasing trend with Nd^(3+)doping and M_s values are in 65.69 to 53.34 emu/g range.The coercivity of the Nd-doped Co-Ni spinel ferrite sample was calculated to be 1037.76 to~827.24 Oe.This work demonstrates remarkable improvements in the structural and magnetic characteristics of Nddoped Co-Ni spinel ferrite nanoparticles for multiple versatile applications.
基金financially supported by the National Natural Science Foundation of China(21972068,21875112,22072067,21878047,22075290 and 21676056)the Qing Lan Project of Jiangsu Province(1107040167)+3 种基金the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX20_0121)the China Scholarship Council(CSC,202006090294)the Fundamental Research Funds for the Central Universities(3207042101D)A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)(1107047002)。
文摘The search for non-precious and efficient electrocatalysts towards the oxygen evolution reaction(OER)is of vital importance for the future advancement of multifarious renewable energy conversion/storage technologies.Electronic modulation via heteroatom doping is recognized as one of the most forceful leverages to enhance the electrocatalytic activity.Herein,we demonstrate a delicate strategy for the in-situ confinement of S-doped Ni O nanoparticles into N-doped carbon nanotube/nanofiber-coupled hierarchical branched superstructures(labeled as S-Ni O@N-C NT/NFs).The developed strategy simultaneously combines enhanced thermodynamics via electronic regulation with accelerated kinetics via nanoarchitectonics.The S-doping into Ni O lattice and the 1 D/1 D-integrated hierarchical branched carbon substrate confer the resultant S-Ni O@N-C NT/NFs with regulated electronic configuration,enriched oxygen vacancies,convenient mass diffusion pathways and superior architectural robustness.Thereby,the SNi O@N-C NT/NFs display outstanding OER properties with an overpotential of 277 m V at 10 m A cm^(-2)and impressive long-term durability in KOH medium.Density functional theory(DFT)calculations further corroborate that introducing S-dopant significantly enhances the interaction with key oxygenate intermediates and narrow the band gap.More encouragingly,a rechargeable Zn-air battery using an air-cathode of Pt/C+S-Ni O@N-C NT/NFs exhibits a lower charge voltage and preferable cycling stability in comparison with the commercial Pt/C+Ru O_(2)counterpart.This study highlighting the concurrent consideration of electronic regulation,architectural design and nanocarbon hybridization may shed light on the future exploration of economical and efficient electrocatalysts.
基金Project supported by the Deanship of Academic Research at Imam Mohamed Ibn Saud Islamic University(IMSIU),Riyadh,Kingdom of Saudi Arabia,(Research Project Nos.381212 and 1438H)
文摘Pure ZnO and indium-doped ZnO(In–ZO)nanoparticles with concentrations of In ranging from 0 to 5%are synthesized by a sol–gel processing technique.The structural and optical properties of ZnO and In–ZO nanoparticles are characterized by different techniques.The structural study confirms the presence of hexagonal wurtzite phase and indicates the incorporation of In^(3+)ions at the Zn^(2+)sites.However,the optical study shows a high absorption in the UV range and an important reflectance in the visible range.The optical band gap of In–ZnO sample varies between 3.16 e V and 3.22 e V.The photoluminescence(PL)analysis reveals that two emission peaks appear:one is located at 381 nm corresponding to the near-band-edge(NBE)and the other is observed in the green region.The aim of this work is to study the effect of indium doping on the structural,morphological,and optical properties of ZnO nanoparticles.
基金the National Natural Science Foundation of China(21905151 and 51772162)Outstanding Youth Foundation of Shandong Province,China(ZR2019JQ14)+4 种基金the Natural Science Foundation of Shandong Province(ZR2018BB034)Taishan Scholar Young Talent ProgramMajor Scientific and Technological Innovation Project(2019JZZY020405)China Postdoctoral Science Foundation(2019M652499)the State Key Laboratory of Inorganic Synthesis and Preparative Chemistry of Jilin University(2019-23)。
文摘Designing the highly catalytic activity and durable bifunctional catalysts toward oxygen reduction/evolution reaction(ORR/OER) is paramount for metal–air batteries. Metal–organic frameworks(MOFs)-based materials have attracted a great deal of attention as the potential candidate for effectively catalyzing ORR/OER due to their adjustable composition and porous structure. Herein, we first introduce the Mn species into zeolitic-imidazole frameworks(ZIFs) and then further pyrolyze the Mn-containing bimetallic ZIFs to synthesize core-shell-structured Co@Co4N nanoparticles embedded into MnO-modified porous N-doped carbon nanocubes(Co@Co4N/MnO–NC). Co@Co4N/MnO–NC exhibits the outstanding catalytic activity toward ORR and OER which is attributed to its abundant pyridinic/graphitic N and Co4N,the optimized content of MnO species, highly dispersed catalytic sites and porous carbon matrix. As a result, the Co@Co4N/MnO–NC-based Zn–air battery exhibits enhanced performances, including the high discharge capacity(762 mA h gZn-1), large power density(200.5 mW cm-2), stable potential profile over 72 h, low overpotential(<1.0 V) and superior cycling life(2800 cycles). Moreover, the belt-shaped Co@Co4N/MnO–NC cathode-based Zn–air batteries are also designed which exhibit the superb electrochemical properties at different bending/twisting conditions.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11104202 and 51572193)
文摘Multiferroic material as a photovoltaic material has gained considerable attention in recent years.Nanoparticles(NPs)La_(0.1)Bi_(0.9-x)Sr_xFeO_y(LBSF,x = 0,0.2,0.4) with dopant Sr^(2+)ions were synthesized by the sol–gel method.A systematic change in the crystal structure from rhombohedral to tetragonal upon increasing Sr doping was observed.There is an obvious change in the particle size from 180 nm to 50 nm with increasing Sr substitution into LBFO.It was found that Sr doping effectively narrows the band gap from~2.08 e V to~1.94 e V,while it leads to an apparent enhancement in the electrical conductivity of LBSF NPs,making a transition from insulator to semiconductor.This suggests an effective way to modulate the conductivity of BiFeO_(3-)based multiferroic materials with pure phase by co-doping with La and Sr at the A sites of BiFeO_3.