Lithium niobate(LN)has remained at the forefront of academic research and industrial applications due to its rich material properties,which include second-order nonlinear optic,electro-optic,and piezoelectric properti...Lithium niobate(LN)has remained at the forefront of academic research and industrial applications due to its rich material properties,which include second-order nonlinear optic,electro-optic,and piezoelectric properties.A further aspect of LN’s versatility stems from the ability to engineer ferroelectric domains with micro and even nano-scale precision in LN,which provides an additional degree of freedom to design acoustic and optical devices with improved performance and is only possible in a handful of other materials.In this review paper,we provide an overview of the domain engineering techniques developed for LN,their principles,and the typical domain size and pattern uniformity they provide,which is important for devices that require high-resolution domain patterns with good reproducibility.It also highlights each technique's benefits,limitations,and adaptability for an application,along with possible improvements and future advancement prospects.Further,the review provides a brief overview of domain visualization methods,which is crucial to gain insights into domain quality/shape and explores the adaptability of the proposed domain engineering methodologies for the emerging thin-film lithium niobate on an insulator platform,which creates opportunities for developing the next generation of compact and scalable photonic integrated circuits and high frequency acoustic devices.展开更多
The cobalt-free Mn-based Li-rich layered oxide material has the advantages of low cost,high energy density,and good performance at low temperatures,and is the promising choice for energy storage batteries.However,the ...The cobalt-free Mn-based Li-rich layered oxide material has the advantages of low cost,high energy density,and good performance at low temperatures,and is the promising choice for energy storage batteries.However,the long-cycling stability of batteries needs to be improved.Herein,the Mn-based Li-rich cathode materials with small amounts of Li2 MnO3 crystal domains and gradient doping of Al and Ti elements from the surface to the bulk have been developed to improve the structure and interface stability.Then the batteries with a high energy density of 600 Wh kg^(-1),excellent capacity retention of 99.7%with low voltage decay of 0.03 mV cycle^(-1) after 800 cycles,and good rates performances can be achieved.Therefore,the structure and cycling stability of low voltage Mn-based Li-rich cathode materials can be significantly improved by the bulk structure design and interface regulation,and this work has paved the way for developing low-cost and high-energy Mn-based energy storage batteries with long lifetime.展开更多
Background:Nuclear receptor-binding SET domain 2(NSD2)is a histone methyltrans-ferase,that catalyzes dimethylation of lysine 36 of histone 3(H3K36me2)and is asso-ciated with active transcription of a series of genes.N...Background:Nuclear receptor-binding SET domain 2(NSD2)is a histone methyltrans-ferase,that catalyzes dimethylation of lysine 36 of histone 3(H3K36me2)and is asso-ciated with active transcription of a series of genes.NSD2 is overexpressed in multiple types of solid human tumors and has been proven to be related to unfavorable prog-nosis in several types of tumors.Methods:We established a mouse model in which the NSD2 gene was conditionally knocked out in intestinal epithelial cells.We used azoxymethane and dextran sodium sulfate to chemically induce murine colorectal cancer.The development of colorectal tumors were investigated using post-necropsy quantification,immunohistochemistry,and enzyme-linked immunosorbent assay(ELISA).Results:Compared with wild-type(WT)control mice,NSD2^(fl/fl)-Vil1-Cre mice exhib-ited significantly decreased tumor numbers,histopathological changes,and cytokine expression in colorectal tumors.Conclusions:Conditional knockout of NSD2 in intestinal epithelial cells significantly inhibits colorectal cancer progression.展开更多
The real-time monitoring of fracture propagation during hydraulic fracturing is crucial for obtaining a deeper understanding of fracture morphology and optimizing hydraulic fracture designs.Accurate measurements of ke...The real-time monitoring of fracture propagation during hydraulic fracturing is crucial for obtaining a deeper understanding of fracture morphology and optimizing hydraulic fracture designs.Accurate measurements of key fracture parameters,such as the fracture height and width,are particularly important to ensure efficient oilfield development and precise fracture diagnosis.This study utilized the optical frequency domain reflectometer(OFDR)technique in physical simulation experiments to monitor fractures during indoor true triaxial hydraulic fracturing experiments.The results indicate that the distributed fiber optic strain monitoring technology can efficiently capture the initiation and expansion of fractures.In horizontal well monitoring,the fiber strain waterfall plot can be used to interpret the fracture width,initiation location,and expansion speed.The fiber response can be divided into three stages:strain contraction convergence,strain band formation,and postshutdown strain rate reversal.When the fracture does not contact the fiber,a dual peak strain phenomenon occurs in the fiber and gradually converges as the fracture approaches.During vertical well monitoring in adjacent wells,within the effective monitoring range of the fiber,the axial strain produced by the fiber can represent the fracture height with an accuracy of 95.6%relative to the actual fracture height.This study provides a new perspective on real-time fracture monitoring.The response patterns of fiber-induced strain due to fractures can help us better understand and assess the dynamic fracture behavior,offering significant value for the optimization of oilfield development and fracture diagnostic techniques.展开更多
AIM:To determine the therapeutic benefits of fenofibrate(Feno)on the dysfunction of high glucose(HG)-induced human retinal microvascular endothelial cells(HRMECs)and to elucidate the underlying molecular mechanism.MET...AIM:To determine the therapeutic benefits of fenofibrate(Feno)on the dysfunction of high glucose(HG)-induced human retinal microvascular endothelial cells(HRMECs)and to elucidate the underlying molecular mechanism.METHODS:HRMEC dysfunction model was established by 48h glucose(30 mmol/L)treatment and treated with Feno/NOD-like receptor thermal protein domain associated protein 3(NLRP3)inflammasome activator(Nigericin).Cell viability/apoptosis were assessed by cell counting kit-8(CCK-8)/terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay(TUNEL)staining and flow cytometry assays.Levels of apoptosis-(Bcl-2-associated X protein,Bax/B-cell lymphoma 2,Bcl-2),vascular permeability-(vascular endothelial growth factor,VEGF)and inflammasome activation-related proteins(NLRP3/cleaved caspase-1/apoptosis-associated speck-like protein containing a CARD,ASC),as well as inflammatory factors(interleukin,IL-6/IL-1β/tumor necrosis factor,TNF-α/IL-18)were determined with Western blot/enzyme linked immunosorbent assay(ELISA).Cell permeability/reactive oxygen species(ROS)level/superoxide dismutase(SOD)activity/malondialdehyde(MDA)content were assessed by Evans blue staining/2',7'-dichlorodihydrofluorescein diacetate(DCFH-DA)fluorescent probe/SOD kit/MDA kit.RESULTS:HRMEC dysfunction was successfully induced by HG,evidenced by decreased viability(P<0.001),increased apoptosis(P<0.001),permeability(P<0.001),and inflammatory factor levels(P<0.001).Feno treatment significantly ameliorated HG-induced HRMEC dysfunction(P<0.01).Meanwhile,HG induction increased ROS production(P<0.001)and MDA content(P<0.001)in HRMECs,while reducing SOD activity(P<0.001),indicative of oxidative stress.This was,however,abolished by Feno(P<0.05).Moreover,Feno eliminated activation of NLRP3 inflammasomes(P<0.05)in HG-induced HRMECs.Strikingly,activation of NLRP3 inflammasomes partially averted the inhibition of Feno on HG-induced HRMEC dysfunction(P<0.05).CONCLUSION:Feno represses oxidative stress and NLRP3 inflammasome activation,consequently alleviating HG-induced HRMEC dysfunction.展开更多
The mitogen-activated protein kinase kinase kinase kinases(MAP4Ks)signaling pathway plays a pivotal role in axonal regrowth and neuronal degeneration following insults.Whether targeting this pathway is beneficial to b...The mitogen-activated protein kinase kinase kinase kinases(MAP4Ks)signaling pathway plays a pivotal role in axonal regrowth and neuronal degeneration following insults.Whether targeting this pathway is beneficial to brain injury remains unclear.In this study,we showed that adeno-associated virus-delivery of the Citron homology domain of MAP4Ks effectively reduces traumatic brain injury-induced reactive gliosis,tauopathy,lesion size,and behavioral deficits.Pharmacological inhibition of MAP4Ks replicated the ameliorative effects observed with expression of the Citron homology domain.Mechanistically,the Citron homology domain acted as a dominant-negative mutant,impeding MAP4K-mediated phosphorylation of the dishevelled proteins and thereby controlling the Wnt/β-catenin pathway.These findings implicate a therapeutic potential of targeting MAP4Ks to alleviate the detrimental effects of traumatic brain injury.展开更多
The functional and structural integrity of the blood-brain barrier is crucial in maintaining homeostasis in the brain microenvironment;however,the molecular mechanisms underlying the formation and function of the bloo...The functional and structural integrity of the blood-brain barrier is crucial in maintaining homeostasis in the brain microenvironment;however,the molecular mechanisms underlying the formation and function of the blood-brain barrier remain poorly understood.The major facilitator superfamily domain containing 2A has been identified as a key regulator of blood-brain barrier function.It plays a critical role in promoting and maintaining the formation and functional stability of the blood-brain barrier,in addition to the transport of lipids,such as docosahexaenoic acid,across the blood-brain barrier.Furthermore,an increasing number of studies have suggested that major facilitator superfamily domain containing 2A is involved in the molecular mechanisms of blood-brain barrier dysfunction in a variety of neurological diseases;however,little is known regarding the mechanisms by which major facilitator superfamily domain containing 2A affects the blood-brain barrier.This paper provides a comprehensive and systematic review of the close relationship between major facilitator superfamily domain containing 2A proteins and the blood-brain barrier,including their basic structures and functions,cross-linking between major facilitator superfamily domain containing 2A and the blood-brain barrier,and the in-depth studies on lipid transport and the regulation of blood-brain barrier permeability.This comprehensive systematic review contributes to an in-depth understanding of the important role of major facilitator superfamily domain containing 2A proteins in maintaining the structure and function of the blood-brain barrier and the research progress to date.This will not only help to elucidate the pathogenesis of neurological diseases,improve the accuracy of laboratory diagnosis,and optimize clinical treatment strategies,but it may also play an important role in prognostic monitoring.In addition,the effects of major facilitator superfamily domain containing 2A on blood-brain barrier leakage in various diseases and the research progress on cross-blood-brain barrier drug delivery are summarized.This review may contribute to the development of new approaches for the treatment of neurological diseases.展开更多
Lithium-ion capacitors(LICs)combine the high power dens-ity of electrical double-layer capacitors with the high energy density of lithium-ion batteries.However,they face practical limitations due to the narrow operati...Lithium-ion capacitors(LICs)combine the high power dens-ity of electrical double-layer capacitors with the high energy density of lithium-ion batteries.However,they face practical limitations due to the narrow operating voltage window of their activated carbon(AC)cathodes.We report a scalable thermal treatment strategy to develop high-voltage-tolerant AC cathodes.Through controlled thermal treatment of commer-cial activated carbon(Raw-AC)under a H_(2)/Ar atmosphere at 400-800℃,the targeted reduction of degradation-prone functional groups can be achieved while preserving the critical pore structure and increasing graph-itic microcrystalline ordering.The AC treated at 400℃(HAC-400)had a significant increase in specific capacity(96.0 vs.75.1 mAh/g at 0.05 A/g)and better rate capability(61.1 vs.36.1 mAh/g at 5 A/g)in half-cell LICs,along with an 83.5%capacity retention over 7400 cycles within an extended voltage range of 2.0-4.2 V in full-cell LICs.Scalability was demonstrated by a 120 g batch production,enabling fabrication of pouch-type LICs with commercial hard carbon anodes that delivered a higher energy density of 28.3 Wh/kg at 1 C,and a peak power density of 12.1 kW/kg compared to devices using raw AC.This simple,industry-compatible approach may be used for producing ad-vanced cathode materials for practical high-performance LICs.展开更多
In this paper,the Paley-Wiener theorem is extended to the analytic function spaces with general weights.We first generalize the theorem to weighted Hardy spaces Hp(0<p<∞)on tube domains by constructing a sequen...In this paper,the Paley-Wiener theorem is extended to the analytic function spaces with general weights.We first generalize the theorem to weighted Hardy spaces Hp(0<p<∞)on tube domains by constructing a sequence of L^(1)functions converging to the given function and verifying their representation in the form of Fourier transform to establish the desired result of the given function.Applying this main result,we further generalize the Paley-Wiener theorem for band-limited functions to the analytic function spaces L^(p)(0<p<∞)with general weights.展开更多
Pb(Zr,Ti)O_(3)-Pb(Zn_(1/3)Nb_(2/3))O_(3) (PZT-PZN) based ceramics, as important piezoelectric materials, have a wide range of applications in fields such as sensors and actuators, thus the optimization of their piezoe...Pb(Zr,Ti)O_(3)-Pb(Zn_(1/3)Nb_(2/3))O_(3) (PZT-PZN) based ceramics, as important piezoelectric materials, have a wide range of applications in fields such as sensors and actuators, thus the optimization of their piezoelectric properties has been a hot research topic. This study investigated the effects of phase boundary engineering and domain engineering on (1-x)[0.8Pb(Zr_(0.5)Ti_(0.5))O_(3)-0.2Pb(Zn_(1/3)Nb_(2/3))O_(3)]-xBi(Zn_(0.5)Ti_(0.5))O_(3) ((1-x)(0.8PZT-0.2PZN)- xBZT) ceramic to obtain excellent piezoelectric properties. The crystal phase structure and microstructure of ceramic samples were characterized. The results showed that all samples had a pure perovskite structure, and the addition of BZT gradually increased the grain size. The addition of BZT caused a phase transition in ceramic samples from the morphotropic phase boundary (MPB) towards the tetragonal phase region, which is crucial for optimizing piezoelectric properties. By adjusting content of BZT and precisely controlling position of the phase boundary, the piezoelectric performance can be optimized. Domain structure is one of the key factors affecting piezoelectric performance. By using domain engineering techniques to optimize grain size and domain size, piezoelectric properties of ceramic samples have been significantly improved. Specifically, excellent piezoelectric properties (piezoelectric constant d_(33)=320 pC/N, electromechanical coupling factor kp=0.44) were obtained simultaneously for x=0.08. Based on experimental results and theoretical analysis, influence mechanisms of phase boundary engineering and domain engineering on piezoelectric properties were explored. The study shows that addition of BZT not only promotes grain growth, but also optimizes the domain structure, enabling the polarization reversal process easier, thereby improving piezoelectric properties. These research results not only provide new ideas for the design of high-performance piezoelectric ceramics, but also lay a theoretical foundation for development of related electronic devices.展开更多
In this paper,we give a complete characterization of all self-adjoint domains of odd order differential operators on two intervals.These two intervals with all four endpoints are singular(one endpoint of each interval...In this paper,we give a complete characterization of all self-adjoint domains of odd order differential operators on two intervals.These two intervals with all four endpoints are singular(one endpoint of each interval is singular or all four endpoints are regulars are the special cases).And these extensions yield"new"self-adjoint operators,which involve interactions between the two intervals.展开更多
Skeletal muscles are essential for locomotion,posture,and metabolic regulation.To understand physiological processes,exercise adaptation,and muscle-related disorders,it is critical to understand the molecular pathways...Skeletal muscles are essential for locomotion,posture,and metabolic regulation.To understand physiological processes,exercise adaptation,and muscle-related disorders,it is critical to understand the molecular pathways that underlie skeletal muscle function.The process of muscle contra ction,orchestrated by a complex interplay of molecular events,is at the core of skeletal muscle function.Muscle contraction is initiated by an action potential and neuromuscular transmission requiring a neuromuscular junction.Within muscle fibers,calcium ions play a critical role in mediating the interaction between actin and myosin filaments that generate force.Regulation of calcium release from the sarcoplasmic reticulum plays a key role in excitation-contraction coupling.The development and growth of skeletal muscle are regulated by a network of molecular pathways collectively known as myogenesis.Myogenic regulators coordinate the diffe rentiation of myoblasts into mature muscle fibers.Signaling pathways regulate muscle protein synthesis and hypertrophy in response to mechanical stimuli and nutrient availability.Seve ral muscle-related diseases,including congenital myasthenic disorders,sarcopenia,muscular dystrophies,and metabolic myopathies,are underpinned by dys regulated molecular pathways in skeletal muscle.Therapeutic interventions aimed at preserving muscle mass and function,enhancing regeneration,and improving metabolic health hold promise by targeting specific molecular pathways.Other molecular signaling pathways in skeletal muscle include the canonical Wnt signaling pathway,a critical regulator of myogenesis,muscle regeneration,and metabolic function,and the Hippo signaling pathway.In recent years,more details have been uncovered about the role of these two pathways during myogenesis and in developing and adult skeletal muscle fibers,and at the neuromuscular junction.In fact,research in the last few years now suggests that these two signaling pathways are interconnected and that they jointly control physiological and pathophysiological processes in muscle fibers.In this review,we will summarize and discuss the data on these two pathways,focusing on their concerted action next to their contribution to skeletal muscle biology.However,an in-depth discussion of the noncanonical Wnt pathway,the fibro/a dipogenic precursors,or the mechanosensory aspects of these pathways is not the focus of this review.展开更多
To enable proper diagnosis of a patient,medical images must demonstrate no presence of noise and artifacts.The major hurdle lies in acquiring these images in such a manner that extraneous variables,causing distortions...To enable proper diagnosis of a patient,medical images must demonstrate no presence of noise and artifacts.The major hurdle lies in acquiring these images in such a manner that extraneous variables,causing distortions in the form of noise and artifacts,are kept to a bare minimum.The unexpected change realized during the acquisition process specifically attacks the integrity of the image’s quality,while indirectly attacking the effectiveness of the diagnostic process.It is thus crucial that this is attended to with maximum efficiency at the level of pertinent expertise.The solution to these challenges presents a complex dilemma at the acquisition stage,where image processing techniques must be adopted.The necessity of this mandatory image pre-processing step underpins the implementation of traditional state-of-the-art methods to create functional and robust denoising or recovery devices.This article hereby provides an extensive systematic review of the above techniques,with the purpose of presenting a systematic evaluation of their effect on medical images under three different distributions of noise,i.e.,Gaussian,Poisson,and Rician.A thorough analysis of these methods is conducted using eight evaluation parameters to highlight the unique features of each method.The covered denoising methods are essential in actual clinical scenarios where the preservation of anatomical details is crucial for accurate and safe diagnosis,such as tumor detection in MRI and vascular imaging in CT.展开更多
BACKGROUND A significant proportion of cancer patients experience autonomic dysfunction,and cancer treatments such as chemotherapy and radiation therapy can exacerbate impairments in the cardiac autonomic nervous syst...BACKGROUND A significant proportion of cancer patients experience autonomic dysfunction,and cancer treatments such as chemotherapy and radiation therapy can exacerbate impairments in the cardiac autonomic nervous system.This study sought to investigate the characteristics of heart rate variability(HRV)in individuals with cancer.AIM To evaluate the relationship between HRV and cancer patients,providing insights and references for cancer treatment.METHODS The study included 127 cancer patients with available 24-hour dynamic electrocardiogram data.HRV differences were analyzed using both time domain and frequency domain methods.These findings were then compared to HRV data from reference individuals,sourced from literature that utilized the same HRV computing algorithm.RESULTS Our findings revealed that cancer patients generally exhibited abnormal HRV compared to the reference group.HRV was found to be correlated with age and clinical type(P<0.05),but no significant correlation was observed with tumor site or gender(P>0.05).CONCLUSION This study indicates that cancer patients have significantly abnormal HRV compared to reference individuals,suggesting the presence of a certain level of cardiac autonomic dysfunction in this patient population.展开更多
Domain Generation Algorithms(DGAs)continue to pose a significant threat inmodernmalware infrastructures by enabling resilient and evasive communication with Command and Control(C&C)servers.Traditional detection me...Domain Generation Algorithms(DGAs)continue to pose a significant threat inmodernmalware infrastructures by enabling resilient and evasive communication with Command and Control(C&C)servers.Traditional detection methods-rooted in statistical heuristics,feature engineering,and shallow machine learning-struggle to adapt to the increasing sophistication,linguistic mimicry,and adversarial variability of DGA variants.The emergence of Large Language Models(LLMs)marks a transformative shift in this landscape.Leveraging deep contextual understanding,semantic generalization,and few-shot learning capabilities,LLMs such as BERT,GPT,and T5 have shown promising results in detecting both character-based and dictionary-based DGAs,including previously unseen(zeroday)variants.This paper provides a comprehensive and critical review of LLM-driven DGA detection,introducing a structured taxonomy of LLM architectures,evaluating the linguistic and behavioral properties of benchmark datasets,and comparing recent detection frameworks across accuracy,latency,robustness,and multilingual performance.We also highlight key limitations,including challenges in adversarial resilience,model interpretability,deployment scalability,and privacy risks.To address these gaps,we present a forward-looking research roadmap encompassing adversarial training,model compression,cross-lingual benchmarking,and real-time integration with SIEM/SOAR platforms.This survey aims to serve as a foundational resource for advancing the development of scalable,explainable,and operationally viable LLM-based DGA detection systems.展开更多
As a core component of power systems, the operational status of transformers directly affects grid stability. To address the problem of “domain shift” in cross-domain fault diagnosis, this paper proposes a memory-en...As a core component of power systems, the operational status of transformers directly affects grid stability. To address the problem of “domain shift” in cross-domain fault diagnosis, this paper proposes a memory-enhanced dual-stream network (MemFuse-DSN). The method reconstructs the feature space by selecting and enhancing multi-source domain samples based on similarity metrics. An adaptive weighted dual-stream architecture is designed, integrating gradient reversal and orthogonality constraints to achieve efficient feature alignment. In addition, a novel dual dynamic memory module is introduced: the task memory bank is used to store high-confidence class prototype information, and adopts an exponential moving average (EMA) strategy to ensure the smooth evolution of prototypes over time;the domain memory bank is periodically updated and clusters potential noisy features, dynamically tracking domain shift trends, thereby optimizing the decoupled feature learning process. Experimental validation was conducted on a ±110 kV transformer vibration testing platform using typical fault types including winding looseness, core looseness, and compound faults. The results show that the proposed method achieves a fault diagnosis accuracy of 99.2%, providing a highly generalizable solution for the intelligent operation and maintenance of power equipment.展开更多
To address the sensitive and uncertain limitations of single-energy computed tomography(CT)calibration methods in computing proton stopping power ratio during treatment planning,different methods have been proposed us...To address the sensitive and uncertain limitations of single-energy computed tomography(CT)calibration methods in computing proton stopping power ratio during treatment planning,different methods have been proposed using a dual energy CT approach.This paper reviews the most recent dual-energy CT approaches for computing proton stopping power ratio.These include image domain and projection domain methods.The advantages and uncertainties of these methods are analyzed based on existing studies.This paper highlights recent advances in dual energy CT,discussing their implementation,advantages,limitations,and potential for clinical adoption.展开更多
Discoidin domain receptors(DDRs)are single-pass transmembrane proteins belonging to receptor tyrosine kinases(RTKs)family,which are activated by collagen ligands with unusual slow,sustained kinetics,distinguishing the...Discoidin domain receptors(DDRs)are single-pass transmembrane proteins belonging to receptor tyrosine kinases(RTKs)family,which are activated by collagen ligands with unusual slow,sustained kinetics,distinguishing them from canonical RTKs.While DDRs play critical roles in cell adhesion,differentiation,and cancer progression,their activation mechanisms remain partly understood.Here,we investigated the transmembrane domains(TMDs)of DDR1 and DDR2 to elucidate their interaction dynamics in membrane.Using bacterial adenylate cyclase two-hybrid(BACTH)assays,we demonstrated robust homotypic interactions and even stronger heterotypic associations between DDRTMDs.NMR spectroscopy of DDR1TMD and DDR2TMD reconstituted in lipid bilayer-mimetic bicelles showed obvious chemical shift alterations,further validating the stability of their heterocomplex formation.Systematic mutagenesis identified leucine zipper motifs rather than GXXXA motifs mediated both homo-and hetero-associations of DDR1TMD and DDR2TMD.These findings demonstrated the TMD as a critical mediator of DDRs oligomerization and revealed their interaction patterns within membrane.Our study advances the understanding of DDR signaling regulation and highlights transmembrane domain interactions as potential targets for modulating DDR-related pathologies.展开更多
Obtaining high magnetic properties in high Ce-content magnets is essential to expand the widespread application of low-cost magnets.In this study,high Ce-content magnets with up to 45%Ce substitution for Nd were prepa...Obtaining high magnetic properties in high Ce-content magnets is essential to expand the widespread application of low-cost magnets.In this study,high Ce-content magnets with up to 45%Ce substitution for Nd were prepared by combining the single/dual/multi-main-phase processes with the Dy-containing grain boundary diffusion process(GBDP).The effects of base magnets with different Ce distributions on GBDP were systematically investigated.Magnetic properties and micro structure analysis reveal that high-performance multi-main-phase(MMP)diffused magnets with remanence(Br)up to 12.52 kGs,coercivity up to 16.08 kOe,and maximum magnetic energy product up to 36.44 MGOe are obtained,which is attributed to the regulation of Ce by the MMP process,and the optimization of microstructure by Gd-Cu alloy.Meanwhile,the diffusion efficiency is significantly improved because of Ce being restricted to the grain core,which promotes the formation of a continuous structure at the grain boundaries,and the formation of a continuous multilayer shell grain structure with high anisotropy field,while the Br of the diffused magnet is maintained.Besides,magnetic domain analysis shows that the MMP diffused magnet effectively suppresses the nucleation of demagnetized domains and enhances the pinning effect of domain walls.The study establishes an experimental foundation for the development of sintered high Ce-content magnets showcasing superior performance.展开更多
基金supported by the Australian Research Council Centre of Excellence in Optical Microcombs for Breakthrough Science COMBS(CE230100006)the Australian Research Council grants DP220100488 and DE230100964funded by the Australian Government.
文摘Lithium niobate(LN)has remained at the forefront of academic research and industrial applications due to its rich material properties,which include second-order nonlinear optic,electro-optic,and piezoelectric properties.A further aspect of LN’s versatility stems from the ability to engineer ferroelectric domains with micro and even nano-scale precision in LN,which provides an additional degree of freedom to design acoustic and optical devices with improved performance and is only possible in a handful of other materials.In this review paper,we provide an overview of the domain engineering techniques developed for LN,their principles,and the typical domain size and pattern uniformity they provide,which is important for devices that require high-resolution domain patterns with good reproducibility.It also highlights each technique's benefits,limitations,and adaptability for an application,along with possible improvements and future advancement prospects.Further,the review provides a brief overview of domain visualization methods,which is crucial to gain insights into domain quality/shape and explores the adaptability of the proposed domain engineering methodologies for the emerging thin-film lithium niobate on an insulator platform,which creates opportunities for developing the next generation of compact and scalable photonic integrated circuits and high frequency acoustic devices.
基金supported by the National Key R&D Program of China(No.2022YFB2404400)the National Natural Science Foundation of China(Nos.U23A20577,52372168,92263206 and 21975006)+1 种基金the“The Youth Beijing Scholars program”(No.PXM2021_014204_000023)the Beijing Natural Science Foundation(Nos.2222001 and KM202110005009).
文摘The cobalt-free Mn-based Li-rich layered oxide material has the advantages of low cost,high energy density,and good performance at low temperatures,and is the promising choice for energy storage batteries.However,the long-cycling stability of batteries needs to be improved.Herein,the Mn-based Li-rich cathode materials with small amounts of Li2 MnO3 crystal domains and gradient doping of Al and Ti elements from the surface to the bulk have been developed to improve the structure and interface stability.Then the batteries with a high energy density of 600 Wh kg^(-1),excellent capacity retention of 99.7%with low voltage decay of 0.03 mV cycle^(-1) after 800 cycles,and good rates performances can be achieved.Therefore,the structure and cycling stability of low voltage Mn-based Li-rich cathode materials can be significantly improved by the bulk structure design and interface regulation,and this work has paved the way for developing low-cost and high-energy Mn-based energy storage batteries with long lifetime.
基金supported by the National Key Research and Development Program of China (2022YFF0710705)the Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences (2021-I2M-1-0 13)+2 种基金funding support from the Special Research Fund for Central UniversitiesPeking Union Medical College (3332022182)the 111 Project (B20095)
文摘Background:Nuclear receptor-binding SET domain 2(NSD2)is a histone methyltrans-ferase,that catalyzes dimethylation of lysine 36 of histone 3(H3K36me2)and is asso-ciated with active transcription of a series of genes.NSD2 is overexpressed in multiple types of solid human tumors and has been proven to be related to unfavorable prog-nosis in several types of tumors.Methods:We established a mouse model in which the NSD2 gene was conditionally knocked out in intestinal epithelial cells.We used azoxymethane and dextran sodium sulfate to chemically induce murine colorectal cancer.The development of colorectal tumors were investigated using post-necropsy quantification,immunohistochemistry,and enzyme-linked immunosorbent assay(ELISA).Results:Compared with wild-type(WT)control mice,NSD2^(fl/fl)-Vil1-Cre mice exhib-ited significantly decreased tumor numbers,histopathological changes,and cytokine expression in colorectal tumors.Conclusions:Conditional knockout of NSD2 in intestinal epithelial cells significantly inhibits colorectal cancer progression.
基金supported by the National Natural Science Foundation of China(Grant No.52104060)the Natural Science Foundation of Shandong Province,China(Grant No.ZR2021QE015).
文摘The real-time monitoring of fracture propagation during hydraulic fracturing is crucial for obtaining a deeper understanding of fracture morphology and optimizing hydraulic fracture designs.Accurate measurements of key fracture parameters,such as the fracture height and width,are particularly important to ensure efficient oilfield development and precise fracture diagnosis.This study utilized the optical frequency domain reflectometer(OFDR)technique in physical simulation experiments to monitor fractures during indoor true triaxial hydraulic fracturing experiments.The results indicate that the distributed fiber optic strain monitoring technology can efficiently capture the initiation and expansion of fractures.In horizontal well monitoring,the fiber strain waterfall plot can be used to interpret the fracture width,initiation location,and expansion speed.The fiber response can be divided into three stages:strain contraction convergence,strain band formation,and postshutdown strain rate reversal.When the fracture does not contact the fiber,a dual peak strain phenomenon occurs in the fiber and gradually converges as the fracture approaches.During vertical well monitoring in adjacent wells,within the effective monitoring range of the fiber,the axial strain produced by the fiber can represent the fracture height with an accuracy of 95.6%relative to the actual fracture height.This study provides a new perspective on real-time fracture monitoring.The response patterns of fiber-induced strain due to fractures can help us better understand and assess the dynamic fracture behavior,offering significant value for the optimization of oilfield development and fracture diagnostic techniques.
基金Supported by grants from the Tianjin Key Medical Discipline(Specialty)Construction Project(No.TJYXZDXK-037A).
文摘AIM:To determine the therapeutic benefits of fenofibrate(Feno)on the dysfunction of high glucose(HG)-induced human retinal microvascular endothelial cells(HRMECs)and to elucidate the underlying molecular mechanism.METHODS:HRMEC dysfunction model was established by 48h glucose(30 mmol/L)treatment and treated with Feno/NOD-like receptor thermal protein domain associated protein 3(NLRP3)inflammasome activator(Nigericin).Cell viability/apoptosis were assessed by cell counting kit-8(CCK-8)/terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay(TUNEL)staining and flow cytometry assays.Levels of apoptosis-(Bcl-2-associated X protein,Bax/B-cell lymphoma 2,Bcl-2),vascular permeability-(vascular endothelial growth factor,VEGF)and inflammasome activation-related proteins(NLRP3/cleaved caspase-1/apoptosis-associated speck-like protein containing a CARD,ASC),as well as inflammatory factors(interleukin,IL-6/IL-1β/tumor necrosis factor,TNF-α/IL-18)were determined with Western blot/enzyme linked immunosorbent assay(ELISA).Cell permeability/reactive oxygen species(ROS)level/superoxide dismutase(SOD)activity/malondialdehyde(MDA)content were assessed by Evans blue staining/2',7'-dichlorodihydrofluorescein diacetate(DCFH-DA)fluorescent probe/SOD kit/MDA kit.RESULTS:HRMEC dysfunction was successfully induced by HG,evidenced by decreased viability(P<0.001),increased apoptosis(P<0.001),permeability(P<0.001),and inflammatory factor levels(P<0.001).Feno treatment significantly ameliorated HG-induced HRMEC dysfunction(P<0.01).Meanwhile,HG induction increased ROS production(P<0.001)and MDA content(P<0.001)in HRMECs,while reducing SOD activity(P<0.001),indicative of oxidative stress.This was,however,abolished by Feno(P<0.05).Moreover,Feno eliminated activation of NLRP3 inflammasomes(P<0.05)in HG-induced HRMECs.Strikingly,activation of NLRP3 inflammasomes partially averted the inhibition of Feno on HG-induced HRMEC dysfunction(P<0.05).CONCLUSION:Feno represses oxidative stress and NLRP3 inflammasome activation,consequently alleviating HG-induced HRMEC dysfunction.
基金supported by the TARCC,Welch Foundation Award(I-1724)the Decherd Foundationthe Pape Adams Foundation,NIH grants NS092616,NS127375,NS117065,NS111776。
文摘The mitogen-activated protein kinase kinase kinase kinases(MAP4Ks)signaling pathway plays a pivotal role in axonal regrowth and neuronal degeneration following insults.Whether targeting this pathway is beneficial to brain injury remains unclear.In this study,we showed that adeno-associated virus-delivery of the Citron homology domain of MAP4Ks effectively reduces traumatic brain injury-induced reactive gliosis,tauopathy,lesion size,and behavioral deficits.Pharmacological inhibition of MAP4Ks replicated the ameliorative effects observed with expression of the Citron homology domain.Mechanistically,the Citron homology domain acted as a dominant-negative mutant,impeding MAP4K-mediated phosphorylation of the dishevelled proteins and thereby controlling the Wnt/β-catenin pathway.These findings implicate a therapeutic potential of targeting MAP4Ks to alleviate the detrimental effects of traumatic brain injury.
基金supported by the National Natural Science Foundation of China,No.82104412(to TD)Shaanxi Provincial Key R&D Program,No.2023-YBSF-165(to TD)+1 种基金the Natural Science Foundation of Shaanxi Department of Science and Technology,No.2018JM7022(to FM)Shaanxi Provincial Key Industry Chain Project,No.2021ZDLSF04-11(to PW)。
文摘The functional and structural integrity of the blood-brain barrier is crucial in maintaining homeostasis in the brain microenvironment;however,the molecular mechanisms underlying the formation and function of the blood-brain barrier remain poorly understood.The major facilitator superfamily domain containing 2A has been identified as a key regulator of blood-brain barrier function.It plays a critical role in promoting and maintaining the formation and functional stability of the blood-brain barrier,in addition to the transport of lipids,such as docosahexaenoic acid,across the blood-brain barrier.Furthermore,an increasing number of studies have suggested that major facilitator superfamily domain containing 2A is involved in the molecular mechanisms of blood-brain barrier dysfunction in a variety of neurological diseases;however,little is known regarding the mechanisms by which major facilitator superfamily domain containing 2A affects the blood-brain barrier.This paper provides a comprehensive and systematic review of the close relationship between major facilitator superfamily domain containing 2A proteins and the blood-brain barrier,including their basic structures and functions,cross-linking between major facilitator superfamily domain containing 2A and the blood-brain barrier,and the in-depth studies on lipid transport and the regulation of blood-brain barrier permeability.This comprehensive systematic review contributes to an in-depth understanding of the important role of major facilitator superfamily domain containing 2A proteins in maintaining the structure and function of the blood-brain barrier and the research progress to date.This will not only help to elucidate the pathogenesis of neurological diseases,improve the accuracy of laboratory diagnosis,and optimize clinical treatment strategies,but it may also play an important role in prognostic monitoring.In addition,the effects of major facilitator superfamily domain containing 2A on blood-brain barrier leakage in various diseases and the research progress on cross-blood-brain barrier drug delivery are summarized.This review may contribute to the development of new approaches for the treatment of neurological diseases.
文摘Lithium-ion capacitors(LICs)combine the high power dens-ity of electrical double-layer capacitors with the high energy density of lithium-ion batteries.However,they face practical limitations due to the narrow operating voltage window of their activated carbon(AC)cathodes.We report a scalable thermal treatment strategy to develop high-voltage-tolerant AC cathodes.Through controlled thermal treatment of commer-cial activated carbon(Raw-AC)under a H_(2)/Ar atmosphere at 400-800℃,the targeted reduction of degradation-prone functional groups can be achieved while preserving the critical pore structure and increasing graph-itic microcrystalline ordering.The AC treated at 400℃(HAC-400)had a significant increase in specific capacity(96.0 vs.75.1 mAh/g at 0.05 A/g)and better rate capability(61.1 vs.36.1 mAh/g at 5 A/g)in half-cell LICs,along with an 83.5%capacity retention over 7400 cycles within an extended voltage range of 2.0-4.2 V in full-cell LICs.Scalability was demonstrated by a 120 g batch production,enabling fabrication of pouch-type LICs with commercial hard carbon anodes that delivered a higher energy density of 28.3 Wh/kg at 1 C,and a peak power density of 12.1 kW/kg compared to devices using raw AC.This simple,industry-compatible approach may be used for producing ad-vanced cathode materials for practical high-performance LICs.
基金Supported by the National Natural Science Foundation of China(12301101)the Guangdong Basic and Applied Basic Research Foundation(2022A1515110019 and 2020A1515110585)。
文摘In this paper,the Paley-Wiener theorem is extended to the analytic function spaces with general weights.We first generalize the theorem to weighted Hardy spaces Hp(0<p<∞)on tube domains by constructing a sequence of L^(1)functions converging to the given function and verifying their representation in the form of Fourier transform to establish the desired result of the given function.Applying this main result,we further generalize the Paley-Wiener theorem for band-limited functions to the analytic function spaces L^(p)(0<p<∞)with general weights.
基金National Natural Science Foundation of China (52202139, 52072178)。
文摘Pb(Zr,Ti)O_(3)-Pb(Zn_(1/3)Nb_(2/3))O_(3) (PZT-PZN) based ceramics, as important piezoelectric materials, have a wide range of applications in fields such as sensors and actuators, thus the optimization of their piezoelectric properties has been a hot research topic. This study investigated the effects of phase boundary engineering and domain engineering on (1-x)[0.8Pb(Zr_(0.5)Ti_(0.5))O_(3)-0.2Pb(Zn_(1/3)Nb_(2/3))O_(3)]-xBi(Zn_(0.5)Ti_(0.5))O_(3) ((1-x)(0.8PZT-0.2PZN)- xBZT) ceramic to obtain excellent piezoelectric properties. The crystal phase structure and microstructure of ceramic samples were characterized. The results showed that all samples had a pure perovskite structure, and the addition of BZT gradually increased the grain size. The addition of BZT caused a phase transition in ceramic samples from the morphotropic phase boundary (MPB) towards the tetragonal phase region, which is crucial for optimizing piezoelectric properties. By adjusting content of BZT and precisely controlling position of the phase boundary, the piezoelectric performance can be optimized. Domain structure is one of the key factors affecting piezoelectric performance. By using domain engineering techniques to optimize grain size and domain size, piezoelectric properties of ceramic samples have been significantly improved. Specifically, excellent piezoelectric properties (piezoelectric constant d_(33)=320 pC/N, electromechanical coupling factor kp=0.44) were obtained simultaneously for x=0.08. Based on experimental results and theoretical analysis, influence mechanisms of phase boundary engineering and domain engineering on piezoelectric properties were explored. The study shows that addition of BZT not only promotes grain growth, but also optimizes the domain structure, enabling the polarization reversal process easier, thereby improving piezoelectric properties. These research results not only provide new ideas for the design of high-performance piezoelectric ceramics, but also lay a theoretical foundation for development of related electronic devices.
基金Supported by NSFC (No.12361027)NSF of Inner Mongolia (No.2018MS01021)+1 种基金NSF of Shandong Province (No.ZR2020QA009)Science and Technology Innovation Program for Higher Education Institutions of Shanxi Province (No.2024L533)。
文摘In this paper,we give a complete characterization of all self-adjoint domains of odd order differential operators on two intervals.These two intervals with all four endpoints are singular(one endpoint of each interval is singular or all four endpoints are regulars are the special cases).And these extensions yield"new"self-adjoint operators,which involve interactions between the two intervals.
基金supported by the German Research Council(Deutsche Forschungsgemeinschaft,HA3309/3-1/2,HA3309/6-1,HA3309/7-1)。
文摘Skeletal muscles are essential for locomotion,posture,and metabolic regulation.To understand physiological processes,exercise adaptation,and muscle-related disorders,it is critical to understand the molecular pathways that underlie skeletal muscle function.The process of muscle contra ction,orchestrated by a complex interplay of molecular events,is at the core of skeletal muscle function.Muscle contraction is initiated by an action potential and neuromuscular transmission requiring a neuromuscular junction.Within muscle fibers,calcium ions play a critical role in mediating the interaction between actin and myosin filaments that generate force.Regulation of calcium release from the sarcoplasmic reticulum plays a key role in excitation-contraction coupling.The development and growth of skeletal muscle are regulated by a network of molecular pathways collectively known as myogenesis.Myogenic regulators coordinate the diffe rentiation of myoblasts into mature muscle fibers.Signaling pathways regulate muscle protein synthesis and hypertrophy in response to mechanical stimuli and nutrient availability.Seve ral muscle-related diseases,including congenital myasthenic disorders,sarcopenia,muscular dystrophies,and metabolic myopathies,are underpinned by dys regulated molecular pathways in skeletal muscle.Therapeutic interventions aimed at preserving muscle mass and function,enhancing regeneration,and improving metabolic health hold promise by targeting specific molecular pathways.Other molecular signaling pathways in skeletal muscle include the canonical Wnt signaling pathway,a critical regulator of myogenesis,muscle regeneration,and metabolic function,and the Hippo signaling pathway.In recent years,more details have been uncovered about the role of these two pathways during myogenesis and in developing and adult skeletal muscle fibers,and at the neuromuscular junction.In fact,research in the last few years now suggests that these two signaling pathways are interconnected and that they jointly control physiological and pathophysiological processes in muscle fibers.In this review,we will summarize and discuss the data on these two pathways,focusing on their concerted action next to their contribution to skeletal muscle biology.However,an in-depth discussion of the noncanonical Wnt pathway,the fibro/a dipogenic precursors,or the mechanosensory aspects of these pathways is not the focus of this review.
文摘To enable proper diagnosis of a patient,medical images must demonstrate no presence of noise and artifacts.The major hurdle lies in acquiring these images in such a manner that extraneous variables,causing distortions in the form of noise and artifacts,are kept to a bare minimum.The unexpected change realized during the acquisition process specifically attacks the integrity of the image’s quality,while indirectly attacking the effectiveness of the diagnostic process.It is thus crucial that this is attended to with maximum efficiency at the level of pertinent expertise.The solution to these challenges presents a complex dilemma at the acquisition stage,where image processing techniques must be adopted.The necessity of this mandatory image pre-processing step underpins the implementation of traditional state-of-the-art methods to create functional and robust denoising or recovery devices.This article hereby provides an extensive systematic review of the above techniques,with the purpose of presenting a systematic evaluation of their effect on medical images under three different distributions of noise,i.e.,Gaussian,Poisson,and Rician.A thorough analysis of these methods is conducted using eight evaluation parameters to highlight the unique features of each method.The covered denoising methods are essential in actual clinical scenarios where the preservation of anatomical details is crucial for accurate and safe diagnosis,such as tumor detection in MRI and vascular imaging in CT.
基金the Medical Ethics Committee of the Hefei Cancer Hospital,Chinese Academy of Sciences(No.PJ-KY-2024-025).
文摘BACKGROUND A significant proportion of cancer patients experience autonomic dysfunction,and cancer treatments such as chemotherapy and radiation therapy can exacerbate impairments in the cardiac autonomic nervous system.This study sought to investigate the characteristics of heart rate variability(HRV)in individuals with cancer.AIM To evaluate the relationship between HRV and cancer patients,providing insights and references for cancer treatment.METHODS The study included 127 cancer patients with available 24-hour dynamic electrocardiogram data.HRV differences were analyzed using both time domain and frequency domain methods.These findings were then compared to HRV data from reference individuals,sourced from literature that utilized the same HRV computing algorithm.RESULTS Our findings revealed that cancer patients generally exhibited abnormal HRV compared to the reference group.HRV was found to be correlated with age and clinical type(P<0.05),but no significant correlation was observed with tumor site or gender(P>0.05).CONCLUSION This study indicates that cancer patients have significantly abnormal HRV compared to reference individuals,suggesting the presence of a certain level of cardiac autonomic dysfunction in this patient population.
基金the Deanship of Scientific Research at King Khalid University for funding this work through large group under grant number(GRP.2/663/46).
文摘Domain Generation Algorithms(DGAs)continue to pose a significant threat inmodernmalware infrastructures by enabling resilient and evasive communication with Command and Control(C&C)servers.Traditional detection methods-rooted in statistical heuristics,feature engineering,and shallow machine learning-struggle to adapt to the increasing sophistication,linguistic mimicry,and adversarial variability of DGA variants.The emergence of Large Language Models(LLMs)marks a transformative shift in this landscape.Leveraging deep contextual understanding,semantic generalization,and few-shot learning capabilities,LLMs such as BERT,GPT,and T5 have shown promising results in detecting both character-based and dictionary-based DGAs,including previously unseen(zeroday)variants.This paper provides a comprehensive and critical review of LLM-driven DGA detection,introducing a structured taxonomy of LLM architectures,evaluating the linguistic and behavioral properties of benchmark datasets,and comparing recent detection frameworks across accuracy,latency,robustness,and multilingual performance.We also highlight key limitations,including challenges in adversarial resilience,model interpretability,deployment scalability,and privacy risks.To address these gaps,we present a forward-looking research roadmap encompassing adversarial training,model compression,cross-lingual benchmarking,and real-time integration with SIEM/SOAR platforms.This survey aims to serve as a foundational resource for advancing the development of scalable,explainable,and operationally viable LLM-based DGA detection systems.
基金supported by the State Grid Shandong Electric Power Company Project(Grant Number SGSDJX00BDJS2400388).
文摘As a core component of power systems, the operational status of transformers directly affects grid stability. To address the problem of “domain shift” in cross-domain fault diagnosis, this paper proposes a memory-enhanced dual-stream network (MemFuse-DSN). The method reconstructs the feature space by selecting and enhancing multi-source domain samples based on similarity metrics. An adaptive weighted dual-stream architecture is designed, integrating gradient reversal and orthogonality constraints to achieve efficient feature alignment. In addition, a novel dual dynamic memory module is introduced: the task memory bank is used to store high-confidence class prototype information, and adopts an exponential moving average (EMA) strategy to ensure the smooth evolution of prototypes over time;the domain memory bank is periodically updated and clusters potential noisy features, dynamically tracking domain shift trends, thereby optimizing the decoupled feature learning process. Experimental validation was conducted on a ±110 kV transformer vibration testing platform using typical fault types including winding looseness, core looseness, and compound faults. The results show that the proposed method achieves a fault diagnosis accuracy of 99.2%, providing a highly generalizable solution for the intelligent operation and maintenance of power equipment.
文摘To address the sensitive and uncertain limitations of single-energy computed tomography(CT)calibration methods in computing proton stopping power ratio during treatment planning,different methods have been proposed using a dual energy CT approach.This paper reviews the most recent dual-energy CT approaches for computing proton stopping power ratio.These include image domain and projection domain methods.The advantages and uncertainties of these methods are analyzed based on existing studies.This paper highlights recent advances in dual energy CT,discussing their implementation,advantages,limitations,and potential for clinical adoption.
基金supported by the National Natural Science Foundation of China(32471354 to T.C.and 82260400 to J.L)Natural Science Foundation of Hainan Province(No.822RC703 to J.L)。
文摘Discoidin domain receptors(DDRs)are single-pass transmembrane proteins belonging to receptor tyrosine kinases(RTKs)family,which are activated by collagen ligands with unusual slow,sustained kinetics,distinguishing them from canonical RTKs.While DDRs play critical roles in cell adhesion,differentiation,and cancer progression,their activation mechanisms remain partly understood.Here,we investigated the transmembrane domains(TMDs)of DDR1 and DDR2 to elucidate their interaction dynamics in membrane.Using bacterial adenylate cyclase two-hybrid(BACTH)assays,we demonstrated robust homotypic interactions and even stronger heterotypic associations between DDRTMDs.NMR spectroscopy of DDR1TMD and DDR2TMD reconstituted in lipid bilayer-mimetic bicelles showed obvious chemical shift alterations,further validating the stability of their heterocomplex formation.Systematic mutagenesis identified leucine zipper motifs rather than GXXXA motifs mediated both homo-and hetero-associations of DDR1TMD and DDR2TMD.These findings demonstrated the TMD as a critical mediator of DDRs oligomerization and revealed their interaction patterns within membrane.Our study advances the understanding of DDR signaling regulation and highlights transmembrane domain interactions as potential targets for modulating DDR-related pathologies.
基金Project supported by the National Key Research and Development Program of China(2021YFB3502803)The"Pioneer"and"Leading Goose"R&D program of Zhejiang(2022C01020)+3 种基金Science and Technology Program of Zhejiang Province(2024C01145)The Key Research and Development Program of Ningbo City(2023Z093)Kunpeng Plan of Zhejiang ProvinceNingbo Top Talent Program。
文摘Obtaining high magnetic properties in high Ce-content magnets is essential to expand the widespread application of low-cost magnets.In this study,high Ce-content magnets with up to 45%Ce substitution for Nd were prepared by combining the single/dual/multi-main-phase processes with the Dy-containing grain boundary diffusion process(GBDP).The effects of base magnets with different Ce distributions on GBDP were systematically investigated.Magnetic properties and micro structure analysis reveal that high-performance multi-main-phase(MMP)diffused magnets with remanence(Br)up to 12.52 kGs,coercivity up to 16.08 kOe,and maximum magnetic energy product up to 36.44 MGOe are obtained,which is attributed to the regulation of Ce by the MMP process,and the optimization of microstructure by Gd-Cu alloy.Meanwhile,the diffusion efficiency is significantly improved because of Ce being restricted to the grain core,which promotes the formation of a continuous structure at the grain boundaries,and the formation of a continuous multilayer shell grain structure with high anisotropy field,while the Br of the diffused magnet is maintained.Besides,magnetic domain analysis shows that the MMP diffused magnet effectively suppresses the nucleation of demagnetized domains and enhances the pinning effect of domain walls.The study establishes an experimental foundation for the development of sintered high Ce-content magnets showcasing superior performance.