The utilization of self-assembled monolayers(SAMs)has significantly elevated the power conversion efficiency(PCE)of inverted perovskite solar cells(PSCs).However,the inherent hydrophobicity of these SAMs poses challen...The utilization of self-assembled monolayers(SAMs)has significantly elevated the power conversion efficiency(PCE)of inverted perovskite solar cells(PSCs).However,the inherent hydrophobicity of these SAMs poses challenges in the subsequent printing of perovskite films in PSC upscaling.In this work,we incorporated a multifunctional additive,dimethyl suberimidate dihydrochloride(DMSCl_(2)),into the perovskite precursor to enhance the quality of the blade-coated perovskite film on the SAM interlayer.Characterizations revealed that the function groups of the imino(N-H)and methoxy(CH_(3)O-)DMSCl_(2) facilitate both bonding between perovskite precursor and SAM molecule(Me-4PACz),which facilitates the large-area printing of perovskite film.These interactions also provide effective passivation within the perovskite films and interface defects of PSCs.As a result,a significantly enhanced PCE from 16.62% to 20.37% was obtained for the printed perovskite solar module(93.10 cm^(2))and 25.27% for the small device(0.09 cm^(2)).Remarkable stability was achieved with 93.3% of their initial PCE after 1000 h of continuous maximum power point(MPP)tracking.This report suggests that multifunctional additive doping provides a convenient route for the upscaling of perovskite solar cells with SAM interlayers.展开更多
Highly efficient organic solar cells(OSCs)are normally produced using the halogenated solvents chloroform or chlorobenzene,which present challenges for scalable manufacturing due to their toxicity,narrow processing wi...Highly efficient organic solar cells(OSCs)are normally produced using the halogenated solvents chloroform or chlorobenzene,which present challenges for scalable manufacturing due to their toxicity,narrow processing window and low boiling point.Herein,we develop a novel high-speed doctor-blading technique that significantly reduces the required concentration,facilitating the use of eco-friendly,non-halogenated solvents as alternatives to chloroform or chlorobenzene.By utilizing two widely used high-boiling,non-halogenated green solvents-o-xylene(o-XY)and toluene(Tol)-in the fabrication of PM 6:L 8-BO,we achieve power conversion efficiencies(PCEs)of 18.20%and 17.36%,respectively.Additionally,a module fabricated with o-XY demonstrates a notable PCE of 16.07%.In-situ testing and morphological analysis reveal that the o-XY coating process extends the liquid-to-solid transition stage to 6 s,significantly longer than the 1.7 s observed with Tol processing.This prolonged transition phase is crucial for improving the crystallinity of the thin film,reducing defect-mediated recombination,and enhancing carrier mobility,which collectively contribute to superior PCEs.展开更多
With the rapid rise in perovskite solar cells(PSCs)performance,it is imperative to develop scalable fabrication techniques to accelerate potential commercialization.However,the power conversion efficiencies(PCEs)of PS...With the rapid rise in perovskite solar cells(PSCs)performance,it is imperative to develop scalable fabrication techniques to accelerate potential commercialization.However,the power conversion efficiencies(PCEs)of PSCs fabricated via scalable two-step sequential deposition lag far behind the state-of-the-art spin-coated ones.Herein,the additive methylammonium chloride(MACl)is introduced to modulate the crystallization and orientation of a two-step sequential doctorbladed perovskite film in ambient conditions.MACl can significantly improve perovskite film quality and increase grain size and crystallinity,thus decreasing trap density and suppressing nonradiative recombination.Meanwhile,MACl also promotes the preferred face-up orientation of the(100)plane of perovskite film,which is more conducive to the transport and collection of carriers,thereby significantly improving the fill factor.As a result,a champion PCE of 23.14%and excellent longterm stability are achieved for PSCs based on the structure of ITO/SnO_(2)/FA_(1-x)MA_xPb(I_(1-y)Br_y)_3/Spiro-OMeTAD/Ag.The superior PCEs of 21.20%and 17.54%are achieved for 1.03 cm~2 PSC and 10.93 cm~2 mini-module,respectively.These results represent substantial progress in large-scale two-step sequential deposition of high-performance PSCs for practical applications.展开更多
The doctor-blade method is investigated for the preparation of Cu2ZnSnS4 films for low-cost solar cell application. Cu2ZnSnS4 precursor powder, the main raw material for the doctor-blade paste, is synthesized by a sim...The doctor-blade method is investigated for the preparation of Cu2ZnSnS4 films for low-cost solar cell application. Cu2ZnSnS4 precursor powder, the main raw material for the doctor-blade paste, is synthesized by a simple ball-milling process. The doctor-bladed Cu2ZnSnS4 films are annealed in N2 ambient under various conditions and characterized by X-ray diffraction, ultraviolent/vis spectrophotometry, scanning electron microscopy, and current-voltage (J-V) meansurement. Our experimental results indicate that (i) the X-ray diffraction peaks of the Cu2ZnSnS4 precursor powder each show a red shift of about 0.4°; (ii) the high-temperature annealing process can effectively improve the crystallinity of the doctor-bladed Cu2ZnSnS4, whereas an overlong annealing introduces defects; (iii) the band gap value of the doctor-bladed Cu2ZnSnS4 is around 1.41 eV; (iv) the short-circuit current density, the open-circuit voltage, the fill factor, and the efficiency of the best Cu2ZnSnS4 solar cell obtained with the superstrate structure of fluorine-doped tin oxide glass/TiO2/In2S3/Cu2ZnSnS4/Mo are 7.82 mA/cm2, 240 mV, 0.29, and 0.55%, respectively.展开更多
An organic-inorganic hybrid cathode interfacial layer(CIL) was developed by doping ZnO with the naphthalene-diimide based derivative NDI-PFNBr. It was found the resulting organic-inorganic hybrid CIL showed apparently...An organic-inorganic hybrid cathode interfacial layer(CIL) was developed by doping ZnO with the naphthalene-diimide based derivative NDI-PFNBr. It was found the resulting organic-inorganic hybrid CIL showed apparently improved conductivity and could act as an effective cathode interlayer to modify indium tin oxide(ITO) transparent electrodes. As a result, by employing the blend of PTB7-Th:PC71BM as the photoactive layer, the inverted polymer solar cells(PSCs) exhibited a remarkable enhancement of power conversion efficiency(PCE) from 8.52% for the control device to 10.04% for the device fabricated with the hybrid CIL. Moreover, all device parameters were simultaneously improved by using this hybrid CIL. The improved open-circuit voltage(VOC) was attributed to the reduced work function of the ITO cathode, whereas the enhancements in fill factor(FF) and short-circuit current density(JSC) were assigned to the increased conductivity and more effective charge extraction and collection at interface. Encouragingly, when the thickness of the hybrid CIL was increased to 80 nm, the resulting device could still keep a PCE of 8.81%, exhibiting less thickness dependence. Considering these advantages, 16 and 93 cm2large-area PSCs modules were successfully fabricated from the hybrid CIL by using doctor-blade coating techniques and yielded a remarkable PCE of8.05% and 4.49%, respectively. These results indicated that the hybrid CIL could be a promising candidate to serve as the cathode interlayer for high-performance large-area inverted PSCs.展开更多
基金financially supported by the Guangdong Pearl River Talent Program(2021ZT09L400)the National Natural Science Foundation of China(52302195,52072284)+1 种基金the Joint Funds of Natural Science Foundation of Hubei Province(2022CFD087)the Scientific Research and Technology Development Project of China National Petroleum Corporation(Grant Nos.2024ZG50)。
文摘The utilization of self-assembled monolayers(SAMs)has significantly elevated the power conversion efficiency(PCE)of inverted perovskite solar cells(PSCs).However,the inherent hydrophobicity of these SAMs poses challenges in the subsequent printing of perovskite films in PSC upscaling.In this work,we incorporated a multifunctional additive,dimethyl suberimidate dihydrochloride(DMSCl_(2)),into the perovskite precursor to enhance the quality of the blade-coated perovskite film on the SAM interlayer.Characterizations revealed that the function groups of the imino(N-H)and methoxy(CH_(3)O-)DMSCl_(2) facilitate both bonding between perovskite precursor and SAM molecule(Me-4PACz),which facilitates the large-area printing of perovskite film.These interactions also provide effective passivation within the perovskite films and interface defects of PSCs.As a result,a significantly enhanced PCE from 16.62% to 20.37% was obtained for the printed perovskite solar module(93.10 cm^(2))and 25.27% for the small device(0.09 cm^(2)).Remarkable stability was achieved with 93.3% of their initial PCE after 1000 h of continuous maximum power point(MPP)tracking.This report suggests that multifunctional additive doping provides a convenient route for the upscaling of perovskite solar cells with SAM interlayers.
基金Project(2022YFB3803300)supported by the National Key Research and Development Program of ChinaProjects(U23A20138,52173192)supported by the National Natural Science Foundation of China+1 种基金Project(GZC20233148)supported by the Postdoctoral Fellowship Program of CPSF,ChinaProject(140050043)supported by the Central South University Postdoctoral Research Funding,China。
文摘Highly efficient organic solar cells(OSCs)are normally produced using the halogenated solvents chloroform or chlorobenzene,which present challenges for scalable manufacturing due to their toxicity,narrow processing window and low boiling point.Herein,we develop a novel high-speed doctor-blading technique that significantly reduces the required concentration,facilitating the use of eco-friendly,non-halogenated solvents as alternatives to chloroform or chlorobenzene.By utilizing two widely used high-boiling,non-halogenated green solvents-o-xylene(o-XY)and toluene(Tol)-in the fabrication of PM 6:L 8-BO,we achieve power conversion efficiencies(PCEs)of 18.20%and 17.36%,respectively.Additionally,a module fabricated with o-XY demonstrates a notable PCE of 16.07%.In-situ testing and morphological analysis reveal that the o-XY coating process extends the liquid-to-solid transition stage to 6 s,significantly longer than the 1.7 s observed with Tol processing.This prolonged transition phase is crucial for improving the crystallinity of the thin film,reducing defect-mediated recombination,and enhancing carrier mobility,which collectively contribute to superior PCEs.
基金supported by the National Key Research and Development Program of China(2022YFB3803300)the National Natural Science Foundation of China(51673214)the State Key Laboratory of Powder Metallurgy,Central South University,China。
文摘With the rapid rise in perovskite solar cells(PSCs)performance,it is imperative to develop scalable fabrication techniques to accelerate potential commercialization.However,the power conversion efficiencies(PCEs)of PSCs fabricated via scalable two-step sequential deposition lag far behind the state-of-the-art spin-coated ones.Herein,the additive methylammonium chloride(MACl)is introduced to modulate the crystallization and orientation of a two-step sequential doctorbladed perovskite film in ambient conditions.MACl can significantly improve perovskite film quality and increase grain size and crystallinity,thus decreasing trap density and suppressing nonradiative recombination.Meanwhile,MACl also promotes the preferred face-up orientation of the(100)plane of perovskite film,which is more conducive to the transport and collection of carriers,thereby significantly improving the fill factor.As a result,a champion PCE of 23.14%and excellent longterm stability are achieved for PSCs based on the structure of ITO/SnO_(2)/FA_(1-x)MA_xPb(I_(1-y)Br_y)_3/Spiro-OMeTAD/Ag.The superior PCEs of 21.20%and 17.54%are achieved for 1.03 cm~2 PSC and 10.93 cm~2 mini-module,respectively.These results represent substantial progress in large-scale two-step sequential deposition of high-performance PSCs for practical applications.
文摘The doctor-blade method is investigated for the preparation of Cu2ZnSnS4 films for low-cost solar cell application. Cu2ZnSnS4 precursor powder, the main raw material for the doctor-blade paste, is synthesized by a simple ball-milling process. The doctor-bladed Cu2ZnSnS4 films are annealed in N2 ambient under various conditions and characterized by X-ray diffraction, ultraviolent/vis spectrophotometry, scanning electron microscopy, and current-voltage (J-V) meansurement. Our experimental results indicate that (i) the X-ray diffraction peaks of the Cu2ZnSnS4 precursor powder each show a red shift of about 0.4°; (ii) the high-temperature annealing process can effectively improve the crystallinity of the doctor-bladed Cu2ZnSnS4, whereas an overlong annealing introduces defects; (iii) the band gap value of the doctor-bladed Cu2ZnSnS4 is around 1.41 eV; (iv) the short-circuit current density, the open-circuit voltage, the fill factor, and the efficiency of the best Cu2ZnSnS4 solar cell obtained with the superstrate structure of fluorine-doped tin oxide glass/TiO2/In2S3/Cu2ZnSnS4/Mo are 7.82 mA/cm2, 240 mV, 0.29, and 0.55%, respectively.
基金supported by the Ministry of Science and Technology(2014CB643501)the National Natural Science Foundation of China(91633301,21520102006,51521002,51603070)
文摘An organic-inorganic hybrid cathode interfacial layer(CIL) was developed by doping ZnO with the naphthalene-diimide based derivative NDI-PFNBr. It was found the resulting organic-inorganic hybrid CIL showed apparently improved conductivity and could act as an effective cathode interlayer to modify indium tin oxide(ITO) transparent electrodes. As a result, by employing the blend of PTB7-Th:PC71BM as the photoactive layer, the inverted polymer solar cells(PSCs) exhibited a remarkable enhancement of power conversion efficiency(PCE) from 8.52% for the control device to 10.04% for the device fabricated with the hybrid CIL. Moreover, all device parameters were simultaneously improved by using this hybrid CIL. The improved open-circuit voltage(VOC) was attributed to the reduced work function of the ITO cathode, whereas the enhancements in fill factor(FF) and short-circuit current density(JSC) were assigned to the increased conductivity and more effective charge extraction and collection at interface. Encouragingly, when the thickness of the hybrid CIL was increased to 80 nm, the resulting device could still keep a PCE of 8.81%, exhibiting less thickness dependence. Considering these advantages, 16 and 93 cm2large-area PSCs modules were successfully fabricated from the hybrid CIL by using doctor-blade coating techniques and yielded a remarkable PCE of8.05% and 4.49%, respectively. These results indicated that the hybrid CIL could be a promising candidate to serve as the cathode interlayer for high-performance large-area inverted PSCs.