The rapid advancement of the Internet ofThings(IoT)has heightened the importance of security,with a notable increase in Distributed Denial-of-Service(DDoS)attacks targeting IoT devices.Network security specialists fac...The rapid advancement of the Internet ofThings(IoT)has heightened the importance of security,with a notable increase in Distributed Denial-of-Service(DDoS)attacks targeting IoT devices.Network security specialists face the challenge of producing systems to identify and offset these attacks.This researchmanages IoT security through the emerging Software-Defined Networking(SDN)standard by developing a unified framework(RNN-RYU).We thoroughly assess multiple deep learning frameworks,including Convolutional Neural Network(CNN),Long Short-Term Memory(LSTM),Feed-Forward Convolutional Neural Network(FFCNN),and Recurrent Neural Network(RNN),and present the novel usage of Synthetic Minority Over-Sampling Technique(SMOTE)tailored for IoT-SDN contexts to manage class imbalance during training and enhance performance metrics.Our research has significant practical implications as we authenticate the approache using both the self-generated SD_IoT_Smart_City dataset and the publicly available CICIoT23 dataset.The system utilizes only eleven features to identify DDoS attacks efficiently.Results indicate that the RNN can reliably and precisely differentiate between DDoS traffic and benign traffic by easily identifying temporal relationships and sequences in the data.展开更多
As cyber threats become increasingly sophisticated,Distributed Denial-of-Service(DDoS)attacks continue to pose a serious threat to network infrastructure,often disrupting critical services through overwhelming traffic...As cyber threats become increasingly sophisticated,Distributed Denial-of-Service(DDoS)attacks continue to pose a serious threat to network infrastructure,often disrupting critical services through overwhelming traffic.Although unsupervised anomaly detection using convolutional autoencoders(CAEs)has gained attention for its ability to model normal network behavior without requiring labeled data,conventional CAEs struggle to effectively distinguish between normal and attack traffic due to over-generalized reconstructions and naive anomaly scoring.To address these limitations,we propose CA-CAE,a novel anomaly detection framework designed to improve DDoS detection through asymmetric joint reconstruction learning and refined anomaly scoring.Our architecture connects two CAEs sequentially with asymmetric filter allocation,which amplifies reconstruction errors for anomalous data while preserving low errors for normal traffic.Additionally,we introduce a scoring mechanism that incorporates exponential decay weighting to emphasize recent anomalies and relative traffic volume adjustment to highlight highrisk instances,enabling more accurate and timely detection.We evaluate CA-CAE on a real-world network traffic dataset collected using Cisco NetFlow,containing over 190,000 normal instances and only 78 anomalous instances—an extremely imbalanced scenario(0.0004% anomalies).We validate the proposed framework through extensive experiments,including statistical tests and comparisons with baseline models.Despite this challenge,our method achieves significant improvement,increasing the F1-score from 0.515 obtained by the baseline CAE to 0.934,and outperforming other models.These results demonstrate the effectiveness,scalability,and practicality of CA-CAE for unsupervised DDoS detection in realistic network environments.By combining lightweight model architecture with a domain-aware scoring strategy,our framework provides a robust solution for early detection of DDoS attacks without relying on labeled attack data.展开更多
Vehicular Ad Hoc Networks(VANETs)are central to Intelligent Transportation Systems(ITS),especially for real-time communication involving emergency vehicles.Yet,Distributed Denial of Service(DDoS)attacks can disrupt sa...Vehicular Ad Hoc Networks(VANETs)are central to Intelligent Transportation Systems(ITS),especially for real-time communication involving emergency vehicles.Yet,Distributed Denial of Service(DDoS)attacks can disrupt safety-critical channels and undermine reliability.This paper presents a robust,scalable framework for detecting DDoS attacks in highway VANETs.We construct a new dataset with Network Simulator 3(NS-3)and Simulation of Urban Mobility(SUMO),enriched with real mobility traces from Germany’s A81 highway(OpenStreetMap).Three traffic classes are modeled:DDoS,Voice over IP(VoIP),and Transmission Control Protocol Based(TCP-based)video streaming(VideoTCP).The pipeline includes normalization,feature selection with SHapley Additive exPlanations(SHAP),and class balancing via Synthetic Minority Over-sampling Technique(SMOTE).Eleven classifiers are benchmarked—including eXtreme Gradient Boosting(XGBoost),Categorical Boosting(CatBoost),Adaptive Boosting(AdaBoost),Gradient Boosting(GB),and an Artificial Neural Network(ANN)—using stratified 5-fold cross-validation.XGBoost,GB,CatBoost and ANN achieve the highest performance(weighted F1-score=97%).To assess robustness under non-ideal conditions,we introduce an adversarial evaluation with packet-loss and traffic-jitter(small-sample deformation);the top models retain strong performance,supporting real-time applicability.Collectively,these results demonstrate that the proposed highway-focused framework is accurate,resilient,and well-suited for deployment in VANET security for emergency communications.展开更多
[目的]DDoS攻击作为一种破坏性极强的网络威胁,严重影响电力系统的稳定运行。由于电力监控局域网中的数据流量复杂多变,DDoS攻击流量与正常流量在表现形式上存在较高相似性,导致二者难以有效区分。传统的静态阈值方法虽能在一定程度上...[目的]DDoS攻击作为一种破坏性极强的网络威胁,严重影响电力系统的稳定运行。由于电力监控局域网中的数据流量复杂多变,DDoS攻击流量与正常流量在表现形式上存在较高相似性,导致二者难以有效区分。传统的静态阈值方法虽能在一定程度上实现流量监测,但因无法适应流量的动态变化,常出现误判,从而削弱了对DDoS攻击的检测效果,难以为电力监控局域网提供可靠的安全保障。为此,提出一种基于动态阈值的电力监控局域网DDoS攻击检测方法。[方法]通过网络流量采集设备实时获取电力监控局域网的流量数据,并利用信息熵理论计算流量熵值。信息熵可反映数据的混乱程度:正常流量通常具有一定规律性,熵值相对稳定;而DDoS攻击流量因异常数据包的大量涌入,导致熵值显著波动。基于此特性,本文设定动态阈值,当流量熵值超过阈值时判定为异常流量。随后,提取异常流量的六元组特征集(包括平均流包数、平均字节数、源IP地址增速、流表生存时间变化、端口增速以及对流比),并将其输入预训练的最小二乘支持向量机(least squares support vector machine,LSSVM)分类器中。LSSVM通过对已知样本的学习建立特征与类别的映射关系,从而实现对异常流量的分类与判断,确定其是否为DDoS攻击流量。[结果]实验结果表明,本文方法在ROC曲线和PR曲线上均表现较好,ROC-AUC和PR-AUC值均较传统方法有所提高。这表明该方法在检测DDoS攻击时具备更高的准确率与召回率,能够有效识别隐藏于正常流量中的攻击流量,并显著降低误判率。[结论]基于动态阈值与LSSVM分类器的检测方法能够有效应对电力监控局域网中DDoS攻击与正常流量难以区分的问题,提升检测的准确性与可靠性,为电力监控局域网提供更为有效的DDoS攻击防护手段,有助于增强电力系统的安全性与稳定性,保障电力供应的可靠运行,对电力行业网络安全防护具有重要的实际应用价值。展开更多
基金supported by NSTC 113-2221-E-155-055NSTC 113-2222-E-155-007,Taiwan.
文摘The rapid advancement of the Internet ofThings(IoT)has heightened the importance of security,with a notable increase in Distributed Denial-of-Service(DDoS)attacks targeting IoT devices.Network security specialists face the challenge of producing systems to identify and offset these attacks.This researchmanages IoT security through the emerging Software-Defined Networking(SDN)standard by developing a unified framework(RNN-RYU).We thoroughly assess multiple deep learning frameworks,including Convolutional Neural Network(CNN),Long Short-Term Memory(LSTM),Feed-Forward Convolutional Neural Network(FFCNN),and Recurrent Neural Network(RNN),and present the novel usage of Synthetic Minority Over-Sampling Technique(SMOTE)tailored for IoT-SDN contexts to manage class imbalance during training and enhance performance metrics.Our research has significant practical implications as we authenticate the approache using both the self-generated SD_IoT_Smart_City dataset and the publicly available CICIoT23 dataset.The system utilizes only eleven features to identify DDoS attacks efficiently.Results indicate that the RNN can reliably and precisely differentiate between DDoS traffic and benign traffic by easily identifying temporal relationships and sequences in the data.
基金supported by Korea National University of Transportation Industry-Academy Cooperation Foundation in 2024.
文摘As cyber threats become increasingly sophisticated,Distributed Denial-of-Service(DDoS)attacks continue to pose a serious threat to network infrastructure,often disrupting critical services through overwhelming traffic.Although unsupervised anomaly detection using convolutional autoencoders(CAEs)has gained attention for its ability to model normal network behavior without requiring labeled data,conventional CAEs struggle to effectively distinguish between normal and attack traffic due to over-generalized reconstructions and naive anomaly scoring.To address these limitations,we propose CA-CAE,a novel anomaly detection framework designed to improve DDoS detection through asymmetric joint reconstruction learning and refined anomaly scoring.Our architecture connects two CAEs sequentially with asymmetric filter allocation,which amplifies reconstruction errors for anomalous data while preserving low errors for normal traffic.Additionally,we introduce a scoring mechanism that incorporates exponential decay weighting to emphasize recent anomalies and relative traffic volume adjustment to highlight highrisk instances,enabling more accurate and timely detection.We evaluate CA-CAE on a real-world network traffic dataset collected using Cisco NetFlow,containing over 190,000 normal instances and only 78 anomalous instances—an extremely imbalanced scenario(0.0004% anomalies).We validate the proposed framework through extensive experiments,including statistical tests and comparisons with baseline models.Despite this challenge,our method achieves significant improvement,increasing the F1-score from 0.515 obtained by the baseline CAE to 0.934,and outperforming other models.These results demonstrate the effectiveness,scalability,and practicality of CA-CAE for unsupervised DDoS detection in realistic network environments.By combining lightweight model architecture with a domain-aware scoring strategy,our framework provides a robust solution for early detection of DDoS attacks without relying on labeled attack data.
文摘Vehicular Ad Hoc Networks(VANETs)are central to Intelligent Transportation Systems(ITS),especially for real-time communication involving emergency vehicles.Yet,Distributed Denial of Service(DDoS)attacks can disrupt safety-critical channels and undermine reliability.This paper presents a robust,scalable framework for detecting DDoS attacks in highway VANETs.We construct a new dataset with Network Simulator 3(NS-3)and Simulation of Urban Mobility(SUMO),enriched with real mobility traces from Germany’s A81 highway(OpenStreetMap).Three traffic classes are modeled:DDoS,Voice over IP(VoIP),and Transmission Control Protocol Based(TCP-based)video streaming(VideoTCP).The pipeline includes normalization,feature selection with SHapley Additive exPlanations(SHAP),and class balancing via Synthetic Minority Over-sampling Technique(SMOTE).Eleven classifiers are benchmarked—including eXtreme Gradient Boosting(XGBoost),Categorical Boosting(CatBoost),Adaptive Boosting(AdaBoost),Gradient Boosting(GB),and an Artificial Neural Network(ANN)—using stratified 5-fold cross-validation.XGBoost,GB,CatBoost and ANN achieve the highest performance(weighted F1-score=97%).To assess robustness under non-ideal conditions,we introduce an adversarial evaluation with packet-loss and traffic-jitter(small-sample deformation);the top models retain strong performance,supporting real-time applicability.Collectively,these results demonstrate that the proposed highway-focused framework is accurate,resilient,and well-suited for deployment in VANET security for emergency communications.
文摘[目的]DDoS攻击作为一种破坏性极强的网络威胁,严重影响电力系统的稳定运行。由于电力监控局域网中的数据流量复杂多变,DDoS攻击流量与正常流量在表现形式上存在较高相似性,导致二者难以有效区分。传统的静态阈值方法虽能在一定程度上实现流量监测,但因无法适应流量的动态变化,常出现误判,从而削弱了对DDoS攻击的检测效果,难以为电力监控局域网提供可靠的安全保障。为此,提出一种基于动态阈值的电力监控局域网DDoS攻击检测方法。[方法]通过网络流量采集设备实时获取电力监控局域网的流量数据,并利用信息熵理论计算流量熵值。信息熵可反映数据的混乱程度:正常流量通常具有一定规律性,熵值相对稳定;而DDoS攻击流量因异常数据包的大量涌入,导致熵值显著波动。基于此特性,本文设定动态阈值,当流量熵值超过阈值时判定为异常流量。随后,提取异常流量的六元组特征集(包括平均流包数、平均字节数、源IP地址增速、流表生存时间变化、端口增速以及对流比),并将其输入预训练的最小二乘支持向量机(least squares support vector machine,LSSVM)分类器中。LSSVM通过对已知样本的学习建立特征与类别的映射关系,从而实现对异常流量的分类与判断,确定其是否为DDoS攻击流量。[结果]实验结果表明,本文方法在ROC曲线和PR曲线上均表现较好,ROC-AUC和PR-AUC值均较传统方法有所提高。这表明该方法在检测DDoS攻击时具备更高的准确率与召回率,能够有效识别隐藏于正常流量中的攻击流量,并显著降低误判率。[结论]基于动态阈值与LSSVM分类器的检测方法能够有效应对电力监控局域网中DDoS攻击与正常流量难以区分的问题,提升检测的准确性与可靠性,为电力监控局域网提供更为有效的DDoS攻击防护手段,有助于增强电力系统的安全性与稳定性,保障电力供应的可靠运行,对电力行业网络安全防护具有重要的实际应用价值。