期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
DC Disturbance Classification Method Based on Compressed Sensing and Encoder
1
作者 Huanan Yu Xiang Zhang Jian Wang 《Energy Engineering》 2025年第12期5055-5071,共17页
Recent advances in AC/DC hybrid power distribution systems have enhanced convenience in daily life.However,DC distribution introduces significant power quality challenges.To address the identification and classificati... Recent advances in AC/DC hybrid power distribution systems have enhanced convenience in daily life.However,DC distribution introduces significant power quality challenges.To address the identification and classification of DC power quality disturbances,this paper proposes a novel methodology integrating Compressed Sensing(CS)with an enhanced Stacked Denoising Autoencoder(SDAE).The proposed approach first employs MATLAB/SIMULINK to model the DC distribution network and generate DC power quality disturbance signals.The measured original signals are then reconstructed using the compressive sensing-based generalized orthogonal matching pursuit(GOMP)algorithm to obtain sparse vectors as the final dataset.Subsequently,a Stacked Denoising Autoencoder model is constructed.The Root Mean Square Propagation(RMSprop)optimization algorithm is introduced to finetune network parameters,thereby reducing the probability of convergence to local optima.Finally,simulation analyses are conducted on five common types of DC power quality disturbance signals.Both raw signals and sparse vectors are utilized as datasets and fed into the encoder model.The results indicate that this method effectively reduces the feature dimensionality for DC power quality disturbance classification while improving both recognition efficiency and accuracy,with additional advantages in noise resistance. 展开更多
关键词 DC power quality disturbance classification compressed sensing sparse vector encoder
在线阅读 下载PDF
Power quality disturbance classification based on time-frequency domain multi-feature and decision tree 被引量:25
2
作者 Wenjing Zhao Liqun Shang Jinfan Sun 《Protection and Control of Modern Power Systems》 2019年第1期349-354,共6页
Accurate classification of power quality disturbance is the premise and basis for improving and governing power quality. A method for power quality disturbance classification based on time-frequency domain multi-featu... Accurate classification of power quality disturbance is the premise and basis for improving and governing power quality. A method for power quality disturbance classification based on time-frequency domain multi-feature and decision tree is presented. Wavelet transform and S-transform are used to extract the feature quantity of each power quality disturbance signal, and a decision tree with classification rules is then constructed for classification and recognition based on the extracted feature quantity. The classification rules and decision tree classifier are established by combining the energy spectrum feature quantity extracted by wavelet transform and other seven time-frequency domain feature quantities extracted by S-transform. Simulation results show that the proposed method can effectively identify six types of common single disturbance signals and two mixed disturbance signals, with fast classification speed and adequate noise resistance. Its classification accuracy is also higher than those of support vector machine (SVM) and k-nearest neighbor (KNN) algorithms. Compared with the method that only uses S-transform, the proposed feature extraction method has more abundant features and higher classification accuracy for power quality disturbance. 展开更多
关键词 Power quality disturbance classification WAVELET transform S-TRANSFORM Decision tree classification rules
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部