Within-Visual-Range(WVR)air combat is a highly dynamic and uncertain domain where effective strategies require intelligent and adaptive decision-making.Traditional approaches,including rule-based methods and conventio...Within-Visual-Range(WVR)air combat is a highly dynamic and uncertain domain where effective strategies require intelligent and adaptive decision-making.Traditional approaches,including rule-based methods and conventional Reinforcement Learning(RL)algorithms,often focus on maximizing engagement outcomes through direct combat superiority.However,these methods overlook alternative tactics,such as inducing adversaries to crash,which can achieve decisive victories with lower risk and cost.This study proposes Alpha Crash,a novel distributional-rein forcement-learning-based agent specifically designed to defeat opponents by leveraging crash induction strategies.The approach integrates an improved QR-DQN framework to address uncertainties and adversarial tactics,incorporating advanced pilot experience into its reward functions.Extensive simulations reveal Alpha Crash's robust performance,achieving a 91.2%win rate across diverse scenarios by effectively guiding opponents into critical errors.Visualization and altitude analyses illustrate the agent's three-stage crash induction strategies that exploit adversaries'vulnerabilities.These findings underscore Alpha Crash's potential to enhance autonomous decision-making and strategic innovation in real-world air combat applications.展开更多
A chance-constrained energy dispatch model based on the distributed stochastic model predictive control(DSMPC)approach for an islanded multi-microgrid system is proposed.An ambiguity set considering the inherent uncer...A chance-constrained energy dispatch model based on the distributed stochastic model predictive control(DSMPC)approach for an islanded multi-microgrid system is proposed.An ambiguity set considering the inherent uncertainties of renewable energy sources(RESs)is constructed without requiring the full distribution knowledge of the uncertainties.The power balance chance constraint is reformulated within the framework of the distributionally robust optimization(DRO)approach.With the exchange of information and energy flow,each microgrid can achieve its local supply-demand balance.Furthermore,the closed-loop stability and recursive feasibility of the proposed algorithm are proved.The comparative results with other DSMPC methods show that a trade-off between robustness and economy can be achieved.展开更多
The vast majority of in vitro studies have demonstrated that PINK1 phosphorylates Parkin to work together in mitophagy to protect against neuronal degeneration.However,it remains largely unclear how PINK1 and Parkin a...The vast majority of in vitro studies have demonstrated that PINK1 phosphorylates Parkin to work together in mitophagy to protect against neuronal degeneration.However,it remains largely unclear how PINK1 and Parkin are expressed in mammalian brains.This has been difficult to address because of the intrinsically low levels of PINK1 and undetectable levels of phosphorylated Parkin in small animals.Understanding this issue is critical for elucidating the in vivo roles of PINK1 and Parkin.Recently,we showed that the PINK1 kinase is selectively expressed as a truncated form(PINK1–55)in the primate brain.In the present study,we used multiple antibodies,including our recently developed monoclonal anti-PINK1,to validate the selective expression of PINK1 in the primate brain.We found that PINK1 was stably expressed in the monkey brain at postnatal and adulthood stages,which is consistent with the findings that depleting PINK1 can cause neuronal loss in developing and adult monkey brains.PINK1 was enriched in the membrane-bound fractionations,whereas Parkin was soluble with a distinguishable distribution.Immunofluorescent double staining experiments showed that PINK1 and Parkin did not colocalize under physiological conditions in cultured monkey astrocytes,though they did colocalize on mitochondria when the cells were exposed to mitochondrial stress.These findings suggest that PINK1 and Parkin may have distinct roles beyond their well-known function in mitophagy during mitochondrial damage.展开更多
Crude oil scheduling optimization is an effective method to enhance the economic benefits of oil refining.But uncertainties,including uncertain demands of crude distillation units(CDUs),might make the production plans...Crude oil scheduling optimization is an effective method to enhance the economic benefits of oil refining.But uncertainties,including uncertain demands of crude distillation units(CDUs),might make the production plans made by the traditional deterministic optimization models infeasible.A data-driven Wasserstein distributionally robust chance-constrained(WDRCC)optimization approach is proposed in this paper to deal with demand uncertainty in crude oil scheduling.First,a new deterministic crude oil scheduling optimization model is developed as the basis of this approach.The Wasserstein distance is then used to build ambiguity sets from historical data to describe the possible realizations of probability distributions of uncertain demands.A cross-validation method is advanced to choose suitable radii for these ambiguity sets.The deterministic model is reformulated as a WDRCC optimization model for crude oil scheduling to guarantee the demand constraints hold with a desired high probability even in the worst situation in ambiguity sets.The proposed WDRCC model is transferred into an equivalent conditional value-at-risk representation and further derived as a mixed-integer nonlinear programming counterpart.Industrial case studies from a real-world refinery are conducted to show the effectiveness of the proposed method.Out-of-sample tests demonstrate that the solution of the WDRCC model is more robust than those of the deterministic model and the chance-constrained model.展开更多
This paper focus on the chaotic properties of minimal subshift of shift operators. It is proved that the minimal subshift of shift operators is uniformly distributional chaotic, distributional chaotic in a sequence, d...This paper focus on the chaotic properties of minimal subshift of shift operators. It is proved that the minimal subshift of shift operators is uniformly distributional chaotic, distributional chaotic in a sequence, distributional chaotic of type k ( k∈{ 1,2,2 1 2 ,3 } ), and ( 0,1 ) -distribution.展开更多
With the increasing popularity of blockchain applications, the security of data sources on the blockchain is gradually receiving attention. Providing reliable data for the blockchain safely and efficiently has become ...With the increasing popularity of blockchain applications, the security of data sources on the blockchain is gradually receiving attention. Providing reliable data for the blockchain safely and efficiently has become a research hotspot, and the security of the oracle responsible for providing reliable data has attracted much attention. The most widely used centralized oracles in blockchain, such as Provable and Town Crier, all rely on a single oracle to obtain data, which suffers from a single point of failure and limits the large-scale development of blockchain. To this end, the distributed oracle scheme is put forward, but the existing distributed oracle schemes such as Chainlink and Augur generally have low execution efficiency and high communication overhead, which leads to their poor applicability. To solve the above problems, this paper proposes a trusted distributed oracle scheme based on a share recovery threshold signature. First, a data verification method of distributed oracles is designed based on threshold signature. By aggregating the signatures of oracles, data from different data sources can be mutually verified, leading to a more efficient data verification and aggregation process. Then, a credibility-based cluster head election algorithm is designed, which reduces the communication overhead by clarifying the function distribution and building a hierarchical structure. Considering the good performance of the BLS threshold signature in large-scale applications, this paper combines it with distributed oracle technology and proposes a BLS threshold signature algorithm that supports share recovery in distributed oracles. The share recovery mechanism enables the proposed scheme to solve the key loss issue, and the setting of the threshold value enables the proposed scheme to complete signature aggregation with only a threshold number of oracles, making the scheme more robust. Finally, experimental results indicate that, by using the threshold signature technology and the cluster head election algorithm, our scheme effectively improves the execution efficiency of oracles and solves the problem of a single point of failure, leading to higher scalability and robustness.展开更多
The electrochemical corrosion of ductile pipes(DPs)in drinking water distribution systems(DWDS)has a crucial impact on cement-mortar lining(CML)failure and metal release,potentially leading to drinking water quality d...The electrochemical corrosion of ductile pipes(DPs)in drinking water distribution systems(DWDS)has a crucial impact on cement-mortar lining(CML)failure and metal release,potentially leading to drinking water quality deterioration and posing a risk to public health.An in-situ scanning vibrating electrode technique(SVET)with micron-scale resolution,microscopic scale detection and water quality analysis were used to investigate the corrosion behavior and metal release from DPs throughout the whole CML failure process.Metal pollutants release occurred at three different stages of CML failure process,and there are potential risks of water quality deterioration exceeding the maximum allowable levels set by national standards in the partial failure stage and lining peeling stage.Furthermore,the effects of water chemistry(Cl^(−),SO_(4)^(2−),NO_(3)−,and Ca^(2+))on corrosion scale growth and iron release activity,were investigated during the CML partial failure stage.Results showed that the CML failure process in DPs was accelerated by the autocatalysis of localized corrosion.Cl^(−)was found to damage the uncorroded metal surface,while SO_(4)^(2−)mainly dissolved the corrosion scale surface,increasing iron release.Both the oxidation of NO_(3)−and selective sedimentation of Ca2+were found to enhance the stability of corrosion scales and inhibit iron release.展开更多
The dominated contradiction in optimizing the performance of magnesium-air battery anode lies in the difficulty of achieving a good balance between activation and passivation during discharge process.To further reconci...The dominated contradiction in optimizing the performance of magnesium-air battery anode lies in the difficulty of achieving a good balance between activation and passivation during discharge process.To further reconcile this contradiction,two Mg-0.1Sc-0.1Y-0.1Ag anodes with different residual strain distribution through extrusion with/without annealing are fabricated.The results indicate that annealing can significantly lessen the“pseudo-anode”regions,thereby changing the dissolution mode of the matrix and achieving an effective dissolution during discharge.Additionally,p-type semiconductor characteristic of discharge productfilm could suppress the self-corrosion reaction without reducing the polarization of anode.The magnesium-air battery utilizing annealed Mg-0.1Sc-0.1Y-0.1Ag as anode achieves a synergistic improvement in specific capacity(1388.89 mA h g^(-1))and energy density(1960.42 mW h g^(-1)).This anode modification method accelerates the advancement of high efficiency and long lifespan magnesium-air batteries,offering renewable and cost-effective energy solutions for electronics and emergency equipment.展开更多
Severe ground-level ozone(O_(3))pollution over major Chinese cities has become one of the most challenging problems,which have deleterious effects on human health and the sustainability of society.This study explored ...Severe ground-level ozone(O_(3))pollution over major Chinese cities has become one of the most challenging problems,which have deleterious effects on human health and the sustainability of society.This study explored the spatiotemporal distribution characteristics of ground-level O_(3) and its precursors based on conventional pollutant and meteorological monitoring data in Zhejiang Province from 2016 to 2021.Then,a high-performance convolutional neural network(CNN)model was established by expanding the moment and the concentration variations to general factors.Finally,the response mechanism of O_(3) to the variation with crucial influencing factors is explored by controlling variables and interpolating target variables.The results indicated that the annual average MDA8-90th concentrations in Zhejiang Province are higher in the northern and lower in the southern.When the wind direction(WD)ranges from east to southwest and the wind speed(WS)ranges between 2 and 3 m/sec,higher O_(3) concentration prone to occur.At different temperatures(T),the O_(3) concentration showed a trend of first increasing and subsequently decreasing with increasing NO_(2) concentration,peaks at the NO_(2) concentration around 0.02mg/m^(3).The sensitivity of NO_(2) to O_(3) formation is not easily affected by temperature,barometric pressure and dew point temperature.Additionally,there is a minimum IRNO_(2) at each temperature when the NO_(2) concentration is 0.03 mg/m^(3),and this minimum IRNO_(2) decreases with increasing temperature.The study explores the response mechanism of O_(3) with the change of driving variables,which can provide a scientific foundation and methodological support for the targeted management of O_(3) pollution.展开更多
As a significant city in the Yangtze River Delta regions,Hefei has experienced rapid changes in the sources of air pollution due to its high-speed economic development and urban expansion.However,there has been limite...As a significant city in the Yangtze River Delta regions,Hefei has experienced rapid changes in the sources of air pollution due to its high-speed economic development and urban expansion.However,there has been limited research in recent years on the spatial-temporal distribution and emission of its atmospheric pollutants.To address this,this study conducted mobile observations of urban roads using the Mobile-DOAS instrument from June 2021 to May 2022.The monitoring results exhibit a favourable consistent with TROPOMI satellite data and ground monitoring station data.Temporally,there were pronounced seasonal variations in air pollutants.Spatially,high concentration of HCHO and NO_(2)were closely associated with traffic congestion on roadways,while heightened SO_(2)levels were attributed to winter heating and industrial emissions.The study also revealed that with the implementation of road policies,the average vehicle speed increased by 95.4%,while the NO concentration decreased by 54.4%.In the estimation of urban NO_(x)emission flux,it was observed that in temporal terms,compared with inventory data,the emissions calculated viamobile measurements exhibitedmore distinct seasonal patterns,with the highest emission rate of 349 g/sec in winter and the lowest of 142 g/sec in summer.In spatial terms,the significant difference in emissions between the inner and outer ring roads also suggests the presence of the city’s primary NO_(x)emission sources in the area between these two rings.This study offers data support for formulating the next phase of air pollution control measures in urban areas.展开更多
Gas quenching and vacuum quenching process are widely applied to accelerate solvent volatilization to induce nucleation of perovskites in blade-coating method.In this work,we found these two pre-crystallization proces...Gas quenching and vacuum quenching process are widely applied to accelerate solvent volatilization to induce nucleation of perovskites in blade-coating method.In this work,we found these two pre-crystallization processes lead to different order of crystallization dynamics within the perovskite thin film,resulting in the differences of additive distribution.We then tailor-designed an additive molecule named 1,3-bis(4-methoxyphenyl)thiourea to obtain films with fewer defects and holes at the buried interface,and prepared perovskite solar cells with a certified efficiency of 23.75%.Furthermore,this work also demonstrates an efficiency of 20.18%for the large-area perovskite solar module(PSM)with an aperture area of 60.84 cm^(2).The PSM possesses remarkable continuous operation stability for maximum power point tracking of T_(90)>1000 h in ambient air.展开更多
Coking industry is a potential source of heavy metals(HMs)pollution.However,its impacts to the groundwater of surrounding residential areas have not been well understood.This study investigated the pollution character...Coking industry is a potential source of heavy metals(HMs)pollution.However,its impacts to the groundwater of surrounding residential areas have not been well understood.This study investigated the pollution characteristics and health risks of HMs in groundwater nearby a typical coking plant.Nine HMs including Fe,Zn,Mo,As,Cu,Ni,Cr,Pb and Cd were analyzed.The average concentration of total HMswas higher in the nearby area(244.27μg/L)than that of remote area away the coking plant(89.15μg/L).The spatial distribution of pollution indices including heavy metal pollution index(HPI),Nemerow index(NI)and contamination degree(CD),all demonstrated higher values at the nearby residential areas,suggesting coking activity could significantly impact the HMs distribution characteristics.Four sources of HMs were identified by Positive Matrix Factorization(PMF)model,which indicated coal washing and coking emission were the dominant sources,accounted for 40.4%,and 31.0%,respectively.Oral ingestionwas found to be the dominant exposure pathway with higher exposure dose to children than adults.Hazard quotient(HQ)values were below 1.0,suggesting negligible non-carcinogenic health risks,while potential carcinogenic risks were from Pb and Ni with cancer risk(CR)values>10−6.Monte Carlo simulation matched well with the calculated results with HMs concentrations to be the most sensitive parameters.This study provides insights into understanding how the industrial coking activities can impact the HMs pollution characteristics in groundwater,thus facilitating the implement of HMs regulation in coking industries.展开更多
The isolated fracture-vug systems controlled by small-scale strike-slip faults within ultra-deep carbonate rocks of the Tarim Basin exhibit significant exploration potential.The study employs a novel training set inco...The isolated fracture-vug systems controlled by small-scale strike-slip faults within ultra-deep carbonate rocks of the Tarim Basin exhibit significant exploration potential.The study employs a novel training set incorporating innovative fault labels to train a U-Net-structured CNN model,enabling effective identification of small-scale strike-slip faults through seismic data interpretation.Based on the CNN faults,we analyze the distribution patterns of small-scale strike-slip faults.The small-scale strike-slip faults can be categorized into NNW-trending and NE-trending groups with strike lengths ranging 200–5000 m.The development intensity of small-scale strike-slip faults in the Lower Yingshan Member notably exceeds that in the Upper Member.The Lower and Upper Yingshan members are two distinct mechanical layers with contrasting brittleness characteristics,separated by a low-brittleness layer.The superior brittleness of the Lower Yingshan Member enhances the development intensity of small-scale strike-slip faults compared to the upper member,while the low-brittleness layer exerts restrictive effects on vertical fault propagation.Fracture-vug systems formed by interactions of two or more small-scale strike-slip faults demonstrate larger sizes than those controlled by individual faults.All fracture-vug system sizes show positive correlations with the vertical extents of associated small-scale strike-slip faults,particularly intersection and approaching fracture-vug systems exhibit accelerated size increases proportional to the vertical extents.展开更多
This study presents a machine learning-based method for predicting fragment velocity distribution in warhead fragmentation under explosive loading condition.The fragment resultant velocities are correlated with key de...This study presents a machine learning-based method for predicting fragment velocity distribution in warhead fragmentation under explosive loading condition.The fragment resultant velocities are correlated with key design parameters including casing dimensions and detonation positions.The paper details the finite element analysis for fragmentation,the characterizations of the dynamic hardening and fracture models,the generation of comprehensive datasets,and the training of the ANN model.The results show the influence of casing dimensions on fragment velocity distributions,with the tendencies indicating increased resultant velocity with reduced thickness,increased length and diameter.The model's predictive capability is demonstrated through the accurate predictions for both training and testing datasets,showing its potential for the real-time prediction of fragmentation performance.展开更多
Typhoons can cause large-area blackouts or partial outages of distribution networks.We define a partial outage state in the distribution network as a gray state and propose a gray-start strategy and two-stage distribu...Typhoons can cause large-area blackouts or partial outages of distribution networks.We define a partial outage state in the distribution network as a gray state and propose a gray-start strategy and two-stage distribution network emergency recovery framework.A phase-space reconstruction and stacked integrated model for predicting wind and photovoltaic generation during typhoon disasters is proposed in the first stage.This provides guidance for second-stage post-disaster emergency recovery scheduling.The emergency recovery scheduling model is established in the second stage,and this model is supported by a thermal power-generating unit,mobile emergency generators,and distributed generators.Distributed generation includes wind power generation,photovoltaics,fuel cells,etc.Simultaneously,we con-sider the gray-start based on the pumped storage unit to be an important first step in the emergency recovery strategy.This model is val-idated on the improved IEEE 33 node system,which utilizes data from the 2022 super typhoon“Muifa”in Zhoushan,Zhejiang,China.Simulations indicate the superiority of a gray start with a pumped storage unit and the proposed emergency recovery strategy.展开更多
The effects of disinfectants and plasmid-based antibiotic resistance genes(ARGs)on the growth of microorganisms and the plasmid-mediated transfer of ARGs in the water and biofilm of the drinkingwater distribution syst...The effects of disinfectants and plasmid-based antibiotic resistance genes(ARGs)on the growth of microorganisms and the plasmid-mediated transfer of ARGs in the water and biofilm of the drinkingwater distribution system under simulated conditionswere explored.The heterotrophic plate count of the water in reactors with 0.1 mg/L NaClO and NH_(2)Cl was higher than in the control groups.Therewas no similar phenomenon in biofilm.In thewater of reactors containing NaClO,the aphA and bla geneswere lower than in the antibiotic resistant bacteria group,while both genes were higher in the water of reactors with NH_(2)Cl than in the control group.Chloramine may promote the transfer of ARGs in the water phase.Both genes in the biofilm of the reactors containing chlorine were lower than the control group.Correlation analysis between ARGs and water quality parameters revealed that the copy numbers of the aphA gene were significantly positively correlated with the copy numbers of the bla gene in water and significantly negatively correlated in biofilm(p<0.05).The results of the sequencing assay showed that bacteria in the biofilm,in the presence of disinfectant,were primarily Gram-negative.1.0 mg/L chlorine decreased the diversity of the community in the biofilm.The relative abundance of some bacteria that may undergo transfer increased in the biofilm of the reactor containing 0.1 mg/L chlorine.展开更多
After a century of relative stability in the electricity sector,the widespread adoption of distributed energy resources,along with recent advancements in computing and communication technologies,has fundamentally alte...After a century of relative stability in the electricity sector,the widespread adoption of distributed energy resources,along with recent advancements in computing and communication technologies,has fundamentally altered how energy is consumed,traded,and utilized.This change signifies a crucial shift as the power system evolves from its traditional hierarchical organization to a more decentralized approach.At the heart of this transformation are innovative energy distribution models,like peer-to-peer(P2P)sharing,which enable communities to collaboratively manage their energy resources.The effectiveness of P2P sharing not only improves the economic prospects for prosumers,who generate and consume energy,but also enhances energy resilience and sustainability.This allows communities to better leverage local resources while fostering a sense of collective responsibility and collaboration in energy management.However,there is still no extensive implementation of such sharing models in today’s electricitymarkets.Research on distributed energy P2P trading is still in the exploratory stage,and it is particularly important to comprehensively understand and analyze the existing distributed energy P2P trading market.This paper contributes with an overview of the P2P markets that starts with the network framework,market structure,technical approach for trading mechanism,and blockchain technology,moving to the outlook in this field.展开更多
Considering the uncertainty of grid connection of electric vehicle charging stations and the uncertainty of new energy and residential electricity load,a spatio-temporal decoupling strategy of dynamic reactive power o...Considering the uncertainty of grid connection of electric vehicle charging stations and the uncertainty of new energy and residential electricity load,a spatio-temporal decoupling strategy of dynamic reactive power optimization based on clustering-local relaxation-correction is proposed.Firstly,the k-medoids clustering algorithm is used to divide the reduced power scene into periods.Then,the discrete variables and continuous variables are optimized in the same period of time.Finally,the number of input groups of parallel capacitor banks(CB)in multiple periods is fixed,and then the secondary static reactive power optimization correction is carried out by using the continuous reactive power output device based on the static reactive power compensation device(SVC),the new energy grid-connected inverter,and the electric vehicle charging station.According to the characteristics of the model,a hybrid optimization algorithm with a cross-feedback mechanism is used to solve different types of variables,and an improved artificial hummingbird algorithm based on tent chaotic mapping and adaptive mutation is proposed to improve the solution efficiency.The simulation results show that the proposed decoupling strategy can obtain satisfactory optimization resultswhile strictly guaranteeing the dynamic constraints of discrete variables,and the hybrid algorithm can effectively solve the mixed integer nonlinear optimization problem.展开更多
This paper introduces an optimized planning approach for integrating photovoltaic as distributed generation (PV-DG) into the radial distribution power systems, utilizing exhaustive load flow (ELF), loss sensitivity fa...This paper introduces an optimized planning approach for integrating photovoltaic as distributed generation (PV-DG) into the radial distribution power systems, utilizing exhaustive load flow (ELF), loss sensitivity factor (LSF), genetic algorithms (GA) methods, and numerical method based on LSF. The methodology aims to determine the optimal allocation and sizing of multiple PV-DG to minimize power loss through time series power flow analysis. An approach utilizing continuous sensitivity analysis is developed and inherently leverages power flow and loss equations to compute LSF of all buses in the system towards employing a dynamic PV-DG model for more accurate results. The algorithm uses a numerical grid search method to optimize PV-DG placement in a power distribution system, focusing on minimizing system losses. It combines iterative analysis, sensitivity assessment, and comprehensive visualization to identify and present the optimal PV-DG configurations. The present-ed algorithms are verified through co-simulation framework combining MATLAB and OpenDSS to carry out analysis for 12-bus radial distribution test system. The proposed numerical method is compared with other algorithms, such as ELF, LSF methods, and Genetic Algorithms (GA). Results show that the proposed numerical method performs well in comparison with LSF and ELF solutions.展开更多
BACKGROUND Red blood cell distribution width(RDW)is associated with the development and progression of various diseases.AIM To explore the association between pretreatment RDW and short-term outcomes after laparoscopi...BACKGROUND Red blood cell distribution width(RDW)is associated with the development and progression of various diseases.AIM To explore the association between pretreatment RDW and short-term outcomes after laparoscopic pancreatoduodenectomy(LPD).METHODS A total of 804 consecutive patients who underwent LPD at our hospital between March 2017 and November 2021 were retrospectively analyzed.Correlations between pretreatment RDW and clinicopathological characteristics and short-term outcomes were investigated.RESULTS Patients with higher pretreatment RDW were older,had higher Eastern Cooperative Oncology Group scores and were associated with poorer short-term outcomes than those with normal RDW.High pretreatment RDW was an independent risk factor for postoperative complications(POCs)(hazard ratio=2.973,95%confidence interval:2.032-4.350,P<0.001)and severe POCs of grade IIIa or higher(hazard ratio=3.138,95%confidence interval:2.042-4.824,P<0.001)based on the Clavien-Dino classification system.Subgroup analysis showed that high pretreatment RDW was an independent risk factor for Clavien-Dino classi-fication grade IIIb or higher POCs,a comprehensive complication index score≥26.2,severe postoperative pancreatic fistula,severe bile leakage and severe hemorrhage.High pretreatment RDW was positively associated with the neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio and was negatively associated with albumin and the prognostic nutritional index.CONCLUSION Pretreatment RDW was a special parameter for patients who underwent LPD.It was associated with malnutrition,severe inflammatory status and poorer short-term outcomes.RDW could be a surrogate marker for nutritional and inflammatory status in identifying patients who were at high risk of developing POCs after LPD.展开更多
基金supported by the National Key R&D Program of China(No.2021YFB3300602)。
文摘Within-Visual-Range(WVR)air combat is a highly dynamic and uncertain domain where effective strategies require intelligent and adaptive decision-making.Traditional approaches,including rule-based methods and conventional Reinforcement Learning(RL)algorithms,often focus on maximizing engagement outcomes through direct combat superiority.However,these methods overlook alternative tactics,such as inducing adversaries to crash,which can achieve decisive victories with lower risk and cost.This study proposes Alpha Crash,a novel distributional-rein forcement-learning-based agent specifically designed to defeat opponents by leveraging crash induction strategies.The approach integrates an improved QR-DQN framework to address uncertainties and adversarial tactics,incorporating advanced pilot experience into its reward functions.Extensive simulations reveal Alpha Crash's robust performance,achieving a 91.2%win rate across diverse scenarios by effectively guiding opponents into critical errors.Visualization and altitude analyses illustrate the agent's three-stage crash induction strategies that exploit adversaries'vulnerabilities.These findings underscore Alpha Crash's potential to enhance autonomous decision-making and strategic innovation in real-world air combat applications.
基金Supported by the National Natural Science Foundation of China(No.U24B20156)the National Defense Basic Scientific Research Program of China(No.JCKY2021204B051)the National Laboratory of Space Intelligent Control of China(Nos.HTKJ2023KL502005 and HTKJ2024KL502007)。
文摘A chance-constrained energy dispatch model based on the distributed stochastic model predictive control(DSMPC)approach for an islanded multi-microgrid system is proposed.An ambiguity set considering the inherent uncertainties of renewable energy sources(RESs)is constructed without requiring the full distribution knowledge of the uncertainties.The power balance chance constraint is reformulated within the framework of the distributionally robust optimization(DRO)approach.With the exchange of information and energy flow,each microgrid can achieve its local supply-demand balance.Furthermore,the closed-loop stability and recursive feasibility of the proposed algorithm are proved.The comparative results with other DSMPC methods show that a trade-off between robustness and economy can be achieved.
基金supported by the National Natural Science Foundation of China,Nos.32070534(to WY),32370567(to WY),82371874(to XL),81830032(to XL),82071421(to SL)Key Field Research and Development Program of Guangdong Province,No.2018B030337001(to XL)+2 种基金Guangzhou Key Research Program on Brain Science,No.202007030008(to XL)Department of Science and Technology of Guangdong Province,Nos.2021ZT09Y007,2020B121201006(to XL)Guangdong Basic and Applied Basic Research Foundation,Nos.2022A1515012301(to WY),2023B1515020031(to WY).
文摘The vast majority of in vitro studies have demonstrated that PINK1 phosphorylates Parkin to work together in mitophagy to protect against neuronal degeneration.However,it remains largely unclear how PINK1 and Parkin are expressed in mammalian brains.This has been difficult to address because of the intrinsically low levels of PINK1 and undetectable levels of phosphorylated Parkin in small animals.Understanding this issue is critical for elucidating the in vivo roles of PINK1 and Parkin.Recently,we showed that the PINK1 kinase is selectively expressed as a truncated form(PINK1–55)in the primate brain.In the present study,we used multiple antibodies,including our recently developed monoclonal anti-PINK1,to validate the selective expression of PINK1 in the primate brain.We found that PINK1 was stably expressed in the monkey brain at postnatal and adulthood stages,which is consistent with the findings that depleting PINK1 can cause neuronal loss in developing and adult monkey brains.PINK1 was enriched in the membrane-bound fractionations,whereas Parkin was soluble with a distinguishable distribution.Immunofluorescent double staining experiments showed that PINK1 and Parkin did not colocalize under physiological conditions in cultured monkey astrocytes,though they did colocalize on mitochondria when the cells were exposed to mitochondrial stress.These findings suggest that PINK1 and Parkin may have distinct roles beyond their well-known function in mitophagy during mitochondrial damage.
基金the supports from National Natural Science Foundation of China(61988101,62073142,22178103)National Natural Science Fund for Distinguished Young Scholars(61925305)International(Regional)Cooperation and Exchange Project(61720106008)。
文摘Crude oil scheduling optimization is an effective method to enhance the economic benefits of oil refining.But uncertainties,including uncertain demands of crude distillation units(CDUs),might make the production plans made by the traditional deterministic optimization models infeasible.A data-driven Wasserstein distributionally robust chance-constrained(WDRCC)optimization approach is proposed in this paper to deal with demand uncertainty in crude oil scheduling.First,a new deterministic crude oil scheduling optimization model is developed as the basis of this approach.The Wasserstein distance is then used to build ambiguity sets from historical data to describe the possible realizations of probability distributions of uncertain demands.A cross-validation method is advanced to choose suitable radii for these ambiguity sets.The deterministic model is reformulated as a WDRCC optimization model for crude oil scheduling to guarantee the demand constraints hold with a desired high probability even in the worst situation in ambiguity sets.The proposed WDRCC model is transferred into an equivalent conditional value-at-risk representation and further derived as a mixed-integer nonlinear programming counterpart.Industrial case studies from a real-world refinery are conducted to show the effectiveness of the proposed method.Out-of-sample tests demonstrate that the solution of the WDRCC model is more robust than those of the deterministic model and the chance-constrained model.
文摘This paper focus on the chaotic properties of minimal subshift of shift operators. It is proved that the minimal subshift of shift operators is uniformly distributional chaotic, distributional chaotic in a sequence, distributional chaotic of type k ( k∈{ 1,2,2 1 2 ,3 } ), and ( 0,1 ) -distribution.
基金supported by the National Natural Science Foundation of China(Grant No.62102449)the Central Plains Talent Program under Grant No.224200510003.
文摘With the increasing popularity of blockchain applications, the security of data sources on the blockchain is gradually receiving attention. Providing reliable data for the blockchain safely and efficiently has become a research hotspot, and the security of the oracle responsible for providing reliable data has attracted much attention. The most widely used centralized oracles in blockchain, such as Provable and Town Crier, all rely on a single oracle to obtain data, which suffers from a single point of failure and limits the large-scale development of blockchain. To this end, the distributed oracle scheme is put forward, but the existing distributed oracle schemes such as Chainlink and Augur generally have low execution efficiency and high communication overhead, which leads to their poor applicability. To solve the above problems, this paper proposes a trusted distributed oracle scheme based on a share recovery threshold signature. First, a data verification method of distributed oracles is designed based on threshold signature. By aggregating the signatures of oracles, data from different data sources can be mutually verified, leading to a more efficient data verification and aggregation process. Then, a credibility-based cluster head election algorithm is designed, which reduces the communication overhead by clarifying the function distribution and building a hierarchical structure. Considering the good performance of the BLS threshold signature in large-scale applications, this paper combines it with distributed oracle technology and proposes a BLS threshold signature algorithm that supports share recovery in distributed oracles. The share recovery mechanism enables the proposed scheme to solve the key loss issue, and the setting of the threshold value enables the proposed scheme to complete signature aggregation with only a threshold number of oracles, making the scheme more robust. Finally, experimental results indicate that, by using the threshold signature technology and the cluster head election algorithm, our scheme effectively improves the execution efficiency of oracles and solves the problem of a single point of failure, leading to higher scalability and robustness.
基金supported by the National Natural Science Foundation of China(Nos.51808158,52170101,and 52200116)Tianjin Natural Science Foundation(No.23JCYBJC00640).
文摘The electrochemical corrosion of ductile pipes(DPs)in drinking water distribution systems(DWDS)has a crucial impact on cement-mortar lining(CML)failure and metal release,potentially leading to drinking water quality deterioration and posing a risk to public health.An in-situ scanning vibrating electrode technique(SVET)with micron-scale resolution,microscopic scale detection and water quality analysis were used to investigate the corrosion behavior and metal release from DPs throughout the whole CML failure process.Metal pollutants release occurred at three different stages of CML failure process,and there are potential risks of water quality deterioration exceeding the maximum allowable levels set by national standards in the partial failure stage and lining peeling stage.Furthermore,the effects of water chemistry(Cl^(−),SO_(4)^(2−),NO_(3)−,and Ca^(2+))on corrosion scale growth and iron release activity,were investigated during the CML partial failure stage.Results showed that the CML failure process in DPs was accelerated by the autocatalysis of localized corrosion.Cl^(−)was found to damage the uncorroded metal surface,while SO_(4)^(2−)mainly dissolved the corrosion scale surface,increasing iron release.Both the oxidation of NO_(3)−and selective sedimentation of Ca2+were found to enhance the stability of corrosion scales and inhibit iron release.
基金the National Natural Science:Foundation of China(52375370)the Open Project of Salt Lake Chemical Engineering Research Complex,Qinghai University(2023-DXSSKF-Z02)+2 种基金the Nat-ural Science Foundation of Shanxi(202103021224049)GDAS Projects of International cooperation platform of Sci-ence and Technology(2022GDASZH-2022010203-003)Guangdong province Science and Technology Plan Projects(2023B1212060045).
文摘The dominated contradiction in optimizing the performance of magnesium-air battery anode lies in the difficulty of achieving a good balance between activation and passivation during discharge process.To further reconcile this contradiction,two Mg-0.1Sc-0.1Y-0.1Ag anodes with different residual strain distribution through extrusion with/without annealing are fabricated.The results indicate that annealing can significantly lessen the“pseudo-anode”regions,thereby changing the dissolution mode of the matrix and achieving an effective dissolution during discharge.Additionally,p-type semiconductor characteristic of discharge productfilm could suppress the self-corrosion reaction without reducing the polarization of anode.The magnesium-air battery utilizing annealed Mg-0.1Sc-0.1Y-0.1Ag as anode achieves a synergistic improvement in specific capacity(1388.89 mA h g^(-1))and energy density(1960.42 mW h g^(-1)).This anode modification method accelerates the advancement of high efficiency and long lifespan magnesium-air batteries,offering renewable and cost-effective energy solutions for electronics and emergency equipment.
基金supported by the National Key Research and Development Program of China (Nos.2022YFC3702000 and 2022YFC3703500)the Key R&D Project of Zhejiang Province (No.2022C03146).
文摘Severe ground-level ozone(O_(3))pollution over major Chinese cities has become one of the most challenging problems,which have deleterious effects on human health and the sustainability of society.This study explored the spatiotemporal distribution characteristics of ground-level O_(3) and its precursors based on conventional pollutant and meteorological monitoring data in Zhejiang Province from 2016 to 2021.Then,a high-performance convolutional neural network(CNN)model was established by expanding the moment and the concentration variations to general factors.Finally,the response mechanism of O_(3) to the variation with crucial influencing factors is explored by controlling variables and interpolating target variables.The results indicated that the annual average MDA8-90th concentrations in Zhejiang Province are higher in the northern and lower in the southern.When the wind direction(WD)ranges from east to southwest and the wind speed(WS)ranges between 2 and 3 m/sec,higher O_(3) concentration prone to occur.At different temperatures(T),the O_(3) concentration showed a trend of first increasing and subsequently decreasing with increasing NO_(2) concentration,peaks at the NO_(2) concentration around 0.02mg/m^(3).The sensitivity of NO_(2) to O_(3) formation is not easily affected by temperature,barometric pressure and dew point temperature.Additionally,there is a minimum IRNO_(2) at each temperature when the NO_(2) concentration is 0.03 mg/m^(3),and this minimum IRNO_(2) decreases with increasing temperature.The study explores the response mechanism of O_(3) with the change of driving variables,which can provide a scientific foundation and methodological support for the targeted management of O_(3) pollution.
基金supported by the National Natural Science Foundation of China(Nos.U19A2044,42105132,42030609,41975037,and 42105133)the National Key Research and Development Program of China(No.2022YFC3703502)+1 种基金the Plan for Anhui Major Provincial Science&Technology Project(No.202203a07020003)Hefei Ecological Environment Bureau Project(No.2020BFFFD01804).
文摘As a significant city in the Yangtze River Delta regions,Hefei has experienced rapid changes in the sources of air pollution due to its high-speed economic development and urban expansion.However,there has been limited research in recent years on the spatial-temporal distribution and emission of its atmospheric pollutants.To address this,this study conducted mobile observations of urban roads using the Mobile-DOAS instrument from June 2021 to May 2022.The monitoring results exhibit a favourable consistent with TROPOMI satellite data and ground monitoring station data.Temporally,there were pronounced seasonal variations in air pollutants.Spatially,high concentration of HCHO and NO_(2)were closely associated with traffic congestion on roadways,while heightened SO_(2)levels were attributed to winter heating and industrial emissions.The study also revealed that with the implementation of road policies,the average vehicle speed increased by 95.4%,while the NO concentration decreased by 54.4%.In the estimation of urban NO_(x)emission flux,it was observed that in temporal terms,compared with inventory data,the emissions calculated viamobile measurements exhibitedmore distinct seasonal patterns,with the highest emission rate of 349 g/sec in winter and the lowest of 142 g/sec in summer.In spatial terms,the significant difference in emissions between the inner and outer ring roads also suggests the presence of the city’s primary NO_(x)emission sources in the area between these two rings.This study offers data support for formulating the next phase of air pollution control measures in urban areas.
基金supported by National Natural Science Foundation of China(62104082)Guangdong Basic and Applied Basic Research Foundation(2022A1515010746,2022A1515011228,and 2022B1515120006)the Science and Technology Program of Guangzhou(202201010458).
文摘Gas quenching and vacuum quenching process are widely applied to accelerate solvent volatilization to induce nucleation of perovskites in blade-coating method.In this work,we found these two pre-crystallization processes lead to different order of crystallization dynamics within the perovskite thin film,resulting in the differences of additive distribution.We then tailor-designed an additive molecule named 1,3-bis(4-methoxyphenyl)thiourea to obtain films with fewer defects and holes at the buried interface,and prepared perovskite solar cells with a certified efficiency of 23.75%.Furthermore,this work also demonstrates an efficiency of 20.18%for the large-area perovskite solar module(PSM)with an aperture area of 60.84 cm^(2).The PSM possesses remarkable continuous operation stability for maximum power point tracking of T_(90)>1000 h in ambient air.
基金supported by the National Key Research and Development Program of China(No.2019YFC1804501)the National Natural Science Foundation of China(Nos.42122056 and U1901210)+2 种基金Guangdong Basic and Applied Basic Research Foundation(No.2021B1515020063)the Key Research and Development Program of Guangdong Province(No.2021B1111380003)the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program(No.2017BT01Z032).
文摘Coking industry is a potential source of heavy metals(HMs)pollution.However,its impacts to the groundwater of surrounding residential areas have not been well understood.This study investigated the pollution characteristics and health risks of HMs in groundwater nearby a typical coking plant.Nine HMs including Fe,Zn,Mo,As,Cu,Ni,Cr,Pb and Cd were analyzed.The average concentration of total HMswas higher in the nearby area(244.27μg/L)than that of remote area away the coking plant(89.15μg/L).The spatial distribution of pollution indices including heavy metal pollution index(HPI),Nemerow index(NI)and contamination degree(CD),all demonstrated higher values at the nearby residential areas,suggesting coking activity could significantly impact the HMs distribution characteristics.Four sources of HMs were identified by Positive Matrix Factorization(PMF)model,which indicated coal washing and coking emission were the dominant sources,accounted for 40.4%,and 31.0%,respectively.Oral ingestionwas found to be the dominant exposure pathway with higher exposure dose to children than adults.Hazard quotient(HQ)values were below 1.0,suggesting negligible non-carcinogenic health risks,while potential carcinogenic risks were from Pb and Ni with cancer risk(CR)values>10−6.Monte Carlo simulation matched well with the calculated results with HMs concentrations to be the most sensitive parameters.This study provides insights into understanding how the industrial coking activities can impact the HMs pollution characteristics in groundwater,thus facilitating the implement of HMs regulation in coking industries.
基金supported by the National Natural Science Foundation of China(No.U21B2062).
文摘The isolated fracture-vug systems controlled by small-scale strike-slip faults within ultra-deep carbonate rocks of the Tarim Basin exhibit significant exploration potential.The study employs a novel training set incorporating innovative fault labels to train a U-Net-structured CNN model,enabling effective identification of small-scale strike-slip faults through seismic data interpretation.Based on the CNN faults,we analyze the distribution patterns of small-scale strike-slip faults.The small-scale strike-slip faults can be categorized into NNW-trending and NE-trending groups with strike lengths ranging 200–5000 m.The development intensity of small-scale strike-slip faults in the Lower Yingshan Member notably exceeds that in the Upper Member.The Lower and Upper Yingshan members are two distinct mechanical layers with contrasting brittleness characteristics,separated by a low-brittleness layer.The superior brittleness of the Lower Yingshan Member enhances the development intensity of small-scale strike-slip faults compared to the upper member,while the low-brittleness layer exerts restrictive effects on vertical fault propagation.Fracture-vug systems formed by interactions of two or more small-scale strike-slip faults demonstrate larger sizes than those controlled by individual faults.All fracture-vug system sizes show positive correlations with the vertical extents of associated small-scale strike-slip faults,particularly intersection and approaching fracture-vug systems exhibit accelerated size increases proportional to the vertical extents.
基金supported by Poongsan-KAIST Future Research Center Projectthe fund support provided by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(Grant No.2023R1A2C2005661)。
文摘This study presents a machine learning-based method for predicting fragment velocity distribution in warhead fragmentation under explosive loading condition.The fragment resultant velocities are correlated with key design parameters including casing dimensions and detonation positions.The paper details the finite element analysis for fragmentation,the characterizations of the dynamic hardening and fracture models,the generation of comprehensive datasets,and the training of the ANN model.The results show the influence of casing dimensions on fragment velocity distributions,with the tendencies indicating increased resultant velocity with reduced thickness,increased length and diameter.The model's predictive capability is demonstrated through the accurate predictions for both training and testing datasets,showing its potential for the real-time prediction of fragmentation performance.
基金supported in part by the National Nat-ural Science Foundation of China(52177110)Key Pro-gram of the National Natural Science Foundation of China(U22B20106,U2142206)+2 种基金Shenzhen Science and Technology Program(JCYJ20210324131409026)the Science and Technology Project of the State Grid Corpo-ration of China(5200-202319382A-2-3-XG)State Grid Zhejiang Elctric Power Co.,Ltd.Science and Tech-nology Project(B311DS24001A).
文摘Typhoons can cause large-area blackouts or partial outages of distribution networks.We define a partial outage state in the distribution network as a gray state and propose a gray-start strategy and two-stage distribution network emergency recovery framework.A phase-space reconstruction and stacked integrated model for predicting wind and photovoltaic generation during typhoon disasters is proposed in the first stage.This provides guidance for second-stage post-disaster emergency recovery scheduling.The emergency recovery scheduling model is established in the second stage,and this model is supported by a thermal power-generating unit,mobile emergency generators,and distributed generators.Distributed generation includes wind power generation,photovoltaics,fuel cells,etc.Simultaneously,we con-sider the gray-start based on the pumped storage unit to be an important first step in the emergency recovery strategy.This model is val-idated on the improved IEEE 33 node system,which utilizes data from the 2022 super typhoon“Muifa”in Zhoushan,Zhejiang,China.Simulations indicate the superiority of a gray start with a pumped storage unit and the proposed emergency recovery strategy.
基金supported by the Natural Science Foundation of China(No.52070145,51778453).
文摘The effects of disinfectants and plasmid-based antibiotic resistance genes(ARGs)on the growth of microorganisms and the plasmid-mediated transfer of ARGs in the water and biofilm of the drinkingwater distribution system under simulated conditionswere explored.The heterotrophic plate count of the water in reactors with 0.1 mg/L NaClO and NH_(2)Cl was higher than in the control groups.Therewas no similar phenomenon in biofilm.In thewater of reactors containing NaClO,the aphA and bla geneswere lower than in the antibiotic resistant bacteria group,while both genes were higher in the water of reactors with NH_(2)Cl than in the control group.Chloramine may promote the transfer of ARGs in the water phase.Both genes in the biofilm of the reactors containing chlorine were lower than the control group.Correlation analysis between ARGs and water quality parameters revealed that the copy numbers of the aphA gene were significantly positively correlated with the copy numbers of the bla gene in water and significantly negatively correlated in biofilm(p<0.05).The results of the sequencing assay showed that bacteria in the biofilm,in the presence of disinfectant,were primarily Gram-negative.1.0 mg/L chlorine decreased the diversity of the community in the biofilm.The relative abundance of some bacteria that may undergo transfer increased in the biofilm of the reactor containing 0.1 mg/L chlorine.
基金funded by the National Natural Science Foundation of China(52167013)the Key Program of Natural Science Foundation of Gansu Province(24JRRA225)Natural Science Foundation of Gansu Province(23JRRA891).
文摘After a century of relative stability in the electricity sector,the widespread adoption of distributed energy resources,along with recent advancements in computing and communication technologies,has fundamentally altered how energy is consumed,traded,and utilized.This change signifies a crucial shift as the power system evolves from its traditional hierarchical organization to a more decentralized approach.At the heart of this transformation are innovative energy distribution models,like peer-to-peer(P2P)sharing,which enable communities to collaboratively manage their energy resources.The effectiveness of P2P sharing not only improves the economic prospects for prosumers,who generate and consume energy,but also enhances energy resilience and sustainability.This allows communities to better leverage local resources while fostering a sense of collective responsibility and collaboration in energy management.However,there is still no extensive implementation of such sharing models in today’s electricitymarkets.Research on distributed energy P2P trading is still in the exploratory stage,and it is particularly important to comprehensively understand and analyze the existing distributed energy P2P trading market.This paper contributes with an overview of the P2P markets that starts with the network framework,market structure,technical approach for trading mechanism,and blockchain technology,moving to the outlook in this field.
基金funded by the“Research and Application Project of Collaborative Optimization Control Technology for Distribution Station Area for High Proportion Distributed PV Consumption(4000-202318079A-1-1-ZN)”of the Headquarters of the State Grid Corporation.
文摘Considering the uncertainty of grid connection of electric vehicle charging stations and the uncertainty of new energy and residential electricity load,a spatio-temporal decoupling strategy of dynamic reactive power optimization based on clustering-local relaxation-correction is proposed.Firstly,the k-medoids clustering algorithm is used to divide the reduced power scene into periods.Then,the discrete variables and continuous variables are optimized in the same period of time.Finally,the number of input groups of parallel capacitor banks(CB)in multiple periods is fixed,and then the secondary static reactive power optimization correction is carried out by using the continuous reactive power output device based on the static reactive power compensation device(SVC),the new energy grid-connected inverter,and the electric vehicle charging station.According to the characteristics of the model,a hybrid optimization algorithm with a cross-feedback mechanism is used to solve different types of variables,and an improved artificial hummingbird algorithm based on tent chaotic mapping and adaptive mutation is proposed to improve the solution efficiency.The simulation results show that the proposed decoupling strategy can obtain satisfactory optimization resultswhile strictly guaranteeing the dynamic constraints of discrete variables,and the hybrid algorithm can effectively solve the mixed integer nonlinear optimization problem.
文摘This paper introduces an optimized planning approach for integrating photovoltaic as distributed generation (PV-DG) into the radial distribution power systems, utilizing exhaustive load flow (ELF), loss sensitivity factor (LSF), genetic algorithms (GA) methods, and numerical method based on LSF. The methodology aims to determine the optimal allocation and sizing of multiple PV-DG to minimize power loss through time series power flow analysis. An approach utilizing continuous sensitivity analysis is developed and inherently leverages power flow and loss equations to compute LSF of all buses in the system towards employing a dynamic PV-DG model for more accurate results. The algorithm uses a numerical grid search method to optimize PV-DG placement in a power distribution system, focusing on minimizing system losses. It combines iterative analysis, sensitivity assessment, and comprehensive visualization to identify and present the optimal PV-DG configurations. The present-ed algorithms are verified through co-simulation framework combining MATLAB and OpenDSS to carry out analysis for 12-bus radial distribution test system. The proposed numerical method is compared with other algorithms, such as ELF, LSF methods, and Genetic Algorithms (GA). Results show that the proposed numerical method performs well in comparison with LSF and ELF solutions.
基金Supported by the National Natural Science Foundation of China,No.81302124.
文摘BACKGROUND Red blood cell distribution width(RDW)is associated with the development and progression of various diseases.AIM To explore the association between pretreatment RDW and short-term outcomes after laparoscopic pancreatoduodenectomy(LPD).METHODS A total of 804 consecutive patients who underwent LPD at our hospital between March 2017 and November 2021 were retrospectively analyzed.Correlations between pretreatment RDW and clinicopathological characteristics and short-term outcomes were investigated.RESULTS Patients with higher pretreatment RDW were older,had higher Eastern Cooperative Oncology Group scores and were associated with poorer short-term outcomes than those with normal RDW.High pretreatment RDW was an independent risk factor for postoperative complications(POCs)(hazard ratio=2.973,95%confidence interval:2.032-4.350,P<0.001)and severe POCs of grade IIIa or higher(hazard ratio=3.138,95%confidence interval:2.042-4.824,P<0.001)based on the Clavien-Dino classification system.Subgroup analysis showed that high pretreatment RDW was an independent risk factor for Clavien-Dino classi-fication grade IIIb or higher POCs,a comprehensive complication index score≥26.2,severe postoperative pancreatic fistula,severe bile leakage and severe hemorrhage.High pretreatment RDW was positively associated with the neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio and was negatively associated with albumin and the prognostic nutritional index.CONCLUSION Pretreatment RDW was a special parameter for patients who underwent LPD.It was associated with malnutrition,severe inflammatory status and poorer short-term outcomes.RDW could be a surrogate marker for nutritional and inflammatory status in identifying patients who were at high risk of developing POCs after LPD.