A system reliability model based on Bayesian network(BN)is built via an evolutionary strategy called dual genetic algorithm(DGA).BN is a probabilistic approach to analyze relationships between stochastic events.In con...A system reliability model based on Bayesian network(BN)is built via an evolutionary strategy called dual genetic algorithm(DGA).BN is a probabilistic approach to analyze relationships between stochastic events.In contrast with traditional methods where BN model is built by professionals,DGA is proposed for the automatic analysis of historical data and construction of BN for the estimation of system reliability.The whole solution space of BN structures is searched by DGA and a more accurate BN model is obtained.Efficacy of the proposed method is shown by some literature examples.展开更多
In this paper,a resilient distributed control scheme against replay attacks for multi-agent networked systems subject to input and state constraints is proposed.The methodological starting point relies on a smart use ...In this paper,a resilient distributed control scheme against replay attacks for multi-agent networked systems subject to input and state constraints is proposed.The methodological starting point relies on a smart use of predictive arguments with a twofold aim:1)Promptly detect malicious agent behaviors affecting normal system operations;2)Apply specific control actions,based on predictive ideas,for mitigating as much as possible undesirable domino effects resulting from adversary operations.Specifically,the multi-agent system is topologically described by a leader-follower digraph characterized by a unique leader and set-theoretic receding horizon control ideas are exploited to develop a distributed algorithm capable to instantaneously recognize the attacked agent.Finally,numerical simulations are carried out to show benefits and effectiveness of the proposed approach.展开更多
A distributed generation system(DG)has several benefits over a traditional centralized power system.However,the protection area in the case of the distributed generator requires special attention as it encounters stab...A distributed generation system(DG)has several benefits over a traditional centralized power system.However,the protection area in the case of the distributed generator requires special attention as it encounters stability loss,failure re-closure,fluctuations in voltage,etc.And thereby,it demands immediate attention in identifying the location&type of a fault without delay especially when occurred in a small,distributed generation system,as it would adversely affect the overall system and its operation.In the past,several methods were proposed for classification and localisation of a fault in a distributed generation system.Many of those methods were accurate in identifying location,but the accuracy in identifying the type of fault was not up to the acceptable mark.The proposed work here uses a shallow artificial neural network(sANN)model for identifying a particular type of fault that could happen in a specific distribution network when used in conjunction with distributed generators.Firstly,a distribution network consisting of two similar distributed generators(DG1 and DG2),one grid,and a 100 Km distribution line is modeled.Thereafter,different voltages and currents corresponding to various faults(line to line,line to ground)at different locations are tabulated,resulting in a matrix of 500×18 inputs.Secondly,the sANN is formulated for identifying the types of faults in the system in which the above-obtained data is used to train,validate,and test the neural network.The overall result shows an unprecedented almost zero percent error in identifying the type of the faults.展开更多
In distributed storage systems,file access efficiency has an important impact on the real-time nature of information forensics.As a popular approach to improve file accessing efficiency,prefetching model can fetches d...In distributed storage systems,file access efficiency has an important impact on the real-time nature of information forensics.As a popular approach to improve file accessing efficiency,prefetching model can fetches data before it is needed according to the file access pattern,which can reduce the I/O waiting time and increase the system concurrency.However,prefetching model needs to mine the degree of association between files to ensure the accuracy of prefetching.In the massive small file situation,the sheer volume of files poses a challenge to the efficiency and accuracy of relevance mining.In this paper,we propose a massive files prefetching model based on LSTM neural network with cache transaction strategy to improve file access efficiency.Firstly,we propose a file clustering algorithm based on temporal locality and spatial locality to reduce the computational complexity.Secondly,we propose a definition of cache transaction according to files occurrence in cache instead of time-offset distance based methods to extract file block feature accurately.Lastly,we innovatively propose a file access prediction algorithm based on LSTM neural network which predict the file that have high possibility to be accessed.Experiments show that compared with the traditional LRU and the plain grouping methods,the proposed model notably increase the cache hit rate and effectively reduces the I/O wait time.展开更多
An approach to analyze the seismic reliability of water distribution networks by combining a hydraulic analysis with a first-order reliability method (FORM), is proposed in this paper. The hydraulic analysis method ...An approach to analyze the seismic reliability of water distribution networks by combining a hydraulic analysis with a first-order reliability method (FORM), is proposed in this paper. The hydraulic analysis method for normal conditions is modified to accommodate the special conditions necessary to perform a seismic hydraulic analysis. In order to calculate the leakage area and leaking flow of the pipelines in the hydraulic analysis method, a new leakage model established from the seismic response analysis of buried pipelines is presented. To validate the proposed approach, a network with 17 nodes and 24 pipelines is investigated in detail. The approach is also applied to an actual project consisting of 463 nodes and 767 pipelines. The results show that the proposed approach achieves satisfactory results in analyzing the seismic reliability of large-scale water distribution networks.展开更多
In this paper,we present a review of the current literature on distributed(or partially decentralized) control of chemical process networks.In particular,we focus on recent developments in distributed model predictive...In this paper,we present a review of the current literature on distributed(or partially decentralized) control of chemical process networks.In particular,we focus on recent developments in distributed model predictive control,in the context of the specific challenges faced in the control of chemical process networks.The paper is concluded with some open problems and some possible future research directions in the area.展开更多
Industrial noise can be successfully mitigated with the combined use of passive and Active Noise Control (ANC) strategies. In a noisy area, a practical solution for noise attenuation may include both the use of baffle...Industrial noise can be successfully mitigated with the combined use of passive and Active Noise Control (ANC) strategies. In a noisy area, a practical solution for noise attenuation may include both the use of baffles and ANC. When the operator is required to stay in movement in a delimited spatial area, conventional ANC is usually not able to adequately cancel the noise over the whole area. New control strategies need to be devised to achieve acceptable spatial coverage. A three-dimensional actuator model is proposed in this paper. Active Noise Control (ANC) usually requires a feedback noise measurement for the proper response of the loop controller. In some situations, especially where the real-time tridimensional positioning of a feedback transducer is unfeasible, the availability of a 3D precise noise level estimator is indispensable. In our previous works [1,2], using a vibrating signal of the primary source of noise as an input reference for spatial noise level prediction proved to be a very good choice. Another interesting aspect observed in those previous works was the need for a variable-structure linear model, which is equivalent to a sort of a nonlinear model, with unknown analytical equivalence until now. To overcome this in this paper we propose a model structure based on an Artificial Neural Network (ANN) as a nonlinear black-box model to capture the dynamic nonlinear behaveior of the investigated process. This can be used in a future closed loop noise cancelling strategy. We devise an ANN architecture and a corresponding training methodology to cope with the problem, and a MISO (Multi-Input Single-Output) model structure is used in the identification of the system dynamics. A metric is established to compare the obtained results with other works elsewhere. The results show that the obtained model is consistent and it adequately describes the main dynamics of the studied phenomenon, showing that the MISO approach using an ANN is appropriate for the simulation of the investigated process. A clear conclusion is reached highlighting the promising results obtained using this kind of modeling for ANC.展开更多
A systematic approach is proposed to the theme of safety,reliability and global quality of complex networks(material and immaterial)by means of special mathematical tools that allow an adequate geometric characterizat...A systematic approach is proposed to the theme of safety,reliability and global quality of complex networks(material and immaterial)by means of special mathematical tools that allow an adequate geometric characterization and study of the operation,even in the presence of multiple obstacles along the path.To that end,applying the theory of graphs to the problem under study and using a special mathematical model based on stochastic geometry,in this article we consider some regular lattices in which it is possible to schematize the elements of the network,with the fundamental cell with six,eight or 2(n+2)obstacles,calculating the probability of Laplace.In this way it is possible to measure the“degree of impedance”exerted by the anomalies along the network by the obstacles examined.The method can be extended to other regular and/or irregular geometric figures,whose union together constitutes the examined network,allowing to optimize the functioning of the complex system considered.展开更多
Although machine learning(ML)has emerged as a powerful tool for rapidly assessing grid contingencies,prior studies have largely considered a static grid topology in their analyses.This limits their application,since t...Although machine learning(ML)has emerged as a powerful tool for rapidly assessing grid contingencies,prior studies have largely considered a static grid topology in their analyses.This limits their application,since they need to be re-trained for every new topology.This paper explores the development of generalizable graph convolutional network(GCN)models by pre-training them across a wide range of grid topologies and contingency types.We found that a GCN model with auto-regressive moving average(ARMA)layers with a line graph representation of the grid offered the best predictive performance in predicting voltage magnitudes(VM)and voltage angles(VA).We introduced the concept of phantom nodes to consider disparate grid topologies with a varying number of nodes and lines.For pre-training the GCN ARMA model across a variety of topologies,distributed graphics processing unit(GPU)computing afforded us significant training scalability.The predictive performance of this model on grid topologies that were part of the training data is substantially better than the direct current(DC)approximation.Although direct application of the pre-trained model to topologies that are not part of the grid is not particularly satisfactory,fine-tuning with small amounts of data from a specific topology of interest significantly improves predictive performance.In the context of foundational models in ML,this paper highlights the feasibility of training large-scale GNN models to assess the reliability of power grids by considering a wide variety of grid topologies and contingency types.展开更多
In this paper, a novel reconfiguration technique is developed in the context of a fault-tolerant Networked Control System (NCS) in two train wagons. All sensors, controllers and actuators in both wagons are connected ...In this paper, a novel reconfiguration technique is developed in the context of a fault-tolerant Networked Control System (NCS) in two train wagons. All sensors, controllers and actuators in both wagons are connected on top of a single Gigabit Ethernet network. The network also carries wired and wireless entertainment loads. A Markov model is used to prove that this reconfiguration technique reduces the effect of a failure in the error detection and switching mechanisms on the reliability of the control function. All calculations are based on closed-form solutions and verified using the SHARPE software package.展开更多
To improve the computational efficiency and accuracy of multi-objective reliability estimation for aerospace engineering structural systems,the Intelligent Vectorial Surrogate Modeling(IVSM)concept is presented by fus...To improve the computational efficiency and accuracy of multi-objective reliability estimation for aerospace engineering structural systems,the Intelligent Vectorial Surrogate Modeling(IVSM)concept is presented by fusing the compact support region,surrogate modeling methods,matrix theory,and Bayesian optimization strategy.In this concept,the compact support region is employed to select effective modeling samples;the surrogate modeling methods are employed to establish a functional relationship between input variables and output responses;the matrix theory is adopted to establish the vector and cell arrays of modeling parameters and synchronously determine multi-objective limit state functions;the Bayesian optimization strategy is utilized to search for the optimal hyperparameters for modeling.Under this concept,the Intelligent Vectorial Neural Network(IVNN)method is proposed based on deep neural network to realize the reliability analysis of multi-objective aerospace engineering structural systems synchronously.The multioutput response function approximation problem and two engineering application cases(i.e.,landing gear brake system temperature and aeroengine turbine blisk multi-failures)are used to verify the applicability of IVNN method.The results indicate that the proposed approach holds advantages in modeling properties and simulation performances.The efforts of this paper can offer a valuable reference for the improvement of multi-objective reliability assessment theory.展开更多
In this paper,we propose an observer-based algorithm for balancing the state-of-charge(SoC)among battery units in a battery energy storage system(BESS).The dynamical behaviour of a battery unit is approximated by an e...In this paper,we propose an observer-based algorithm for balancing the state-of-charge(SoC)among battery units in a battery energy storage system(BESS).The dynamical behaviour of a battery unit is approximated by an equivalent circuit model,based on which a nonlinear SoC observer can be constructed.Power distribution laws are designed for the battery units according to the states of the battery units,the average battery state,and the average power demand.Distributed estimation algorithms for the average battery state and the average power demand,as well as SoC observers,are constructed to implement them.The BESS is shown to achieve SoC balancing among all its battery units while satisfying the power demand,as long as mild conditions on the underlying communication network and on the power demand are met.Simulation results are presented to demonstrate the effectiveness of the proposed algorithm.展开更多
The kinetic model is the theoretical basis for optimizing the structure and operation performance of vibration screening devices.In this paper,a biological neurodynamic equation and neural connections were established...The kinetic model is the theoretical basis for optimizing the structure and operation performance of vibration screening devices.In this paper,a biological neurodynamic equation and neural connections were established according to the motion and interaction properties of the material under vibration excitation.The material feeding to the screen and the material passing through apertures were considered as excitatory and inhibitory inputs,respectively,and the generated stable neural activity landscape was used to describe the material distribution on the 2D screen surface.The dynamic process of material vibration screening was simulated using discrete element method(DEM).By comparing the similarity between the material distribution established using biological neural network(BNN)and that obtained using DEM simulation,the optimum coefficients of BNN model under a certain screening parameter were determined,that is,one relationship between the BNN model coefficients and the screening operation parameters was established.Different screening parameters were randomly selected,and the corresponding relationships were established as a database.Then,with straw/grain ratio,aperture diameter,inclination angle,vibration strength in normal and tangential directions as inputs,five independent adaptive neuro-fuzzy inference systems(ANFIS)were established to predict the optimum BNN model coefficients,respectively.The training results indicated that ANFIS models had good stability and accuracy.The flexibility and adaptability of the proposed BNN method was demonstrated by modeling material distribution under complex feeding conditions such as multiple regions and non-uniform rate.展开更多
High penetration of distributed renewable energy promotes the development of an active distribution network(ADN).The power flow calculation is the basis of ADN analysis.This paper proposes an approximate linear three-...High penetration of distributed renewable energy promotes the development of an active distribution network(ADN).The power flow calculation is the basis of ADN analysis.This paper proposes an approximate linear three-phase power flow model for an ADN with the consideration of the ZIP model of the loads and PV nodes.The proposed method is not limited to radial topology and can handle high R/X ratio branches.Case studies on the IEEE 37-node distribution network show a high accuracy and the proposed method is applicable to practical uses such as linear or convex optimal power flow of the ADN.展开更多
Risk precontrol management system of coal mines safety( RPMSCS) provides a set of preventive safety management strategy for high-risk coal industries, which has captured extensive attentions. Fundamentally,there are s...Risk precontrol management system of coal mines safety( RPMSCS) provides a set of preventive safety management strategy for high-risk coal industries, which has captured extensive attentions. Fundamentally,there are several membership systems with subsystems in the management system, and the subsystem reliability has an important influence on the management system performance. Through analyzing the structure characteristics of the management system,the phase type distribution was employed to analyze its subsystem reliability by considering repair process and three states including working,fail-abnormal,and fail-emergency states. The reliability indices of the subsystem were derived respectively,including the probabilities that the subsystem in three states,mean time to the first failure, mean time to first failemergency,mean working time to first fail-emergency,and mean maintenance time to the first fail-emergency, are derived respectively. The probabilities of the membership systems and the management system in three states were also derived. Some numerical examples were used to show the procedures. The result is important for better understanding the management system operation and improving its operational performance from the respect of system reliability.展开更多
基金National Natural Science Foundation of China(No.61203184)
文摘A system reliability model based on Bayesian network(BN)is built via an evolutionary strategy called dual genetic algorithm(DGA).BN is a probabilistic approach to analyze relationships between stochastic events.In contrast with traditional methods where BN model is built by professionals,DGA is proposed for the automatic analysis of historical data and construction of BN for the estimation of system reliability.The whole solution space of BN structures is searched by DGA and a more accurate BN model is obtained.Efficacy of the proposed method is shown by some literature examples.
文摘In this paper,a resilient distributed control scheme against replay attacks for multi-agent networked systems subject to input and state constraints is proposed.The methodological starting point relies on a smart use of predictive arguments with a twofold aim:1)Promptly detect malicious agent behaviors affecting normal system operations;2)Apply specific control actions,based on predictive ideas,for mitigating as much as possible undesirable domino effects resulting from adversary operations.Specifically,the multi-agent system is topologically described by a leader-follower digraph characterized by a unique leader and set-theoretic receding horizon control ideas are exploited to develop a distributed algorithm capable to instantaneously recognize the attacked agent.Finally,numerical simulations are carried out to show benefits and effectiveness of the proposed approach.
文摘A distributed generation system(DG)has several benefits over a traditional centralized power system.However,the protection area in the case of the distributed generator requires special attention as it encounters stability loss,failure re-closure,fluctuations in voltage,etc.And thereby,it demands immediate attention in identifying the location&type of a fault without delay especially when occurred in a small,distributed generation system,as it would adversely affect the overall system and its operation.In the past,several methods were proposed for classification and localisation of a fault in a distributed generation system.Many of those methods were accurate in identifying location,but the accuracy in identifying the type of fault was not up to the acceptable mark.The proposed work here uses a shallow artificial neural network(sANN)model for identifying a particular type of fault that could happen in a specific distribution network when used in conjunction with distributed generators.Firstly,a distribution network consisting of two similar distributed generators(DG1 and DG2),one grid,and a 100 Km distribution line is modeled.Thereafter,different voltages and currents corresponding to various faults(line to line,line to ground)at different locations are tabulated,resulting in a matrix of 500×18 inputs.Secondly,the sANN is formulated for identifying the types of faults in the system in which the above-obtained data is used to train,validate,and test the neural network.The overall result shows an unprecedented almost zero percent error in identifying the type of the faults.
基金This work is supported by‘The Fundamental Research Funds for the Central Universities(Grant No.HIT.NSRIF.201714)’‘Weihai Science and Technology Development Program(2016DXGJMS15)’‘Key Research and Development Program in Shandong Provincial(2017GGX90103)’.
文摘In distributed storage systems,file access efficiency has an important impact on the real-time nature of information forensics.As a popular approach to improve file accessing efficiency,prefetching model can fetches data before it is needed according to the file access pattern,which can reduce the I/O waiting time and increase the system concurrency.However,prefetching model needs to mine the degree of association between files to ensure the accuracy of prefetching.In the massive small file situation,the sheer volume of files poses a challenge to the efficiency and accuracy of relevance mining.In this paper,we propose a massive files prefetching model based on LSTM neural network with cache transaction strategy to improve file access efficiency.Firstly,we propose a file clustering algorithm based on temporal locality and spatial locality to reduce the computational complexity.Secondly,we propose a definition of cache transaction according to files occurrence in cache instead of time-offset distance based methods to extract file block feature accurately.Lastly,we innovatively propose a file access prediction algorithm based on LSTM neural network which predict the file that have high possibility to be accessed.Experiments show that compared with the traditional LRU and the plain grouping methods,the proposed model notably increase the cache hit rate and effectively reduces the I/O wait time.
基金Natural Science Funds for the Innovative ResearchGroup of China Under Grant No.50321803
文摘An approach to analyze the seismic reliability of water distribution networks by combining a hydraulic analysis with a first-order reliability method (FORM), is proposed in this paper. The hydraulic analysis method for normal conditions is modified to accommodate the special conditions necessary to perform a seismic hydraulic analysis. In order to calculate the leakage area and leaking flow of the pipelines in the hydraulic analysis method, a new leakage model established from the seismic response analysis of buried pipelines is presented. To validate the proposed approach, a network with 17 nodes and 24 pipelines is investigated in detail. The approach is also applied to an actual project consisting of 463 nodes and 767 pipelines. The results show that the proposed approach achieves satisfactory results in analyzing the seismic reliability of large-scale water distribution networks.
基金supported by Australian Research Council(ARC)Discovery Project(No.DP130103330)
文摘In this paper,we present a review of the current literature on distributed(or partially decentralized) control of chemical process networks.In particular,we focus on recent developments in distributed model predictive control,in the context of the specific challenges faced in the control of chemical process networks.The paper is concluded with some open problems and some possible future research directions in the area.
基金CAPES and CNPq(Brazilian federal research agencies)for their financial support.
文摘Industrial noise can be successfully mitigated with the combined use of passive and Active Noise Control (ANC) strategies. In a noisy area, a practical solution for noise attenuation may include both the use of baffles and ANC. When the operator is required to stay in movement in a delimited spatial area, conventional ANC is usually not able to adequately cancel the noise over the whole area. New control strategies need to be devised to achieve acceptable spatial coverage. A three-dimensional actuator model is proposed in this paper. Active Noise Control (ANC) usually requires a feedback noise measurement for the proper response of the loop controller. In some situations, especially where the real-time tridimensional positioning of a feedback transducer is unfeasible, the availability of a 3D precise noise level estimator is indispensable. In our previous works [1,2], using a vibrating signal of the primary source of noise as an input reference for spatial noise level prediction proved to be a very good choice. Another interesting aspect observed in those previous works was the need for a variable-structure linear model, which is equivalent to a sort of a nonlinear model, with unknown analytical equivalence until now. To overcome this in this paper we propose a model structure based on an Artificial Neural Network (ANN) as a nonlinear black-box model to capture the dynamic nonlinear behaveior of the investigated process. This can be used in a future closed loop noise cancelling strategy. We devise an ANN architecture and a corresponding training methodology to cope with the problem, and a MISO (Multi-Input Single-Output) model structure is used in the identification of the system dynamics. A metric is established to compare the obtained results with other works elsewhere. The results show that the obtained model is consistent and it adequately describes the main dynamics of the studied phenomenon, showing that the MISO approach using an ANN is appropriate for the simulation of the investigated process. A clear conclusion is reached highlighting the promising results obtained using this kind of modeling for ANC.
基金Supported by National Natural Science Foundation of China (61034005, 60974071), Program for New Century Excellent Talents in University (NCET-08-0101), and Fundamental Research Funds for the Central Universities (N100104102, Nl10604007)
文摘A systematic approach is proposed to the theme of safety,reliability and global quality of complex networks(material and immaterial)by means of special mathematical tools that allow an adequate geometric characterization and study of the operation,even in the presence of multiple obstacles along the path.To that end,applying the theory of graphs to the problem under study and using a special mathematical model based on stochastic geometry,in this article we consider some regular lattices in which it is possible to schematize the elements of the network,with the fundamental cell with six,eight or 2(n+2)obstacles,calculating the probability of Laplace.In this way it is possible to measure the“degree of impedance”exerted by the anomalies along the network by the obstacles examined.The method can be extended to other regular and/or irregular geometric figures,whose union together constitutes the examined network,allowing to optimize the functioning of the complex system considered.
基金supported through the INL Laboratory Directed Research&Development(LDRD)Program under DOE Idaho Operations Office Contract DE-AC07-05ID14517This research made use of the resources of the High-Performance Computing Center at INL,which is supported by the U.S.Department of Energy’s Office of Nuclear Energy and the Nuclear Science User Facilities under contract no.DE-AC07-05ID14517.
文摘Although machine learning(ML)has emerged as a powerful tool for rapidly assessing grid contingencies,prior studies have largely considered a static grid topology in their analyses.This limits their application,since they need to be re-trained for every new topology.This paper explores the development of generalizable graph convolutional network(GCN)models by pre-training them across a wide range of grid topologies and contingency types.We found that a GCN model with auto-regressive moving average(ARMA)layers with a line graph representation of the grid offered the best predictive performance in predicting voltage magnitudes(VM)and voltage angles(VA).We introduced the concept of phantom nodes to consider disparate grid topologies with a varying number of nodes and lines.For pre-training the GCN ARMA model across a variety of topologies,distributed graphics processing unit(GPU)computing afforded us significant training scalability.The predictive performance of this model on grid topologies that were part of the training data is substantially better than the direct current(DC)approximation.Although direct application of the pre-trained model to topologies that are not part of the grid is not particularly satisfactory,fine-tuning with small amounts of data from a specific topology of interest significantly improves predictive performance.In the context of foundational models in ML,this paper highlights the feasibility of training large-scale GNN models to assess the reliability of power grids by considering a wide variety of grid topologies and contingency types.
文摘In this paper, a novel reconfiguration technique is developed in the context of a fault-tolerant Networked Control System (NCS) in two train wagons. All sensors, controllers and actuators in both wagons are connected on top of a single Gigabit Ethernet network. The network also carries wired and wireless entertainment loads. A Markov model is used to prove that this reconfiguration technique reduces the effect of a failure in the error detection and switching mechanisms on the reliability of the control function. All calculations are based on closed-form solutions and verified using the SHARPE software package.
基金supported by the National Natural Science Foundation of China(No.51875465)the Shaanxi Province Postdoctoral Research Project Funding,Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University(No.CX2023002)+1 种基金the Civil Aircraft Scientific Research Projectthe Fund of Shanghai Engineering Research Center of Civil Aircraft Health Monitoring(No.GCZX-2022-01).
文摘To improve the computational efficiency and accuracy of multi-objective reliability estimation for aerospace engineering structural systems,the Intelligent Vectorial Surrogate Modeling(IVSM)concept is presented by fusing the compact support region,surrogate modeling methods,matrix theory,and Bayesian optimization strategy.In this concept,the compact support region is employed to select effective modeling samples;the surrogate modeling methods are employed to establish a functional relationship between input variables and output responses;the matrix theory is adopted to establish the vector and cell arrays of modeling parameters and synchronously determine multi-objective limit state functions;the Bayesian optimization strategy is utilized to search for the optimal hyperparameters for modeling.Under this concept,the Intelligent Vectorial Neural Network(IVNN)method is proposed based on deep neural network to realize the reliability analysis of multi-objective aerospace engineering structural systems synchronously.The multioutput response function approximation problem and two engineering application cases(i.e.,landing gear brake system temperature and aeroengine turbine blisk multi-failures)are used to verify the applicability of IVNN method.The results indicate that the proposed approach holds advantages in modeling properties and simulation performances.The efforts of this paper can offer a valuable reference for the improvement of multi-objective reliability assessment theory.
基金supported in part by the US Office of Naval Research under grants N00014-20-1-2858,N00014-22-1-2001,and N00014-23-1-2124.
文摘In this paper,we propose an observer-based algorithm for balancing the state-of-charge(SoC)among battery units in a battery energy storage system(BESS).The dynamical behaviour of a battery unit is approximated by an equivalent circuit model,based on which a nonlinear SoC observer can be constructed.Power distribution laws are designed for the battery units according to the states of the battery units,the average battery state,and the average power demand.Distributed estimation algorithms for the average battery state and the average power demand,as well as SoC observers,are constructed to implement them.The BESS is shown to achieve SoC balancing among all its battery units while satisfying the power demand,as long as mild conditions on the underlying communication network and on the power demand are met.Simulation results are presented to demonstrate the effectiveness of the proposed algorithm.
基金supported by the National Natural Science Foundation of China(grant No.52375247)Natural Science Foundation of Jiangsu Province(grant No.BK20201421)+3 种基金Graduate Research and Innovation Projects of Jiangsu Province(grant No.KYCX21-3380)Jiangsu Agricultural Science and Technology Independent Innovation Fund(grant No.CX(22)3090)Taizhou Science and Technology Project(grant No.TN202101)a Project Funded by the Priority Academic Program Development of Jiangsu Higher。
文摘The kinetic model is the theoretical basis for optimizing the structure and operation performance of vibration screening devices.In this paper,a biological neurodynamic equation and neural connections were established according to the motion and interaction properties of the material under vibration excitation.The material feeding to the screen and the material passing through apertures were considered as excitatory and inhibitory inputs,respectively,and the generated stable neural activity landscape was used to describe the material distribution on the 2D screen surface.The dynamic process of material vibration screening was simulated using discrete element method(DEM).By comparing the similarity between the material distribution established using biological neural network(BNN)and that obtained using DEM simulation,the optimum coefficients of BNN model under a certain screening parameter were determined,that is,one relationship between the BNN model coefficients and the screening operation parameters was established.Different screening parameters were randomly selected,and the corresponding relationships were established as a database.Then,with straw/grain ratio,aperture diameter,inclination angle,vibration strength in normal and tangential directions as inputs,five independent adaptive neuro-fuzzy inference systems(ANFIS)were established to predict the optimum BNN model coefficients,respectively.The training results indicated that ANFIS models had good stability and accuracy.The flexibility and adaptability of the proposed BNN method was demonstrated by modeling material distribution under complex feeding conditions such as multiple regions and non-uniform rate.
基金supported in part by the National Key R&D Program of China(No.2016YFB0900100)the National Science Foundation of China(No.51325702,51677096).
文摘High penetration of distributed renewable energy promotes the development of an active distribution network(ADN).The power flow calculation is the basis of ADN analysis.This paper proposes an approximate linear three-phase power flow model for an ADN with the consideration of the ZIP model of the loads and PV nodes.The proposed method is not limited to radial topology and can handle high R/X ratio branches.Case studies on the IEEE 37-node distribution network show a high accuracy and the proposed method is applicable to practical uses such as linear or convex optimal power flow of the ADN.
文摘Risk precontrol management system of coal mines safety( RPMSCS) provides a set of preventive safety management strategy for high-risk coal industries, which has captured extensive attentions. Fundamentally,there are several membership systems with subsystems in the management system, and the subsystem reliability has an important influence on the management system performance. Through analyzing the structure characteristics of the management system,the phase type distribution was employed to analyze its subsystem reliability by considering repair process and three states including working,fail-abnormal,and fail-emergency states. The reliability indices of the subsystem were derived respectively,including the probabilities that the subsystem in three states,mean time to the first failure, mean time to first failemergency,mean working time to first fail-emergency,and mean maintenance time to the first fail-emergency, are derived respectively. The probabilities of the membership systems and the management system in three states were also derived. Some numerical examples were used to show the procedures. The result is important for better understanding the management system operation and improving its operational performance from the respect of system reliability.