期刊文献+
共找到10,577篇文章
< 1 2 250 >
每页显示 20 50 100
A Secured and Continuously Developing Methodology for Breast Cancer Image Segmentation via U-Net Based Architecture and Distributed Data Training
1
作者 Rifat Sarker Aoyon Ismail Hossain +1 位作者 M.Abdullah-Al-Wadud Jia Uddin 《Computer Modeling in Engineering & Sciences》 2025年第3期2617-2640,共24页
This research introduces a unique approach to segmenting breast cancer images using a U-Net-based architecture.However,the computational demand for image processing is very high.Therefore,we have conducted this resear... This research introduces a unique approach to segmenting breast cancer images using a U-Net-based architecture.However,the computational demand for image processing is very high.Therefore,we have conducted this research to build a system that enables image segmentation training with low-power machines.To accomplish this,all data are divided into several segments,each being trained separately.In the case of prediction,the initial output is predicted from each trained model for an input,where the ultimate output is selected based on the pixel-wise majority voting of the expected outputs,which also ensures data privacy.In addition,this kind of distributed training system allows different computers to be used simultaneously.That is how the training process takes comparatively less time than typical training approaches.Even after completing the training,the proposed prediction system allows a newly trained model to be included in the system.Thus,the prediction is consistently more accurate.We evaluated the effectiveness of the ultimate output based on four performance matrices:average pixel accuracy,mean absolute error,average specificity,and average balanced accuracy.The experimental results show that the scores of average pixel accuracy,mean absolute error,average specificity,and average balanced accuracy are 0.9216,0.0687,0.9477,and 0.8674,respectively.In addition,the proposed method was compared with four other state-of-the-art models in terms of total training time and usage of computational resources.And it outperformed all of them in these aspects. 展开更多
关键词 Breast cancer U-Net distributed training data privacy low-powerful machines
在线阅读 下载PDF
GF-3 data real-time processing method based on multi-satellite distributed data processing system 被引量:7
2
作者 YANG Jun CAO Yan-dong +2 位作者 SUN Guang-cai XING Meng-dao GUO Liang 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第3期842-852,共11页
Due to the limited scenes that synthetic aperture radar(SAR)satellites can detect,the full-track utilization rate is not high.Because of the computing and storage limitation of one satellite,it is difficult to process... Due to the limited scenes that synthetic aperture radar(SAR)satellites can detect,the full-track utilization rate is not high.Because of the computing and storage limitation of one satellite,it is difficult to process large amounts of data of spaceborne synthetic aperture radars.It is proposed to use a new method of networked satellite data processing for improving the efficiency of data processing.A multi-satellite distributed SAR real-time processing method based on Chirp Scaling(CS)imaging algorithm is studied in this paper,and a distributed data processing system is built with field programmable gate array(FPGA)chips as the kernel.Different from the traditional CS algorithm processing,the system divides data processing into three stages.The computing tasks are reasonably allocated to different data processing units(i.e.,satellites)in each stage.The method effectively saves computing and storage resources of satellites,improves the utilization rate of a single satellite,and shortens the data processing time.Gaofen-3(GF-3)satellite SAR raw data is processed by the system,with the performance of the method verified. 展开更多
关键词 synthetic aperture radar full-track utilization rate distributed data processing CS imaging algorithm field programmable gate array Gaofen-3
在线阅读 下载PDF
A Robust Framework for Multimodal Sentiment Analysis with Noisy Labels Generated from Distributed Data Annotation 被引量:1
3
作者 Kai Jiang Bin Cao Jing Fan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期2965-2984,共20页
Multimodal sentiment analysis utilizes multimodal data such as text,facial expressions and voice to detect people’s attitudes.With the advent of distributed data collection and annotation,we can easily obtain and sha... Multimodal sentiment analysis utilizes multimodal data such as text,facial expressions and voice to detect people’s attitudes.With the advent of distributed data collection and annotation,we can easily obtain and share such multimodal data.However,due to professional discrepancies among annotators and lax quality control,noisy labels might be introduced.Recent research suggests that deep neural networks(DNNs)will overfit noisy labels,leading to the poor performance of the DNNs.To address this challenging problem,we present a Multimodal Robust Meta Learning framework(MRML)for multimodal sentiment analysis to resist noisy labels and correlate distinct modalities simultaneously.Specifically,we propose a two-layer fusion net to deeply fuse different modalities and improve the quality of the multimodal data features for label correction and network training.Besides,a multiple meta-learner(label corrector)strategy is proposed to enhance the label correction approach and prevent models from overfitting to noisy labels.We conducted experiments on three popular multimodal datasets to verify the superiority of ourmethod by comparing it with four baselines. 展开更多
关键词 distributed data collection multimodal sentiment analysis meta learning learn with noisy labels
在线阅读 下载PDF
A Distributed Data Mining System Based on Multi-agent Technology 被引量:1
4
作者 郭黎明 张艳珍 《Journal of Donghua University(English Edition)》 EI CAS 2006年第6期80-83,共4页
Distributed Data Mining is expected to discover preciously unknown, implicit and valuable information from massive data set inherently distributed over a network. In recent years several approaches to distributed data... Distributed Data Mining is expected to discover preciously unknown, implicit and valuable information from massive data set inherently distributed over a network. In recent years several approaches to distributed data mining have been developed, but only a few of them make use of intelligent agents. This paper provides the reason for applying Multi-Agent Technology in Distributed Data Mining and presents a Distributed Data Mining System based on Multi-Agent Technology that deals with heterogeneity in such environment. Based on the advantages of both the CS model and agent-based model, the system is being able to address the specific concern of increasing scalability and enhancing performance. 展开更多
关键词 distributed data Mining MULTI-AGENT CORBA Client/Server.
在线阅读 下载PDF
Remote Control for the HT-7 Distributed Data Acquisition System
5
作者 岳冬利 罗家融 +1 位作者 王枫 朱琳 《Plasma Science and Technology》 SCIE EI CAS CSCD 2003年第4期1881-1886,共6页
HT-7 is the first superconducting tokamak device for fusion research in China. Many experiments have been done in the machine since 1994, and lots of satisfactory results have been achieved in the fusion research fiel... HT-7 is the first superconducting tokamak device for fusion research in China. Many experiments have been done in the machine since 1994, and lots of satisfactory results have been achieved in the fusion research field on HT-7 tokamak [1]. With the development of fusion research, remote control of experiment becomes more and more important to improve experimental efficiency and expand research results. This paper will describe a RCS (Remote Control System), the combined model of Browser/Server and Client/Server, based on Internet of HT-7 distributed data acquisition system (HT7DAS). By means of RCS, authorized users all over the world can control and configure HT7DAS remotely. The RCS is designed to improve the flexibility, opening, reliability and efficiency of HT7DAS. In the paper, the whole process of design along with implementation of the system and some key items are discussed in detail. The System has been successfully operated during HT-7 experiment in 2002 campaign period. 展开更多
关键词 TOKAMAK HT-7 distributed data acquisition
在线阅读 下载PDF
Refreshing File Aggregate of Distributed Data Warehouse in Sets of Electric Apparatus
6
作者 于宝琴 王太勇 +3 位作者 张君 周明 何改云 李国琴 《Transactions of Tianjin University》 EI CAS 2006年第3期174-179,共6页
Integrating heterogeneous data sources is a precondition to share data for enterprises. Highly-efficient data updating can both save system expenses, and offer real-time data. It is one of the hot issues to modify dat... Integrating heterogeneous data sources is a precondition to share data for enterprises. Highly-efficient data updating can both save system expenses, and offer real-time data. It is one of the hot issues to modify data rapidly in the pre-processing area of the data warehouse. An extract transform loading design is proposed based on a new data algorithm called Diff-Match,which is developed by utilizing mode matching and data-filtering technology. It can accelerate data renewal, filter the heterogeneous data, and seek out different sets of data. Its efficiency has been proved by its successful application in an enterprise of electric apparatus groups. 展开更多
关键词 distributed data warehouse Diff-Match algorithm KMP algorithm file aggregates extract transform loading
在线阅读 下载PDF
A New Approach for Knowledge Discovery in Distributed Databases Using Fragmented Data Storage Model
7
作者 Masoud Pesaran Behbahani Islam Choudhury Souheil Khaddaj 《Chinese Business Review》 2013年第12期834-845,共12页
Since the early 1990, significant progress in database technology has provided new platform for emerging new dimensions of data engineering. New models were introduced to utilize the data sets stored in the new genera... Since the early 1990, significant progress in database technology has provided new platform for emerging new dimensions of data engineering. New models were introduced to utilize the data sets stored in the new generations of databases. These models have a deep impact on evolving decision-support systems. But they suffer a variety of practical problems while accessing real-world data sources. Specifically a type of data storage model based on data distribution theory has been increasingly used in recent years by large-scale enterprises, while it is not compatible with existing decision-support models. This data storage model stores the data in different geographical sites where they are more regularly accessed. This leads to considerably less inter-site data transfer that can reduce data security issues in some circumstances and also significantly improve data manipulation transactions speed. The aim of this paper is to propose a new approach for supporting proactive decision-making that utilizes a workable data source management methodology. The new model can effectively organize and use complex data sources, even when they are distributed in different sites in a fragmented form. At the same time, the new model provides a very high level of intellectual management decision-support by intelligent use of the data collections through utilizing new smart methods in synthesizing useful knowledge. The results of an empirical study to evaluate the model are provided. 展开更多
关键词 data mining decision-support system distributed databases knowledge discovery in database (KDD)
在线阅读 下载PDF
Research and Application of Distributed Data Mining Method for Improving Rural Power Grid Enterprises in Production and Operation Status Evaluation
8
作者 Gao Xiu-yun Xiang Wen Fang Jun-long 《Journal of Northeast Agricultural University(English Edition)》 CAS 2019年第2期87-96,共10页
With the reform of rural network enterprise system,the speed of transfer property rights in rural power enterprises is accelerated.The evaluation of the operation and development status of rural power enterprises is d... With the reform of rural network enterprise system,the speed of transfer property rights in rural power enterprises is accelerated.The evaluation of the operation and development status of rural power enterprises is directly related to the future development and investment direction of rural power enterprises.At present,the evaluation of the production and operation of rural network enterprises and the development status of power network only relies on the experience of the evaluation personnel,sets the reference index,and forms the evaluation results through artificial scoring.Due to the strong subjective consciousness of the evaluation results,the practical guiding significance is weak.Therefore,distributed data mining method in rural power enterprises status evaluation was proposed which had been applied in many fields,such as food science,economy or chemical industry.The distributed mathematical model was established by using principal component analysis(PCA)and regression analysis.By screening various technical indicators and determining their relevance,the reference value of evaluation results was improved.Combined with statistical program for social sciences(SPSS)data analysis software,the operation status of rural network enterprises was evaluated,and the rationality,effectiveness and economy of the evaluation was verified through comparison with current evaluation results and calculation examples of actual grid operation data. 展开更多
关键词 RURAL power grid PRODUCTION and management distributed data mining STATISTICAL program for SOCIAL sciences(SPSS19)
在线阅读 下载PDF
Distributed Data Acquisition and Control by Software Bus 被引量:2
9
作者 Cecil Bruce-Boye Dmitry A.Kazakov 《自动化博览》 2004年第5期98-99,共2页
Increasing global competition forces manufacturers of products from alltechnical fields to guarantee a high product quality for a long period of time. At thesame time it is necessary to minimize production costs. In o... Increasing global competition forces manufacturers of products from alltechnical fields to guarantee a high product quality for a long period of time. At thesame time it is necessary to minimize production costs. In order to meet all theserequirements, on-line data acquisition and processing are of increasing importancein distributed automation systems. A software bus operating on industrial Ethernethas an ability to minimize operating costs by offering easy installation, scalability,high degree of reliability and remote monitoring and control. 展开更多
关键词 工业以太网 现场总线 CAN总线 OPC
在线阅读 下载PDF
The Design and Implementation of a Distributed Data Acquisition、Monitoring & Processing System (DDAMAP)
10
作者 Guoshun Zhou Hua Shen HuiQi Yan 《软件工程师》 2011年第2期123-127,共5页
This report presents the design and implementation of a Distributed Data Acquisition、 Monitoring and Processing System (DDAMAP)。It is assumed that operations of a factory are organized into two-levels: client machin... This report presents the design and implementation of a Distributed Data Acquisition、 Monitoring and Processing System (DDAMAP)。It is assumed that operations of a factory are organized into two-levels: client machines at plant-level collect real-time raw data from sensors and measurement instrumentations and transfer them to a central processor over the Ethernets, and the central processor handles tasks of real-time data processing and monitoring. This system utilizes the computation power of Intel T2300 dual-core processor and parallel computations supported by multi-threading techniques. Our experiments show that these techniques can significantly improve the system performance and are viable solutions to real-time high-speed data processing. 展开更多
关键词 软件 数据处理 传感器 仪表
在线阅读 下载PDF
Distributed anonymous data perturbation method for privacy-preserving data mining 被引量:4
11
作者 Feng LI Jin MA Jian-hua LI 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2009年第7期952-963,共12页
Privacy is a critical requirement in distributed data mining. Cryptography-based secure multiparty computation is a main approach for privacy preserving. However, it shows poor performance in large scale distributed s... Privacy is a critical requirement in distributed data mining. Cryptography-based secure multiparty computation is a main approach for privacy preserving. However, it shows poor performance in large scale distributed systems. Meanwhile, data perturbation techniques are comparatively efficient but are mainly used in centralized privacy-preserving data mining (PPDM). In this paper, we propose a light-weight anonymous data perturbation method for efficient privacy preserving in distributed data mining. We first define the privacy constraints for data perturbation based PPDM in a semi-honest distributed environment. Two protocols are proposed to address these constraints and protect data statistics and the randomization process against collusion attacks: the adaptive privacy-preserving summary protocol and the anonymous exchange protocol. Finally, a distributed data perturbation framework based on these protocols is proposed to realize distributed PPDM. Experiment results show that our approach achieves a high security level and is very efficient in a large scale distributed environment. 展开更多
关键词 Privacy-preserving data mining (PPDM) distributed data mining data perturbation
原文传递
Designing a Model to Study Data Mining in Distributed Environment 被引量:2
12
作者 Md. Abadur Rahman Masud Karim 《Journal of Data Analysis and Information Processing》 2021年第1期23-29,共7页
To make business policy, market analysis, corporate decision, fraud detection, etc., we have to analyze and work with huge amount of data. Generally, such data are taken from different sources. Researchers are using d... To make business policy, market analysis, corporate decision, fraud detection, etc., we have to analyze and work with huge amount of data. Generally, such data are taken from different sources. Researchers are using data mining to perform such tasks. Data mining techniques are used to find hidden information from large data source. Data mining is using for various fields: Artificial intelligence, Bank, health and medical, corruption, legal issues, corporate business, marketing, etc. Special interest is given to associate rules, data mining algorithms, decision tree and distributed approach. Data is becoming larger and spreading geographically. So it is difficult to find better result from only a central data source. For knowledge discovery, we have to work with distributed database. On the other hand, security and privacy considerations are also another factor for de-motivation of working with centralized data. For this reason, distributed database is essential for future processing. In this paper, we have proposed a framework to study data mining in distributed environment. The paper presents a framework to bring out actionable knowledge. We have shown some level by which we can generate actionable knowledge. Possible tools and technique for these levels are discussed. 展开更多
关键词 data Mining distributed database Knowledge Discovery Classification Algorithm
在线阅读 下载PDF
Content-Related Repairing of Inconsistencies in Distributed Data
13
作者 Yue-Feng Du De-Rong Shen +2 位作者 Tie-Zheng Nie Yue Kou Ge Yu 《Journal of Computer Science & Technology》 SCIE EI CSCD 2016年第4期741-758,共18页
Conditional functional dependencies (CFDs) are a critical technique for detecting inconsistencies while they may ignore some potential inconsistencies without considering the content relationship of data. Content-re... Conditional functional dependencies (CFDs) are a critical technique for detecting inconsistencies while they may ignore some potential inconsistencies without considering the content relationship of data. Content-related conditional functional dependencies (CCFDs) are a type of special CFDs, which combine content-related CFDs and detect potential inconsistencies by putting content-related data together. In the process of cleaning inconsistencies, detection and repairing are interactive: 1) detection catches inconsistencies, 2) repairing corrects caught inconsistencies while may bring new incon- sistencies. Besides, data are often fragmented and distributed into multiple sites. It consequently costs expensive shipment for inconsistencies cleaning. In this paper, our aim is to repair inconsistencies in distributed content-related data. We propose a framework consisting of an inconsistencies detection method and an inconsistencies repairing method, which work iteratively. The detection method marks the violated CCFDs for computing the inconsistencies which should be repaired preferentially. Based on the repairing-cost model presented in this paper, we prove that the minimum-cost repairing using CCFDs is NP-complete. Therefore, the repairing method heuristically repairs the inconsistencies with minimum cost. To improve the efficiency and accuracy of repairing, we propose distinct values and rules sequences. Distinct values make less data shipments than real data for communication. Rules sequences determine appropriate repairing sequences to avoid some incorrect repairs. Our solution is proved to be more effective than CFDs by empirical evaluation on two real-life datasets. 展开更多
关键词 data quality management distributed consistency content relativity consistency repairing
原文传递
Distributed Computation Models for Data Fusion System Simulation
14
作者 张岩 曾涛 +1 位作者 龙腾 崔智社 《Journal of Beijing Institute of Technology》 EI CAS 2001年第3期291-297,共7页
An attempt has been made to develop a distributed software infrastructure model for onboard data fusion system simulation, which is also applied to netted radar systems, onboard distributed detection systems and advan... An attempt has been made to develop a distributed software infrastructure model for onboard data fusion system simulation, which is also applied to netted radar systems, onboard distributed detection systems and advanced C3I systems. Two architectures are provided and verified: one is based on pure TCP/IP protocol and C/S model, and implemented with Winsock, the other is based on CORBA (common object request broker architecture). The performance of data fusion simulation system, i.e. reliability, flexibility and scalability, is improved and enhanced by two models. The study of them makes valuable explore on incorporating the distributed computation concepts into radar system simulation techniques. 展开更多
关键词 radar system computer network data fusion SIMULATION distributed computation
在线阅读 下载PDF
Wide Area Analytics for Geographically Distributed Datacenters 被引量:1
15
作者 Siqi Ji Baochun Li 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2016年第2期125-135,共11页
Big data analytics, the process of organizing and analyzing data to get useful information, is one of the primary uses of cloud services today. Traditionally, collections of data are stored and processed in a single d... Big data analytics, the process of organizing and analyzing data to get useful information, is one of the primary uses of cloud services today. Traditionally, collections of data are stored and processed in a single datacenter. As the volume of data grows at a tremendous rate, it is less efficient for only one datacenter to handle such large volumes of data from a performance point of view. Large cloud service providers are deploying datacenters geographically around the world for better performance and availability. A widely used approach for analytics of gee-distributed data is the centralized approach, which aggregates all the raw data from local datacenters to a central datacenter. However, it has been observed that this approach consumes a significant amount of bandwidth, leading to worse performance. A number of mechanisms have been proposed to achieve optimal performance when data analytics are performed over geo-distributed datacenters. In this paper, we present a survey on the representative mechanisms proposed in the literature for wide area analytics. We discuss basic ideas, present proposed architectures and mechanisms, and discuss several examples to illustrate existing work. We point out the limitations of these mechanisms, give comparisons, and conclude with our thoughts on future research directions. 展开更多
关键词 big data ANALYTICS geo-distributed datacenters
原文传递
Consistent fusion for distributed multi-rate multi-sensor linear systems with unknown correlated measurement noises
16
作者 Peng WANG Hongbing JI +1 位作者 Yongquan ZHANG Zhigang ZHU 《Chinese Journal of Aeronautics》 2025年第7期389-407,共19页
This study investigates a consistent fusion algorithm for distributed multi-rate multi-sensor systems operating in feedback-memory configurations, where each sensor's sampling period is uniform and an integer mult... This study investigates a consistent fusion algorithm for distributed multi-rate multi-sensor systems operating in feedback-memory configurations, where each sensor's sampling period is uniform and an integer multiple of the state update period. The focus is on scenarios where the correlations among Measurement Noises(MNs) from different sensors are unknown. Firstly, a non-augmented local estimator that applies to sampling cases is designed to provide unbiased Local Estimates(LEs) at the fusion points. Subsequently, a measurement-equivalent approach is then developed to parameterize the correlation structure between LEs and reformulate LEs into a unified form, thereby constraining the correlations arising from MNs to an admissible range. Simultaneously, a family of upper bounds on the joint error covariance matrix of LEs is derived based on the constrained correlations, avoiding the need to calculate the exact error cross-covariance matrix of LEs. Finally, a sequential fusion estimator is proposed in the sense of Weighted Minimum Mean Square Error(WMMSE), and it is proven to be unbiased, consistent, and more accurate than the well-known covariance intersection method. Simulation results illustrate the effectiveness of the proposed algorithm by highlighting improvements in consistency and accuracy. 展开更多
关键词 distributed multi-rate multisensor system Sensor data fusion Correlated measurement noise Equivalent measurement consistent method
原文传递
MA-IDS: A Distributed Intrusion Detection System Based on Data Mining
17
作者 SUNJian-hua JINHai CHENHao HANZong-fen 《Wuhan University Journal of Natural Sciences》 CAS 2005年第1期111-114,共4页
Aiming at the shortcomings in intrusion detection systems (IDSs) used incommercial and research fields, we propose the MA-IDS system, a distributed intrusion detectionsystem based on data mining. In this model, misuse... Aiming at the shortcomings in intrusion detection systems (IDSs) used incommercial and research fields, we propose the MA-IDS system, a distributed intrusion detectionsystem based on data mining. In this model, misuse intrusion detection system CM1DS) and anomalyintrusion de-lection system (AIDS) are combined. Data mining is applied to raise detectionperformance, and distributed mechanism is employed to increase the scalability and efficiency. Host-and network-based mining algorithms employ an improved. Bayes-ian decision theorem that suits forreal security environment to minimize the risks incurred by false decisions. We describe the overallarchitecture of the MA-IDS system, and discuss specific design and implementation issue. 展开更多
关键词 intrusion detection data mining distributed system
在线阅读 下载PDF
Novel Data Placement Algorithm for Distributed Storage System Based on Fault-Tolerant Domain
18
作者 SHI Lianxing WANG Zhiheng LI Xiaoyong 《Journal of Shanghai Jiaotong university(Science)》 EI 2021年第4期463-470,共8页
The 3-replica redundancy strategy is widely used to solve the problem of data reliability in large-scale distributed storage systems. However, its storage capacity utilization is only 33%. In this paper, a data placem... The 3-replica redundancy strategy is widely used to solve the problem of data reliability in large-scale distributed storage systems. However, its storage capacity utilization is only 33%. In this paper, a data placement algorithm based on fault-tolerant domain (FTD) is proposed. Owing to the fine-grained design of the FTD, the data reliability of systems using two replicas is comparable to that of current mainstream systems using three replicas, and the capacity utilization is increased to 50%. Moreover, the proposed FTD provides a new concept for the design of distributed storage systems. Distributed storage systems can take FTDs as the units for data placement, data migration, data repair and so on. In addition, fault detection can be performed independently and concurrently within the FTDs. 展开更多
关键词 data reliability failure domain fault-tolerant domain data placement storage system distributed system
原文传递
A Distributed Covert Channel of the Packet Ordering Enhancement Model Based on Data Compression
19
作者 Lejun Zhang Xiaoyan Hu +5 位作者 Zhijie Zhang Weizheng Wang Tianwen Huang Donghai Guan Chunhui Zhao Seokhoon Kim 《Computers, Materials & Continua》 SCIE EI 2020年第9期2013-2030,共18页
Covert channel of the packet ordering is a hot research topic.Encryption technology is not enough to protect the security of both sides of communication.Covert channel needs to hide the transmission data and protect c... Covert channel of the packet ordering is a hot research topic.Encryption technology is not enough to protect the security of both sides of communication.Covert channel needs to hide the transmission data and protect content of communication.The traditional methods are usually to use proxy technology such as tor anonymous tracking technology to achieve hiding from the communicator.However,because the establishment of proxy communication needs to consume traffic,the communication capacity will be reduced,and in recent years,the tor technology often has vulnerabilities that led to the leakage of secret information.In this paper,the covert channel model of the packet ordering is applied into the distributed system,and a distributed covert channel of the packet ordering enhancement model based on data compression(DCCPOEDC)is proposed.The data compression algorithms are used to reduce the amount of data and transmission time.The distributed system and data compression algorithms can weaken the hidden statistical probability of information.Furthermore,they can enhance the unknowability of the data and weaken the time distribution characteristics of the data packets.This paper selected a compression algorithm suitable for DCCPOEDC and analyzed DCCPOEDC from anonymity,transmission efficiency,and transmission performance.According to the analysis results,it can be seen that DCCPOEDC optimizes the covert channel of the packet ordering,which saves the transmission time and improves the concealment compared with the original covert channel. 展开更多
关键词 Covert channels information hiding data compression distributed system
在线阅读 下载PDF
An Adaptive Privacy Preserving Framework for Distributed Association Rule Mining in Healthcare Databases
20
作者 Hasanien K.Kuba Mustafa A.Azzawi +2 位作者 Saad M.Darwish Oday A.Hassen Ansam A.Abdulhussein 《Computers, Materials & Continua》 SCIE EI 2023年第2期4119-4133,共15页
It is crucial,while using healthcare data,to assess the advantages of data privacy against the possible drawbacks.Data from several sources must be combined for use in many data mining applications.The medical practit... It is crucial,while using healthcare data,to assess the advantages of data privacy against the possible drawbacks.Data from several sources must be combined for use in many data mining applications.The medical practitioner may use the results of association rule mining performed on this aggregated data to better personalize patient care and implement preventive measures.Historically,numerous heuristics(e.g.,greedy search)and metaheuristics-based techniques(e.g.,evolutionary algorithm)have been created for the positive association rule in privacy preserving data mining(PPDM).When it comes to connecting seemingly unrelated diseases and drugs,negative association rules may be more informative than their positive counterparts.It is well-known that during negative association rules mining,a large number of uninteresting rules are formed,making this a difficult problem to tackle.In this research,we offer an adaptive method for negative association rule mining in vertically partitioned healthcare datasets that respects users’privacy.The applied approach dynamically determines the transactions to be interrupted for information hiding,as opposed to predefining them.This study introduces a novel method for addressing the problem of negative association rules in healthcare data mining,one that is based on the Tabu-genetic optimization paradigm.Tabu search is advantageous since it removes a huge number of unnecessary rules and item sets.Experiments using benchmark healthcare datasets prove that the discussed scheme outperforms state-of-the-art solutions in terms of decreasing side effects and data distortions,as measured by the indicator of hiding failure. 展开更多
关键词 distributed data mining evolutionary computation sanitization process healthcare informatics
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部