This research introduces a unique approach to segmenting breast cancer images using a U-Net-based architecture.However,the computational demand for image processing is very high.Therefore,we have conducted this resear...This research introduces a unique approach to segmenting breast cancer images using a U-Net-based architecture.However,the computational demand for image processing is very high.Therefore,we have conducted this research to build a system that enables image segmentation training with low-power machines.To accomplish this,all data are divided into several segments,each being trained separately.In the case of prediction,the initial output is predicted from each trained model for an input,where the ultimate output is selected based on the pixel-wise majority voting of the expected outputs,which also ensures data privacy.In addition,this kind of distributed training system allows different computers to be used simultaneously.That is how the training process takes comparatively less time than typical training approaches.Even after completing the training,the proposed prediction system allows a newly trained model to be included in the system.Thus,the prediction is consistently more accurate.We evaluated the effectiveness of the ultimate output based on four performance matrices:average pixel accuracy,mean absolute error,average specificity,and average balanced accuracy.The experimental results show that the scores of average pixel accuracy,mean absolute error,average specificity,and average balanced accuracy are 0.9216,0.0687,0.9477,and 0.8674,respectively.In addition,the proposed method was compared with four other state-of-the-art models in terms of total training time and usage of computational resources.And it outperformed all of them in these aspects.展开更多
Due to the limited scenes that synthetic aperture radar(SAR)satellites can detect,the full-track utilization rate is not high.Because of the computing and storage limitation of one satellite,it is difficult to process...Due to the limited scenes that synthetic aperture radar(SAR)satellites can detect,the full-track utilization rate is not high.Because of the computing and storage limitation of one satellite,it is difficult to process large amounts of data of spaceborne synthetic aperture radars.It is proposed to use a new method of networked satellite data processing for improving the efficiency of data processing.A multi-satellite distributed SAR real-time processing method based on Chirp Scaling(CS)imaging algorithm is studied in this paper,and a distributed data processing system is built with field programmable gate array(FPGA)chips as the kernel.Different from the traditional CS algorithm processing,the system divides data processing into three stages.The computing tasks are reasonably allocated to different data processing units(i.e.,satellites)in each stage.The method effectively saves computing and storage resources of satellites,improves the utilization rate of a single satellite,and shortens the data processing time.Gaofen-3(GF-3)satellite SAR raw data is processed by the system,with the performance of the method verified.展开更多
Multimodal sentiment analysis utilizes multimodal data such as text,facial expressions and voice to detect people’s attitudes.With the advent of distributed data collection and annotation,we can easily obtain and sha...Multimodal sentiment analysis utilizes multimodal data such as text,facial expressions and voice to detect people’s attitudes.With the advent of distributed data collection and annotation,we can easily obtain and share such multimodal data.However,due to professional discrepancies among annotators and lax quality control,noisy labels might be introduced.Recent research suggests that deep neural networks(DNNs)will overfit noisy labels,leading to the poor performance of the DNNs.To address this challenging problem,we present a Multimodal Robust Meta Learning framework(MRML)for multimodal sentiment analysis to resist noisy labels and correlate distinct modalities simultaneously.Specifically,we propose a two-layer fusion net to deeply fuse different modalities and improve the quality of the multimodal data features for label correction and network training.Besides,a multiple meta-learner(label corrector)strategy is proposed to enhance the label correction approach and prevent models from overfitting to noisy labels.We conducted experiments on three popular multimodal datasets to verify the superiority of ourmethod by comparing it with four baselines.展开更多
Distributed Data Mining is expected to discover preciously unknown, implicit and valuable information from massive data set inherently distributed over a network. In recent years several approaches to distributed data...Distributed Data Mining is expected to discover preciously unknown, implicit and valuable information from massive data set inherently distributed over a network. In recent years several approaches to distributed data mining have been developed, but only a few of them make use of intelligent agents. This paper provides the reason for applying Multi-Agent Technology in Distributed Data Mining and presents a Distributed Data Mining System based on Multi-Agent Technology that deals with heterogeneity in such environment. Based on the advantages of both the CS model and agent-based model, the system is being able to address the specific concern of increasing scalability and enhancing performance.展开更多
HT-7 is the first superconducting tokamak device for fusion research in China. Many experiments have been done in the machine since 1994, and lots of satisfactory results have been achieved in the fusion research fiel...HT-7 is the first superconducting tokamak device for fusion research in China. Many experiments have been done in the machine since 1994, and lots of satisfactory results have been achieved in the fusion research field on HT-7 tokamak [1]. With the development of fusion research, remote control of experiment becomes more and more important to improve experimental efficiency and expand research results. This paper will describe a RCS (Remote Control System), the combined model of Browser/Server and Client/Server, based on Internet of HT-7 distributed data acquisition system (HT7DAS). By means of RCS, authorized users all over the world can control and configure HT7DAS remotely. The RCS is designed to improve the flexibility, opening, reliability and efficiency of HT7DAS. In the paper, the whole process of design along with implementation of the system and some key items are discussed in detail. The System has been successfully operated during HT-7 experiment in 2002 campaign period.展开更多
Integrating heterogeneous data sources is a precondition to share data for enterprises. Highly-efficient data updating can both save system expenses, and offer real-time data. It is one of the hot issues to modify dat...Integrating heterogeneous data sources is a precondition to share data for enterprises. Highly-efficient data updating can both save system expenses, and offer real-time data. It is one of the hot issues to modify data rapidly in the pre-processing area of the data warehouse. An extract transform loading design is proposed based on a new data algorithm called Diff-Match,which is developed by utilizing mode matching and data-filtering technology. It can accelerate data renewal, filter the heterogeneous data, and seek out different sets of data. Its efficiency has been proved by its successful application in an enterprise of electric apparatus groups.展开更多
Since the early 1990, significant progress in database technology has provided new platform for emerging new dimensions of data engineering. New models were introduced to utilize the data sets stored in the new genera...Since the early 1990, significant progress in database technology has provided new platform for emerging new dimensions of data engineering. New models were introduced to utilize the data sets stored in the new generations of databases. These models have a deep impact on evolving decision-support systems. But they suffer a variety of practical problems while accessing real-world data sources. Specifically a type of data storage model based on data distribution theory has been increasingly used in recent years by large-scale enterprises, while it is not compatible with existing decision-support models. This data storage model stores the data in different geographical sites where they are more regularly accessed. This leads to considerably less inter-site data transfer that can reduce data security issues in some circumstances and also significantly improve data manipulation transactions speed. The aim of this paper is to propose a new approach for supporting proactive decision-making that utilizes a workable data source management methodology. The new model can effectively organize and use complex data sources, even when they are distributed in different sites in a fragmented form. At the same time, the new model provides a very high level of intellectual management decision-support by intelligent use of the data collections through utilizing new smart methods in synthesizing useful knowledge. The results of an empirical study to evaluate the model are provided.展开更多
With the reform of rural network enterprise system,the speed of transfer property rights in rural power enterprises is accelerated.The evaluation of the operation and development status of rural power enterprises is d...With the reform of rural network enterprise system,the speed of transfer property rights in rural power enterprises is accelerated.The evaluation of the operation and development status of rural power enterprises is directly related to the future development and investment direction of rural power enterprises.At present,the evaluation of the production and operation of rural network enterprises and the development status of power network only relies on the experience of the evaluation personnel,sets the reference index,and forms the evaluation results through artificial scoring.Due to the strong subjective consciousness of the evaluation results,the practical guiding significance is weak.Therefore,distributed data mining method in rural power enterprises status evaluation was proposed which had been applied in many fields,such as food science,economy or chemical industry.The distributed mathematical model was established by using principal component analysis(PCA)and regression analysis.By screening various technical indicators and determining their relevance,the reference value of evaluation results was improved.Combined with statistical program for social sciences(SPSS)data analysis software,the operation status of rural network enterprises was evaluated,and the rationality,effectiveness and economy of the evaluation was verified through comparison with current evaluation results and calculation examples of actual grid operation data.展开更多
Increasing global competition forces manufacturers of products from alltechnical fields to guarantee a high product quality for a long period of time. At thesame time it is necessary to minimize production costs. In o...Increasing global competition forces manufacturers of products from alltechnical fields to guarantee a high product quality for a long period of time. At thesame time it is necessary to minimize production costs. In order to meet all theserequirements, on-line data acquisition and processing are of increasing importancein distributed automation systems. A software bus operating on industrial Ethernethas an ability to minimize operating costs by offering easy installation, scalability,high degree of reliability and remote monitoring and control.展开更多
This report presents the design and implementation of a Distributed Data Acquisition、 Monitoring and Processing System (DDAMAP)。It is assumed that operations of a factory are organized into two-levels: client machin...This report presents the design and implementation of a Distributed Data Acquisition、 Monitoring and Processing System (DDAMAP)。It is assumed that operations of a factory are organized into two-levels: client machines at plant-level collect real-time raw data from sensors and measurement instrumentations and transfer them to a central processor over the Ethernets, and the central processor handles tasks of real-time data processing and monitoring. This system utilizes the computation power of Intel T2300 dual-core processor and parallel computations supported by multi-threading techniques. Our experiments show that these techniques can significantly improve the system performance and are viable solutions to real-time high-speed data processing.展开更多
Privacy is a critical requirement in distributed data mining. Cryptography-based secure multiparty computation is a main approach for privacy preserving. However, it shows poor performance in large scale distributed s...Privacy is a critical requirement in distributed data mining. Cryptography-based secure multiparty computation is a main approach for privacy preserving. However, it shows poor performance in large scale distributed systems. Meanwhile, data perturbation techniques are comparatively efficient but are mainly used in centralized privacy-preserving data mining (PPDM). In this paper, we propose a light-weight anonymous data perturbation method for efficient privacy preserving in distributed data mining. We first define the privacy constraints for data perturbation based PPDM in a semi-honest distributed environment. Two protocols are proposed to address these constraints and protect data statistics and the randomization process against collusion attacks: the adaptive privacy-preserving summary protocol and the anonymous exchange protocol. Finally, a distributed data perturbation framework based on these protocols is proposed to realize distributed PPDM. Experiment results show that our approach achieves a high security level and is very efficient in a large scale distributed environment.展开更多
To make business policy, market analysis, corporate decision, fraud detection, etc., we have to analyze and work with huge amount of data. Generally, such data are taken from different sources. Researchers are using d...To make business policy, market analysis, corporate decision, fraud detection, etc., we have to analyze and work with huge amount of data. Generally, such data are taken from different sources. Researchers are using data mining to perform such tasks. Data mining techniques are used to find hidden information from large data source. Data mining is using for various fields: Artificial intelligence, Bank, health and medical, corruption, legal issues, corporate business, marketing, etc. Special interest is given to associate rules, data mining algorithms, decision tree and distributed approach. Data is becoming larger and spreading geographically. So it is difficult to find better result from only a central data source. For knowledge discovery, we have to work with distributed database. On the other hand, security and privacy considerations are also another factor for de-motivation of working with centralized data. For this reason, distributed database is essential for future processing. In this paper, we have proposed a framework to study data mining in distributed environment. The paper presents a framework to bring out actionable knowledge. We have shown some level by which we can generate actionable knowledge. Possible tools and technique for these levels are discussed.展开更多
Conditional functional dependencies (CFDs) are a critical technique for detecting inconsistencies while they may ignore some potential inconsistencies without considering the content relationship of data. Content-re...Conditional functional dependencies (CFDs) are a critical technique for detecting inconsistencies while they may ignore some potential inconsistencies without considering the content relationship of data. Content-related conditional functional dependencies (CCFDs) are a type of special CFDs, which combine content-related CFDs and detect potential inconsistencies by putting content-related data together. In the process of cleaning inconsistencies, detection and repairing are interactive: 1) detection catches inconsistencies, 2) repairing corrects caught inconsistencies while may bring new incon- sistencies. Besides, data are often fragmented and distributed into multiple sites. It consequently costs expensive shipment for inconsistencies cleaning. In this paper, our aim is to repair inconsistencies in distributed content-related data. We propose a framework consisting of an inconsistencies detection method and an inconsistencies repairing method, which work iteratively. The detection method marks the violated CCFDs for computing the inconsistencies which should be repaired preferentially. Based on the repairing-cost model presented in this paper, we prove that the minimum-cost repairing using CCFDs is NP-complete. Therefore, the repairing method heuristically repairs the inconsistencies with minimum cost. To improve the efficiency and accuracy of repairing, we propose distinct values and rules sequences. Distinct values make less data shipments than real data for communication. Rules sequences determine appropriate repairing sequences to avoid some incorrect repairs. Our solution is proved to be more effective than CFDs by empirical evaluation on two real-life datasets.展开更多
An attempt has been made to develop a distributed software infrastructure model for onboard data fusion system simulation, which is also applied to netted radar systems, onboard distributed detection systems and advan...An attempt has been made to develop a distributed software infrastructure model for onboard data fusion system simulation, which is also applied to netted radar systems, onboard distributed detection systems and advanced C3I systems. Two architectures are provided and verified: one is based on pure TCP/IP protocol and C/S model, and implemented with Winsock, the other is based on CORBA (common object request broker architecture). The performance of data fusion simulation system, i.e. reliability, flexibility and scalability, is improved and enhanced by two models. The study of them makes valuable explore on incorporating the distributed computation concepts into radar system simulation techniques.展开更多
Big data analytics, the process of organizing and analyzing data to get useful information, is one of the primary uses of cloud services today. Traditionally, collections of data are stored and processed in a single d...Big data analytics, the process of organizing and analyzing data to get useful information, is one of the primary uses of cloud services today. Traditionally, collections of data are stored and processed in a single datacenter. As the volume of data grows at a tremendous rate, it is less efficient for only one datacenter to handle such large volumes of data from a performance point of view. Large cloud service providers are deploying datacenters geographically around the world for better performance and availability. A widely used approach for analytics of gee-distributed data is the centralized approach, which aggregates all the raw data from local datacenters to a central datacenter. However, it has been observed that this approach consumes a significant amount of bandwidth, leading to worse performance. A number of mechanisms have been proposed to achieve optimal performance when data analytics are performed over geo-distributed datacenters. In this paper, we present a survey on the representative mechanisms proposed in the literature for wide area analytics. We discuss basic ideas, present proposed architectures and mechanisms, and discuss several examples to illustrate existing work. We point out the limitations of these mechanisms, give comparisons, and conclude with our thoughts on future research directions.展开更多
This study investigates a consistent fusion algorithm for distributed multi-rate multi-sensor systems operating in feedback-memory configurations, where each sensor's sampling period is uniform and an integer mult...This study investigates a consistent fusion algorithm for distributed multi-rate multi-sensor systems operating in feedback-memory configurations, where each sensor's sampling period is uniform and an integer multiple of the state update period. The focus is on scenarios where the correlations among Measurement Noises(MNs) from different sensors are unknown. Firstly, a non-augmented local estimator that applies to sampling cases is designed to provide unbiased Local Estimates(LEs) at the fusion points. Subsequently, a measurement-equivalent approach is then developed to parameterize the correlation structure between LEs and reformulate LEs into a unified form, thereby constraining the correlations arising from MNs to an admissible range. Simultaneously, a family of upper bounds on the joint error covariance matrix of LEs is derived based on the constrained correlations, avoiding the need to calculate the exact error cross-covariance matrix of LEs. Finally, a sequential fusion estimator is proposed in the sense of Weighted Minimum Mean Square Error(WMMSE), and it is proven to be unbiased, consistent, and more accurate than the well-known covariance intersection method. Simulation results illustrate the effectiveness of the proposed algorithm by highlighting improvements in consistency and accuracy.展开更多
Aiming at the shortcomings in intrusion detection systems (IDSs) used incommercial and research fields, we propose the MA-IDS system, a distributed intrusion detectionsystem based on data mining. In this model, misuse...Aiming at the shortcomings in intrusion detection systems (IDSs) used incommercial and research fields, we propose the MA-IDS system, a distributed intrusion detectionsystem based on data mining. In this model, misuse intrusion detection system CM1DS) and anomalyintrusion de-lection system (AIDS) are combined. Data mining is applied to raise detectionperformance, and distributed mechanism is employed to increase the scalability and efficiency. Host-and network-based mining algorithms employ an improved. Bayes-ian decision theorem that suits forreal security environment to minimize the risks incurred by false decisions. We describe the overallarchitecture of the MA-IDS system, and discuss specific design and implementation issue.展开更多
The 3-replica redundancy strategy is widely used to solve the problem of data reliability in large-scale distributed storage systems. However, its storage capacity utilization is only 33%. In this paper, a data placem...The 3-replica redundancy strategy is widely used to solve the problem of data reliability in large-scale distributed storage systems. However, its storage capacity utilization is only 33%. In this paper, a data placement algorithm based on fault-tolerant domain (FTD) is proposed. Owing to the fine-grained design of the FTD, the data reliability of systems using two replicas is comparable to that of current mainstream systems using three replicas, and the capacity utilization is increased to 50%. Moreover, the proposed FTD provides a new concept for the design of distributed storage systems. Distributed storage systems can take FTDs as the units for data placement, data migration, data repair and so on. In addition, fault detection can be performed independently and concurrently within the FTDs.展开更多
Covert channel of the packet ordering is a hot research topic.Encryption technology is not enough to protect the security of both sides of communication.Covert channel needs to hide the transmission data and protect c...Covert channel of the packet ordering is a hot research topic.Encryption technology is not enough to protect the security of both sides of communication.Covert channel needs to hide the transmission data and protect content of communication.The traditional methods are usually to use proxy technology such as tor anonymous tracking technology to achieve hiding from the communicator.However,because the establishment of proxy communication needs to consume traffic,the communication capacity will be reduced,and in recent years,the tor technology often has vulnerabilities that led to the leakage of secret information.In this paper,the covert channel model of the packet ordering is applied into the distributed system,and a distributed covert channel of the packet ordering enhancement model based on data compression(DCCPOEDC)is proposed.The data compression algorithms are used to reduce the amount of data and transmission time.The distributed system and data compression algorithms can weaken the hidden statistical probability of information.Furthermore,they can enhance the unknowability of the data and weaken the time distribution characteristics of the data packets.This paper selected a compression algorithm suitable for DCCPOEDC and analyzed DCCPOEDC from anonymity,transmission efficiency,and transmission performance.According to the analysis results,it can be seen that DCCPOEDC optimizes the covert channel of the packet ordering,which saves the transmission time and improves the concealment compared with the original covert channel.展开更多
It is crucial,while using healthcare data,to assess the advantages of data privacy against the possible drawbacks.Data from several sources must be combined for use in many data mining applications.The medical practit...It is crucial,while using healthcare data,to assess the advantages of data privacy against the possible drawbacks.Data from several sources must be combined for use in many data mining applications.The medical practitioner may use the results of association rule mining performed on this aggregated data to better personalize patient care and implement preventive measures.Historically,numerous heuristics(e.g.,greedy search)and metaheuristics-based techniques(e.g.,evolutionary algorithm)have been created for the positive association rule in privacy preserving data mining(PPDM).When it comes to connecting seemingly unrelated diseases and drugs,negative association rules may be more informative than their positive counterparts.It is well-known that during negative association rules mining,a large number of uninteresting rules are formed,making this a difficult problem to tackle.In this research,we offer an adaptive method for negative association rule mining in vertically partitioned healthcare datasets that respects users’privacy.The applied approach dynamically determines the transactions to be interrupted for information hiding,as opposed to predefining them.This study introduces a novel method for addressing the problem of negative association rules in healthcare data mining,one that is based on the Tabu-genetic optimization paradigm.Tabu search is advantageous since it removes a huge number of unnecessary rules and item sets.Experiments using benchmark healthcare datasets prove that the discussed scheme outperforms state-of-the-art solutions in terms of decreasing side effects and data distortions,as measured by the indicator of hiding failure.展开更多
基金the Researchers Supporting Project,King Saud University,Saudi Arabia,for funding this research work through Project No.RSPD2025R951.
文摘This research introduces a unique approach to segmenting breast cancer images using a U-Net-based architecture.However,the computational demand for image processing is very high.Therefore,we have conducted this research to build a system that enables image segmentation training with low-power machines.To accomplish this,all data are divided into several segments,each being trained separately.In the case of prediction,the initial output is predicted from each trained model for an input,where the ultimate output is selected based on the pixel-wise majority voting of the expected outputs,which also ensures data privacy.In addition,this kind of distributed training system allows different computers to be used simultaneously.That is how the training process takes comparatively less time than typical training approaches.Even after completing the training,the proposed prediction system allows a newly trained model to be included in the system.Thus,the prediction is consistently more accurate.We evaluated the effectiveness of the ultimate output based on four performance matrices:average pixel accuracy,mean absolute error,average specificity,and average balanced accuracy.The experimental results show that the scores of average pixel accuracy,mean absolute error,average specificity,and average balanced accuracy are 0.9216,0.0687,0.9477,and 0.8674,respectively.In addition,the proposed method was compared with four other state-of-the-art models in terms of total training time and usage of computational resources.And it outperformed all of them in these aspects.
基金Project(2017YFC1405600)supported by the National Key R&D Program of ChinaProject(18JK05032)supported by the Scientific Research Project of Education Department of Shaanxi Province,China。
文摘Due to the limited scenes that synthetic aperture radar(SAR)satellites can detect,the full-track utilization rate is not high.Because of the computing and storage limitation of one satellite,it is difficult to process large amounts of data of spaceborne synthetic aperture radars.It is proposed to use a new method of networked satellite data processing for improving the efficiency of data processing.A multi-satellite distributed SAR real-time processing method based on Chirp Scaling(CS)imaging algorithm is studied in this paper,and a distributed data processing system is built with field programmable gate array(FPGA)chips as the kernel.Different from the traditional CS algorithm processing,the system divides data processing into three stages.The computing tasks are reasonably allocated to different data processing units(i.e.,satellites)in each stage.The method effectively saves computing and storage resources of satellites,improves the utilization rate of a single satellite,and shortens the data processing time.Gaofen-3(GF-3)satellite SAR raw data is processed by the system,with the performance of the method verified.
基金supported by STI 2030-Major Projects 2021ZD0200400National Natural Science Foundation of China(62276233 and 62072405)Key Research Project of Zhejiang Province(2023C01048).
文摘Multimodal sentiment analysis utilizes multimodal data such as text,facial expressions and voice to detect people’s attitudes.With the advent of distributed data collection and annotation,we can easily obtain and share such multimodal data.However,due to professional discrepancies among annotators and lax quality control,noisy labels might be introduced.Recent research suggests that deep neural networks(DNNs)will overfit noisy labels,leading to the poor performance of the DNNs.To address this challenging problem,we present a Multimodal Robust Meta Learning framework(MRML)for multimodal sentiment analysis to resist noisy labels and correlate distinct modalities simultaneously.Specifically,we propose a two-layer fusion net to deeply fuse different modalities and improve the quality of the multimodal data features for label correction and network training.Besides,a multiple meta-learner(label corrector)strategy is proposed to enhance the label correction approach and prevent models from overfitting to noisy labels.We conducted experiments on three popular multimodal datasets to verify the superiority of ourmethod by comparing it with four baselines.
文摘Distributed Data Mining is expected to discover preciously unknown, implicit and valuable information from massive data set inherently distributed over a network. In recent years several approaches to distributed data mining have been developed, but only a few of them make use of intelligent agents. This paper provides the reason for applying Multi-Agent Technology in Distributed Data Mining and presents a Distributed Data Mining System based on Multi-Agent Technology that deals with heterogeneity in such environment. Based on the advantages of both the CS model and agent-based model, the system is being able to address the specific concern of increasing scalability and enhancing performance.
基金The project supported by the Meg-science Engineering Project of the Chinese Academy of Sciences
文摘HT-7 is the first superconducting tokamak device for fusion research in China. Many experiments have been done in the machine since 1994, and lots of satisfactory results have been achieved in the fusion research field on HT-7 tokamak [1]. With the development of fusion research, remote control of experiment becomes more and more important to improve experimental efficiency and expand research results. This paper will describe a RCS (Remote Control System), the combined model of Browser/Server and Client/Server, based on Internet of HT-7 distributed data acquisition system (HT7DAS). By means of RCS, authorized users all over the world can control and configure HT7DAS remotely. The RCS is designed to improve the flexibility, opening, reliability and efficiency of HT7DAS. In the paper, the whole process of design along with implementation of the system and some key items are discussed in detail. The System has been successfully operated during HT-7 experiment in 2002 campaign period.
基金Supported by National Natural Science Foundation of China (No. 50475117)Tianjin Natural Science Foundation (No.06YFJMJC03700).
文摘Integrating heterogeneous data sources is a precondition to share data for enterprises. Highly-efficient data updating can both save system expenses, and offer real-time data. It is one of the hot issues to modify data rapidly in the pre-processing area of the data warehouse. An extract transform loading design is proposed based on a new data algorithm called Diff-Match,which is developed by utilizing mode matching and data-filtering technology. It can accelerate data renewal, filter the heterogeneous data, and seek out different sets of data. Its efficiency has been proved by its successful application in an enterprise of electric apparatus groups.
文摘Since the early 1990, significant progress in database technology has provided new platform for emerging new dimensions of data engineering. New models were introduced to utilize the data sets stored in the new generations of databases. These models have a deep impact on evolving decision-support systems. But they suffer a variety of practical problems while accessing real-world data sources. Specifically a type of data storage model based on data distribution theory has been increasingly used in recent years by large-scale enterprises, while it is not compatible with existing decision-support models. This data storage model stores the data in different geographical sites where they are more regularly accessed. This leads to considerably less inter-site data transfer that can reduce data security issues in some circumstances and also significantly improve data manipulation transactions speed. The aim of this paper is to propose a new approach for supporting proactive decision-making that utilizes a workable data source management methodology. The new model can effectively organize and use complex data sources, even when they are distributed in different sites in a fragmented form. At the same time, the new model provides a very high level of intellectual management decision-support by intelligent use of the data collections through utilizing new smart methods in synthesizing useful knowledge. The results of an empirical study to evaluate the model are provided.
基金Supported by Funding(2017RAXXJ075)from Harbin Applied Technology Research and Development Project
文摘With the reform of rural network enterprise system,the speed of transfer property rights in rural power enterprises is accelerated.The evaluation of the operation and development status of rural power enterprises is directly related to the future development and investment direction of rural power enterprises.At present,the evaluation of the production and operation of rural network enterprises and the development status of power network only relies on the experience of the evaluation personnel,sets the reference index,and forms the evaluation results through artificial scoring.Due to the strong subjective consciousness of the evaluation results,the practical guiding significance is weak.Therefore,distributed data mining method in rural power enterprises status evaluation was proposed which had been applied in many fields,such as food science,economy or chemical industry.The distributed mathematical model was established by using principal component analysis(PCA)and regression analysis.By screening various technical indicators and determining their relevance,the reference value of evaluation results was improved.Combined with statistical program for social sciences(SPSS)data analysis software,the operation status of rural network enterprises was evaluated,and the rationality,effectiveness and economy of the evaluation was verified through comparison with current evaluation results and calculation examples of actual grid operation data.
文摘Increasing global competition forces manufacturers of products from alltechnical fields to guarantee a high product quality for a long period of time. At thesame time it is necessary to minimize production costs. In order to meet all theserequirements, on-line data acquisition and processing are of increasing importancein distributed automation systems. A software bus operating on industrial Ethernethas an ability to minimize operating costs by offering easy installation, scalability,high degree of reliability and remote monitoring and control.
文摘This report presents the design and implementation of a Distributed Data Acquisition、 Monitoring and Processing System (DDAMAP)。It is assumed that operations of a factory are organized into two-levels: client machines at plant-level collect real-time raw data from sensors and measurement instrumentations and transfer them to a central processor over the Ethernets, and the central processor handles tasks of real-time data processing and monitoring. This system utilizes the computation power of Intel T2300 dual-core processor and parallel computations supported by multi-threading techniques. Our experiments show that these techniques can significantly improve the system performance and are viable solutions to real-time high-speed data processing.
基金Project supported by the National Natural Science Foundation of China (Nos. 60772098 and 60672068)the New Century Excel-lent Talents in University of China (No. NCET-06-0393)
文摘Privacy is a critical requirement in distributed data mining. Cryptography-based secure multiparty computation is a main approach for privacy preserving. However, it shows poor performance in large scale distributed systems. Meanwhile, data perturbation techniques are comparatively efficient but are mainly used in centralized privacy-preserving data mining (PPDM). In this paper, we propose a light-weight anonymous data perturbation method for efficient privacy preserving in distributed data mining. We first define the privacy constraints for data perturbation based PPDM in a semi-honest distributed environment. Two protocols are proposed to address these constraints and protect data statistics and the randomization process against collusion attacks: the adaptive privacy-preserving summary protocol and the anonymous exchange protocol. Finally, a distributed data perturbation framework based on these protocols is proposed to realize distributed PPDM. Experiment results show that our approach achieves a high security level and is very efficient in a large scale distributed environment.
文摘To make business policy, market analysis, corporate decision, fraud detection, etc., we have to analyze and work with huge amount of data. Generally, such data are taken from different sources. Researchers are using data mining to perform such tasks. Data mining techniques are used to find hidden information from large data source. Data mining is using for various fields: Artificial intelligence, Bank, health and medical, corruption, legal issues, corporate business, marketing, etc. Special interest is given to associate rules, data mining algorithms, decision tree and distributed approach. Data is becoming larger and spreading geographically. So it is difficult to find better result from only a central data source. For knowledge discovery, we have to work with distributed database. On the other hand, security and privacy considerations are also another factor for de-motivation of working with centralized data. For this reason, distributed database is essential for future processing. In this paper, we have proposed a framework to study data mining in distributed environment. The paper presents a framework to bring out actionable knowledge. We have shown some level by which we can generate actionable knowledge. Possible tools and technique for these levels are discussed.
基金This research was supported by the National Basic Research 973 Program of China under Grant No. 2012CB316201, the National Natural Science Foundation of China under Grant Nos. 61033007 and 61472070, and the Fundamental Research Funds for the Central Universities of China under Grant No. N150408001-3.
文摘Conditional functional dependencies (CFDs) are a critical technique for detecting inconsistencies while they may ignore some potential inconsistencies without considering the content relationship of data. Content-related conditional functional dependencies (CCFDs) are a type of special CFDs, which combine content-related CFDs and detect potential inconsistencies by putting content-related data together. In the process of cleaning inconsistencies, detection and repairing are interactive: 1) detection catches inconsistencies, 2) repairing corrects caught inconsistencies while may bring new incon- sistencies. Besides, data are often fragmented and distributed into multiple sites. It consequently costs expensive shipment for inconsistencies cleaning. In this paper, our aim is to repair inconsistencies in distributed content-related data. We propose a framework consisting of an inconsistencies detection method and an inconsistencies repairing method, which work iteratively. The detection method marks the violated CCFDs for computing the inconsistencies which should be repaired preferentially. Based on the repairing-cost model presented in this paper, we prove that the minimum-cost repairing using CCFDs is NP-complete. Therefore, the repairing method heuristically repairs the inconsistencies with minimum cost. To improve the efficiency and accuracy of repairing, we propose distinct values and rules sequences. Distinct values make less data shipments than real data for communication. Rules sequences determine appropriate repairing sequences to avoid some incorrect repairs. Our solution is proved to be more effective than CFDs by empirical evaluation on two real-life datasets.
文摘An attempt has been made to develop a distributed software infrastructure model for onboard data fusion system simulation, which is also applied to netted radar systems, onboard distributed detection systems and advanced C3I systems. Two architectures are provided and verified: one is based on pure TCP/IP protocol and C/S model, and implemented with Winsock, the other is based on CORBA (common object request broker architecture). The performance of data fusion simulation system, i.e. reliability, flexibility and scalability, is improved and enhanced by two models. The study of them makes valuable explore on incorporating the distributed computation concepts into radar system simulation techniques.
文摘Big data analytics, the process of organizing and analyzing data to get useful information, is one of the primary uses of cloud services today. Traditionally, collections of data are stored and processed in a single datacenter. As the volume of data grows at a tremendous rate, it is less efficient for only one datacenter to handle such large volumes of data from a performance point of view. Large cloud service providers are deploying datacenters geographically around the world for better performance and availability. A widely used approach for analytics of gee-distributed data is the centralized approach, which aggregates all the raw data from local datacenters to a central datacenter. However, it has been observed that this approach consumes a significant amount of bandwidth, leading to worse performance. A number of mechanisms have been proposed to achieve optimal performance when data analytics are performed over geo-distributed datacenters. In this paper, we present a survey on the representative mechanisms proposed in the literature for wide area analytics. We discuss basic ideas, present proposed architectures and mechanisms, and discuss several examples to illustrate existing work. We point out the limitations of these mechanisms, give comparisons, and conclude with our thoughts on future research directions.
基金supported by the National Natural Science Foundation of China (Nos. 62276204, 62203343)。
文摘This study investigates a consistent fusion algorithm for distributed multi-rate multi-sensor systems operating in feedback-memory configurations, where each sensor's sampling period is uniform and an integer multiple of the state update period. The focus is on scenarios where the correlations among Measurement Noises(MNs) from different sensors are unknown. Firstly, a non-augmented local estimator that applies to sampling cases is designed to provide unbiased Local Estimates(LEs) at the fusion points. Subsequently, a measurement-equivalent approach is then developed to parameterize the correlation structure between LEs and reformulate LEs into a unified form, thereby constraining the correlations arising from MNs to an admissible range. Simultaneously, a family of upper bounds on the joint error covariance matrix of LEs is derived based on the constrained correlations, avoiding the need to calculate the exact error cross-covariance matrix of LEs. Finally, a sequential fusion estimator is proposed in the sense of Weighted Minimum Mean Square Error(WMMSE), and it is proven to be unbiased, consistent, and more accurate than the well-known covariance intersection method. Simulation results illustrate the effectiveness of the proposed algorithm by highlighting improvements in consistency and accuracy.
文摘Aiming at the shortcomings in intrusion detection systems (IDSs) used incommercial and research fields, we propose the MA-IDS system, a distributed intrusion detectionsystem based on data mining. In this model, misuse intrusion detection system CM1DS) and anomalyintrusion de-lection system (AIDS) are combined. Data mining is applied to raise detectionperformance, and distributed mechanism is employed to increase the scalability and efficiency. Host-and network-based mining algorithms employ an improved. Bayes-ian decision theorem that suits forreal security environment to minimize the risks incurred by false decisions. We describe the overallarchitecture of the MA-IDS system, and discuss specific design and implementation issue.
基金the Science and Technology Project of Minhang District in Shanghai (No. 2018MH331)。
文摘The 3-replica redundancy strategy is widely used to solve the problem of data reliability in large-scale distributed storage systems. However, its storage capacity utilization is only 33%. In this paper, a data placement algorithm based on fault-tolerant domain (FTD) is proposed. Owing to the fine-grained design of the FTD, the data reliability of systems using two replicas is comparable to that of current mainstream systems using three replicas, and the capacity utilization is increased to 50%. Moreover, the proposed FTD provides a new concept for the design of distributed storage systems. Distributed storage systems can take FTDs as the units for data placement, data migration, data repair and so on. In addition, fault detection can be performed independently and concurrently within the FTDs.
基金This work is sponsored by the National Natural Science Foundation of China Grant No.61100008Natural Science Foundation of Heilongjiang Province of China under Grant No.LC2016024+1 种基金Natural Science Foundation of the Jiangsu Higher Education Institutions Grant No.17KJB520044Six Talent Peaks Project in Jiangsu Province No.XYDXX-108.
文摘Covert channel of the packet ordering is a hot research topic.Encryption technology is not enough to protect the security of both sides of communication.Covert channel needs to hide the transmission data and protect content of communication.The traditional methods are usually to use proxy technology such as tor anonymous tracking technology to achieve hiding from the communicator.However,because the establishment of proxy communication needs to consume traffic,the communication capacity will be reduced,and in recent years,the tor technology often has vulnerabilities that led to the leakage of secret information.In this paper,the covert channel model of the packet ordering is applied into the distributed system,and a distributed covert channel of the packet ordering enhancement model based on data compression(DCCPOEDC)is proposed.The data compression algorithms are used to reduce the amount of data and transmission time.The distributed system and data compression algorithms can weaken the hidden statistical probability of information.Furthermore,they can enhance the unknowability of the data and weaken the time distribution characteristics of the data packets.This paper selected a compression algorithm suitable for DCCPOEDC and analyzed DCCPOEDC from anonymity,transmission efficiency,and transmission performance.According to the analysis results,it can be seen that DCCPOEDC optimizes the covert channel of the packet ordering,which saves the transmission time and improves the concealment compared with the original covert channel.
文摘It is crucial,while using healthcare data,to assess the advantages of data privacy against the possible drawbacks.Data from several sources must be combined for use in many data mining applications.The medical practitioner may use the results of association rule mining performed on this aggregated data to better personalize patient care and implement preventive measures.Historically,numerous heuristics(e.g.,greedy search)and metaheuristics-based techniques(e.g.,evolutionary algorithm)have been created for the positive association rule in privacy preserving data mining(PPDM).When it comes to connecting seemingly unrelated diseases and drugs,negative association rules may be more informative than their positive counterparts.It is well-known that during negative association rules mining,a large number of uninteresting rules are formed,making this a difficult problem to tackle.In this research,we offer an adaptive method for negative association rule mining in vertically partitioned healthcare datasets that respects users’privacy.The applied approach dynamically determines the transactions to be interrupted for information hiding,as opposed to predefining them.This study introduces a novel method for addressing the problem of negative association rules in healthcare data mining,one that is based on the Tabu-genetic optimization paradigm.Tabu search is advantageous since it removes a huge number of unnecessary rules and item sets.Experiments using benchmark healthcare datasets prove that the discussed scheme outperforms state-of-the-art solutions in terms of decreasing side effects and data distortions,as measured by the indicator of hiding failure.