Distributed leading-edge (LE) roughness could have significant impact on the aerodynamicperformance of a low-Reynolds-number (low-Re) airfoil, which has not yet been fully understood.In the present study, experime...Distributed leading-edge (LE) roughness could have significant impact on the aerodynamicperformance of a low-Reynolds-number (low-Re) airfoil, which has not yet been fully understood.In the present study, experiments were conducted to study the effects of distributed hemisphericalroughness with different sizes and distribution patterns on the performance of a GA (W)-1 airfoil.Surface pressure and particle image velocimetry (PIV) measurements were performed undervarious incident angles and different Re numbers. Significant reduction in lift and increase in dragwere found for all cases with the LE roughness applied. Compared with the distribution pattern,the roughness height was found to be a more significant factor in determining the lift reductionand altering stall behaviors. It is also found while the larger roughness advances the aerodynamicstall, the smaller roughness tends to prevent deep stall at high incident angles. PIV results alsosuggest that staggered distribution pattern induces higher fluctuations in the wake flow than thealigned pattern does. Results imply that distributed LE roughness with large element sizes areparticularly detrimental to aerodynamic performances, while those with small element sizes couldpotentially serve as a passive control mechanism to alleviate deep stall conditions at high incidentangles.展开更多
As the dominant seepage channel in rock masses,it is of great significance to study the influence of fracture roughness distribution on seepage and heat transfer in rock masses.In this paper,the fracture roughness dis...As the dominant seepage channel in rock masses,it is of great significance to study the influence of fracture roughness distribution on seepage and heat transfer in rock masses.In this paper,the fracture roughness distribution functions of the Bakhtiary dam site and Oskarshamn/Forsmark mountain were fitted using statistical methods.The COMSOL Multiphysics finite element software was utilized to analyze the effects of fracture roughness distribution types and empirical formulas for fracture hydraulic aperture on the seepage field and temperature field of rock masses.The results show that:(1)The fracture roughness at the Bakhtiary dam site and Oskarshamn/Forsmark mountain follows lognormal and normal distributions,respectively;(2)For rock masses with the same expected value and standard deviation of fracture roughness,the outflow from rock masses with lognormal distribution of fracture roughness is significantly larger than that of rock masses with normal distribution of fracture roughness;(3)The fracture hydraulic aperture,outflow,and cold front distance of the Li and Jiang model are significantly larger than those of the Barton model;(4)The outflow,hydraulic pressure distribution,and temperature distribution of the Barton model are more sensitive to the fracture roughness distribution type than those of the Li and Jiang model.展开更多
We studied the mechanical behavior of rock under different boundary conditions, based on the fractal characteristics of fractures in terms of microscopic and macroscopic investigations. Three rectangular granite speci...We studied the mechanical behavior of rock under different boundary conditions, based on the fractal characteristics of fractures in terms of microscopic and macroscopic investigations. Three rectangular granite specimens of similar dimensions were tested by a triaxial rock testing machine under uniaxial compression (UC), confined compression (CC) and true-triaxial unloading conditions (RB) under rock burst boundary conditions. The failure processes of these specimens were investigated via examinations of their fracture behavior on a macro-scale by laser profilometers and on a micro-scale by a scanning electron microscopic (SEM) imaging technique. The SEM images, showing the spailing features of RB frag- ments, are compared with the grain dislocations under UC and CC conditions. Based on a variogram method, two fractal parameters, i.e., fractal dimensions (Dr^d) and the scale dependent fractal parameter Kv, were induced to present the surface roughness of scanning profiles in all directions. The fitted ellipses of Dr^d distribution show that RB surface has the smallest eccentricity, followed by the CC surface, while the UC surface had the largest eccentricity. As a result of this assessment, we conclude that rocks are affected by shear traction in an intermediate stress direction, which will cause fractures generated during rock bursts to twist rather than to tilt as shown in the uniaxial compression and the confined compres- sion tests.展开更多
The radiative properties of a gold surface with one-dimensional Gaussian random roughness distribution were obtained with the finite-difference time-domain (FDTD) method and the recursive convolution treatment of th...The radiative properties of a gold surface with one-dimensional Gaussian random roughness distribution were obtained with the finite-difference time-domain (FDTD) method and the recursive convolution treatment of the Drude Model. The bi-directional reflection distribution function (BRDF) for both TM mode and TE mode were obtained and compared with the highly accurate experimental data from the earlier work. The incident wavelength varies from 1.152 μm to 3.392 μm and incident angle is at 300-70°, respectively. The results show that, the predicted values and experimental results are in good agreement. The highly specular peak in the BRDF is reproduced in the numerical simulations, and the increase of the TM mode BRDF is found to be attributed to the effect of a variation in the optical constant at the incident wavelength period.展开更多
The wind tunnel simulations of wind loading on a solid structure of revolution with one smooth and five rough surfaces were conducted using wind tunnel tests. Timemean and fluctuating pressure distributions on the sur...The wind tunnel simulations of wind loading on a solid structure of revolution with one smooth and five rough surfaces were conducted using wind tunnel tests. Timemean and fluctuating pressure distributions on the surface were obtained, and the relationships between the roughness Reynolds number and pressure distributions were analyzed and discussed. The results show that increasing the surface roughness can significantly affect the pressure distribution, and the roughness Reynolds numbers play an important role in the change of flow patterns. The three flow patterns of subcritical, critical and supercritical flows can be classified based on the changing patterns of both the mean and the fluctuating pressure distributions. The present study suggests that the wind tunnel results obtained in the supercritical pattern reflect more closely those of full-scale solid structure of revolution at the designed wind speed.展开更多
文摘Distributed leading-edge (LE) roughness could have significant impact on the aerodynamicperformance of a low-Reynolds-number (low-Re) airfoil, which has not yet been fully understood.In the present study, experiments were conducted to study the effects of distributed hemisphericalroughness with different sizes and distribution patterns on the performance of a GA (W)-1 airfoil.Surface pressure and particle image velocimetry (PIV) measurements were performed undervarious incident angles and different Re numbers. Significant reduction in lift and increase in dragwere found for all cases with the LE roughness applied. Compared with the distribution pattern,the roughness height was found to be a more significant factor in determining the lift reductionand altering stall behaviors. It is also found while the larger roughness advances the aerodynamicstall, the smaller roughness tends to prevent deep stall at high incident angles. PIV results alsosuggest that staggered distribution pattern induces higher fluctuations in the wake flow than thealigned pattern does. Results imply that distributed LE roughness with large element sizes areparticularly detrimental to aerodynamic performances, while those with small element sizes couldpotentially serve as a passive control mechanism to alleviate deep stall conditions at high incidentangles.
基金College Students Innovation and Entrepreneurship Project of Guangzhou Railway Polytechnic(2025CXCY015)。
文摘As the dominant seepage channel in rock masses,it is of great significance to study the influence of fracture roughness distribution on seepage and heat transfer in rock masses.In this paper,the fracture roughness distribution functions of the Bakhtiary dam site and Oskarshamn/Forsmark mountain were fitted using statistical methods.The COMSOL Multiphysics finite element software was utilized to analyze the effects of fracture roughness distribution types and empirical formulas for fracture hydraulic aperture on the seepage field and temperature field of rock masses.The results show that:(1)The fracture roughness at the Bakhtiary dam site and Oskarshamn/Forsmark mountain follows lognormal and normal distributions,respectively;(2)For rock masses with the same expected value and standard deviation of fracture roughness,the outflow from rock masses with lognormal distribution of fracture roughness is significantly larger than that of rock masses with normal distribution of fracture roughness;(3)The fracture hydraulic aperture,outflow,and cold front distance of the Li and Jiang model are significantly larger than those of the Barton model;(4)The outflow,hydraulic pressure distribution,and temperature distribution of the Barton model are more sensitive to the fracture roughness distribution type than those of the Li and Jiang model.
基金the Major State Basic Research and Development Program of China (No.2006CB202200)the GDUE Open Funding (No.SKLGDUEK0914)the Creative Team Development Project of the Ministry of Education of China (No.IRT0656)
文摘We studied the mechanical behavior of rock under different boundary conditions, based on the fractal characteristics of fractures in terms of microscopic and macroscopic investigations. Three rectangular granite specimens of similar dimensions were tested by a triaxial rock testing machine under uniaxial compression (UC), confined compression (CC) and true-triaxial unloading conditions (RB) under rock burst boundary conditions. The failure processes of these specimens were investigated via examinations of their fracture behavior on a macro-scale by laser profilometers and on a micro-scale by a scanning electron microscopic (SEM) imaging technique. The SEM images, showing the spailing features of RB frag- ments, are compared with the grain dislocations under UC and CC conditions. Based on a variogram method, two fractal parameters, i.e., fractal dimensions (Dr^d) and the scale dependent fractal parameter Kv, were induced to present the surface roughness of scanning profiles in all directions. The fitted ellipses of Dr^d distribution show that RB surface has the smallest eccentricity, followed by the CC surface, while the UC surface had the largest eccentricity. As a result of this assessment, we conclude that rocks are affected by shear traction in an intermediate stress direction, which will cause fractures generated during rock bursts to twist rather than to tilt as shown in the uniaxial compression and the confined compres- sion tests.
基金Project(N110204015) supported by the Fundamental Research Funds for the Central Universities
文摘The radiative properties of a gold surface with one-dimensional Gaussian random roughness distribution were obtained with the finite-difference time-domain (FDTD) method and the recursive convolution treatment of the Drude Model. The bi-directional reflection distribution function (BRDF) for both TM mode and TE mode were obtained and compared with the highly accurate experimental data from the earlier work. The incident wavelength varies from 1.152 μm to 3.392 μm and incident angle is at 300-70°, respectively. The results show that, the predicted values and experimental results are in good agreement. The highly specular peak in the BRDF is reproduced in the numerical simulations, and the increase of the TM mode BRDF is found to be attributed to the effect of a variation in the optical constant at the incident wavelength period.
文摘The wind tunnel simulations of wind loading on a solid structure of revolution with one smooth and five rough surfaces were conducted using wind tunnel tests. Timemean and fluctuating pressure distributions on the surface were obtained, and the relationships between the roughness Reynolds number and pressure distributions were analyzed and discussed. The results show that increasing the surface roughness can significantly affect the pressure distribution, and the roughness Reynolds numbers play an important role in the change of flow patterns. The three flow patterns of subcritical, critical and supercritical flows can be classified based on the changing patterns of both the mean and the fluctuating pressure distributions. The present study suggests that the wind tunnel results obtained in the supercritical pattern reflect more closely those of full-scale solid structure of revolution at the designed wind speed.