To integrate different renewable energy resources effectively in a microgrid, a configuration optimization model of a multi-energy distributed generation(DG) system and its auxiliary equipment is proposed. The model...To integrate different renewable energy resources effectively in a microgrid, a configuration optimization model of a multi-energy distributed generation(DG) system and its auxiliary equipment is proposed. The model mainly consists of two parts, the determination of initial configuration schemes according to user preference and the selection of the optimal scheme. The comprehensive evaluation index(CEI), which is acquired through the analytic hierarchy process(AHP) weight calculation method, is adopted as the evaluation criterion to rank the initial schemes. The optimal scheme is obtained according to the ranking results. The proposed model takes the diversity of different equipment parameters and investment cost into consideration and can give relatively suitable and economical suggestions for system configuration.Additionally, unlike Homer Pro, the proposed model considers the complementation of different renewable energy resources, and thus the rationality of the multi-energy DG system is improved compared with the single evaluation criterion method which only considers the total cost.展开更多
This paper presents a comprehensive study that includes the sizing and power flow by series and parallel inverters in a distributed generation system(DGs)that integrates the system of hybrid wind photovoltaic with a u...This paper presents a comprehensive study that includes the sizing and power flow by series and parallel inverters in a distributed generation system(DGs)that integrates the system of hybrid wind photovoltaic with a unified power quality conditioner(UPQC).In addition to supplying active power to the utility grid,the system of hybrid wind photovoltaic functions as a UPQC,compensating reactive power and suppressing the harmonic load currents.Additionally,the load is supplied with harmonic-free,balanced and regulated output voltages.Since PVWind-UPQC is established on a dual compensation scheme,the series inverter works like a sinusoidal current source,while the parallel inverter works like a sinusoidal voltage source.Consequently,a smooth alteration from interconnected operating modes to island operating modes and vice versa can be achieved without load voltage transients.Since PV-Wind-UPQC inverters handle the energy generated through the hybrid wind photovoltaic system and the energy demanded through the load,the converters should be sized cautiously.A detailed study of the flow of power via the PV-Wind-UPQC is imperative to gain a complete understanding of the system operation and the proper design of the converters.Thus,curves that allow the sizing of the power converters according to the power flow via the converters are presented and discussed.Simulation results are presented to assess both steady state and dynamic performances of the grid connected hybrid system of PV-Wind-UPQC.This investigation is verified by simulating and analyzing the results with Matlab/Simulink.展开更多
This paper presents a control strategy of a hybrid fuel cell/battery distributed generation (HDG) system in distribution systems. The overall structure of the HDG system is given, dynamic models for the solid oxide fu...This paper presents a control strategy of a hybrid fuel cell/battery distributed generation (HDG) system in distribution systems. The overall structure of the HDG system is given, dynamic models for the solid oxide fuel cell (SOFC) power plant, battery bank and its power electronic interfacing are briefly described, and controller design methodologies for the power conditioning units and fuel cell to control the power flow from the hybrid power plant to the utility grid are presented. To distribute the power between the fuel cell power plant and the battery energy storage, a neuro-fuzzy controller has been developed. Also, for controlling the active and reactive power independently in distribution systems, the current control strategy based on two fuzzy logic controllers has been presented. A Matlab/Simulink simulation model is developed for the HDG system by combining the individual component models and their controllers. Simulation results show the overall system performance including load-following and power management of the HDG system.展开更多
To develop efficient power control strategies for a distributed generation system in order to improve the overall system efficiency, we propose a cooperative algorithm to analyze and design the controller, in which el...To develop efficient power control strategies for a distributed generation system in order to improve the overall system efficiency, we propose a cooperative algorithm to analyze and design the controller, in which elements of conventional mathematical optimization algorithms are combined with adaptive dynamic elements drawn from intelligent control theory. In our design, the sequential quadratic programming algorithm was first utilized to obtain an optimal solution for power distribution among multiple units. Fuzzy system was then developed to implement the optimal strategies on the basis of optimal solution. In addition, parameters of the fuzzy system were adapted via a genetic algorithm. Tbe simulation results illustrate that the methodology described is useful for a range of control system designs.展开更多
This paper presents a novel design procedure for optimizing the power distribution strategy in distributed generation system. A coordinating controller, responsible to distribute the total load power request among mul...This paper presents a novel design procedure for optimizing the power distribution strategy in distributed generation system. A coordinating controller, responsible to distribute the total load power request among multiple DG units, is suggested based on the conception of hierarchical control structure in the dynamic system. The optimal control problem was formulated as a nonlinear optimization problem subject to set of constraints. The resulting problem was solved using the Kuhn-Tucker method. Computer simulation results demonstrate that the proposed method can provide better efficiency in terms of reducing total costs compared to existing methods. In addition, the proposed optimal load distribution strategy can be easily implemented in real-time thanks to the simplicity of closed-form solutions.展开更多
This paper presents the development of improved synergetic current control for the injected current of an inverter in the grid-connected microgrid and the distributed generation system(DGS). This paper introduces new ...This paper presents the development of improved synergetic current control for the injected current of an inverter in the grid-connected microgrid and the distributed generation system(DGS). This paper introduces new formulas of the macro-variable functions for integral synergetic control(SC)and integral fast terminal SC, which both have an integral term to guarantee zero steady-state error. The proposed integral SC and integral fast terminal SC achieve a seamless performance such as the fast convergence, minimal overshoot, zero steady-state error, and chattering-free operation. To demonstrate the meritorious performance of the proposed scheme for injected current control, it is compared with the performance of a proportional-integral(PI) controller and advanced exponential sliding mode control(SMC). Finally, the practicality of the proposed scheme is justified by experimental results obtained through rapid control prototyping(RCP) using the dSPACESCALEXIO platform.展开更多
The penetration rate of distributed generation is gradually increasing in the distribution system concerned.This is creating new problems and challenges in the planning and operation of the system.The intermittency an...The penetration rate of distributed generation is gradually increasing in the distribution system concerned.This is creating new problems and challenges in the planning and operation of the system.The intermittency and variability of power outputs from numerous distributed renewable generators could significantly jeopardize the secure operation of the distribution system.Therefore,it is necessary to assess the hosting capability for intermittent distributed generation by a distribution system considering operational constraints.This is the subject of this study.An assessment model considering the uncertainty of generation outputs from distributed generators is presented for this purpose.It involves different types of regulation or control functions using on-load tap-changers(OLTCs),reactive power compensation devices,energy storage systems,and the reactive power support of the distributed generators employed.A robust optimization model is then attained It is solved by Bertsimas robust counterpart through GUROBI solver.Finally,the feasibility and efficiency of the proposed method are demonstrated by a modified IEEE 33-bus distribution system.In addition,the effects of the aforementioned regulation or control functions on the enhancement of the hosting capability for intermittent distributed generation are examined.展开更多
Optimal sizing and allocation of distributed generators(DGs)have become essential computational challenges in improving the performance,efficiency,and reliability of electrical distribution networks.Despite extensive ...Optimal sizing and allocation of distributed generators(DGs)have become essential computational challenges in improving the performance,efficiency,and reliability of electrical distribution networks.Despite extensive research,existing approaches often face algorithmic limitations such as slow convergence,premature stagnation in local minima,or suboptimal accuracy in determining optimal DG placement and capacity.This study presents a comprehensive scientometric and systematic review of global research focused on computer-based modelling and algorithmic optimization for renewable DG sizing and placement.It integrates both quantitative and qualitative analyses of the scholarly landscape,mapping influential research domains,co-authorship structures,the articles’citation networks,keyword clusters,and international collaboration patterns.Moreover,the study classifies and evaluates the most prominent objective functions,key computational models and optimization algorithms,DG technologies,and strategic approaches employed in the field.The findings reveal that advanced algorithmic frameworks substantially enhance network stability,minimize real power losses,and improve voltage profiles under various operational constraints.This review serves as a foundational resource for researchers and practitioners,highlighting emerging algorithmic trends,modelling innovations,and data-driven methodologies that can guide future development of intelligent,optimization-based DG integration strategies in smart distribution systems.展开更多
Reconfiguration,as well as optimal utilization of distributed generation sources and capacitor banks,are highly effective methods for reducing losses and improving the voltage profile,or in other words,the power quali...Reconfiguration,as well as optimal utilization of distributed generation sources and capacitor banks,are highly effective methods for reducing losses and improving the voltage profile,or in other words,the power quality in the power distribution system.Researchers have considered the use of distributed generation resources in recent years.There are numerous advantages to utilizing these resources,the most significant of which are the reduction of network losses and enhancement of voltage stability.Non-dominated Sorting Genetic Algorithm II(NSGA-II),Multi-Objective Particle Swarm Optimization(MOPSO),and Intersect Mutation Differential Evolution(IMDE)algorithms are used in this paper to perform optimal reconfiguration,simultaneous location,and capacity determination of distributed generation resources and capacitor banks.Three scenarios were used to replicate the studies.The reconfiguration of the switches,as well as the location and determination of the capacitor bank’s optimal capacity,were investigated in this scenario.However,in the third scenario,reconfiguration,and determining the location and capacity of the Distributed Generation(DG)resources and capacitor banks have been carried out simultaneously.Finally,the simulation results of these three algorithms are compared.The results indicate that the proposed NSGAII algorithm outperformed the other two multi-objective algorithms and was capable of maintaining smaller objective functions in all scenarios.Specifically,the energy losses were reduced from 211 to 51.35 kW(a 75.66%reduction),119.13 kW(a 43.54%reduction),and 23.13 kW(an 89.04%reduction),while the voltage stability index(VSI)decreased from 6.96 to 2.105,1.239,and 1.257,respectively,demonstrating significant improvement in the voltage profile.展开更多
In contemporary medium-voltage distribution networks heavily penetrated by distributed energy resources(DERs),the harmonic components injected by power-electronic interfacing converters,together with the inherently in...In contemporary medium-voltage distribution networks heavily penetrated by distributed energy resources(DERs),the harmonic components injected by power-electronic interfacing converters,together with the inherently intermittent output of renewable generation,distort the zero-sequence current and continuously reshape its frequency spectrum.As a result,single-line-to-ground(SLG)faults exhibit a pronounced,strongly non-stationary behaviour that varies with operating point,load mix and DER dispatch.Under such circumstances the performance of traditional rule-based algorithms—or methods that rely solely on steady-state frequency-domain indicators—degrades sharply,and they no longer satisfy the accuracy and universality required by practical protection systems.To overcome these shortcomings,the present study develops an SLG-fault identification scheme that transforms the zero-sequence currentwaveforminto two-dimensional image representations and processes themwith a convolutional neural network(CNN).First,the causes of sample-distribution imbalance are analysed in detail by considering different neutralgrounding configurations,fault-inception mechanisms and the statistical probability of fault occurrence on each phase.Building on these insights,a discriminator network incorporating a Convolutional Block Attention Module(CBAM)is designed to autonomously extract multi-layer spatial-spectral features,while Gradient-weighted Class Activation Mapping(Grad-CAM)is employed to visualise the contribution of every salient image region,thereby enhancing interpretability.A comprehensive simulation platform is subsequently established for a DER-rich distribution system encompassing several representative topologies,feeder lengths and DER penetration levels.Large numbers of realistic SLG-fault scenarios are generated—including noise and measurement uncertainty—and are used to train,validate and test the proposed model.Extensive simulation campaigns,corroborated by field measurements from an actual utility network,demonstrate that the proposed approach attains an SLG-fault identification accuracy approaching 100 percent and maintains robust performance under severe noise conditions,confirming its suitability for real-world engineering applications.展开更多
The major aim of power quality(PQ) enhancing techniques is to maintain a specified voltage magnitude at a desired frequency for sensitive loads irrespective of faults on the power distribution network.The dynamic volt...The major aim of power quality(PQ) enhancing techniques is to maintain a specified voltage magnitude at a desired frequency for sensitive loads irrespective of faults on the power distribution network.The dynamic voltage restorer(DVR) is a device used to mitigate voltage sags to regulate load voltage.This paper presents a mathematical model for leading series voltage injection to mitigate sags thereby achieving the improvement of the utility power factor as well as power sharing between the DVR and utility.The power sharing will be as per requirement to compensate the sags considering the available distributed generation(DG).The approach of mitigating voltage sags using the concept of leading series voltage injection is suitable for those locations where phase shift in the voltage will not cause any problem.The MATLAB/SIMULINK SimPowerSystem toolbox has been used to obtain simulation results to verify the proposed mathematical model.展开更多
A distributed generation system(DG)has several benefits over a traditional centralized power system.However,the protection area in the case of the distributed generator requires special attention as it encounters stab...A distributed generation system(DG)has several benefits over a traditional centralized power system.However,the protection area in the case of the distributed generator requires special attention as it encounters stability loss,failure re-closure,fluctuations in voltage,etc.And thereby,it demands immediate attention in identifying the location&type of a fault without delay especially when occurred in a small,distributed generation system,as it would adversely affect the overall system and its operation.In the past,several methods were proposed for classification and localisation of a fault in a distributed generation system.Many of those methods were accurate in identifying location,but the accuracy in identifying the type of fault was not up to the acceptable mark.The proposed work here uses a shallow artificial neural network(sANN)model for identifying a particular type of fault that could happen in a specific distribution network when used in conjunction with distributed generators.Firstly,a distribution network consisting of two similar distributed generators(DG1 and DG2),one grid,and a 100 Km distribution line is modeled.Thereafter,different voltages and currents corresponding to various faults(line to line,line to ground)at different locations are tabulated,resulting in a matrix of 500×18 inputs.Secondly,the sANN is formulated for identifying the types of faults in the system in which the above-obtained data is used to train,validate,and test the neural network.The overall result shows an unprecedented almost zero percent error in identifying the type of the faults.展开更多
In the present paper,the distribution feeder reconfiguration in the presence of distributed generation resources(DGR)and energy storage systems(ESS)is solved in the dynamic form.Since studies on the reconfiguration pr...In the present paper,the distribution feeder reconfiguration in the presence of distributed generation resources(DGR)and energy storage systems(ESS)is solved in the dynamic form.Since studies on the reconfiguration problem have ignored the grid security and reliability,the non-distributed energy index along with the energy loss and voltage stability indices has been assumed as the objective functions of the given problem.To achieve the mentioned benefits,there are several practical plans in the distribution network.One of these applications is the network rearrangement plan,which is the simplest and least expensive way to add equipment to the network.Besides,by adding the DGRs to the distribution grid,the radial mode of the grid and the one-sided passage of power are eliminated,and the ordinary and simple grid is replaced with a complex grid.In this paper,an improved particle clustering algorithm is used to solve the distribution network rearrangement problem with the presence of distributed generation sources.The PQ model and the PV model are both considered,and for this purpose,a model based on the compensation technique is used to model the PV busbars.The proposed developed model has particularly improved the local and global search of this algorithm.The reconfiguration problem is discussed and investigated considering different scenarios in a standard 33-bus grid as a well-known power system in different scenarios in the presence and absence of the DGRs.Then,the obtained results are compared.展开更多
This paper presents a method for optimal sizing of a Micro grid connected to a hybrid source to ensure the continuity and quality of energy in a locality with a stochastically changing population. The hybrid system is...This paper presents a method for optimal sizing of a Micro grid connected to a hybrid source to ensure the continuity and quality of energy in a locality with a stochastically changing population. The hybrid system is composed of a solar photovoltaic system, a wind turbine, and an energy storage system. The reliability of the system is evaluated based on the voltage level regulation on IEEE 33-bus and IEEE 69-bus standards. Power factor correction is performed, despite some reliability and robustness constraints. This work focuses on energy management in a hybrid system considering climatic disturbances on the one hand, and on the other hand, this work evaluates the energy quality and the cost of energy. A combination of genetic algorithms of particle swarm optimization (CGAPSO) shows high convergence speed, which illustrates the robustness of the proposed system. The study of this system shows its feasibility and compliance with standards. The results obtained show a significant reduction in the total cost of production of this proposed system.展开更多
This paper presents an efficient algorithm for optimization of radial distribution systems by a network reconfiguration to balance feeder loads and eliminate overload conditions. The system load-balancing index is use...This paper presents an efficient algorithm for optimization of radial distribution systems by a network reconfiguration to balance feeder loads and eliminate overload conditions. The system load-balancing index is used to determine the loading conditions of the system and maximum system loading capacity. The index value has to be minimum in the optimal network reconfiguration of load balancing. The tabu search algorithm is employed to search for the optimal network reconfiguration. The basic idea behind the search is a move from a current solution to its neighborhood by effectively utilizing a memory to provide an efficient search for optimality. It presents low computational effort and is able to find good quality configurations. Simulation results for a radial 69-bus system. The study results show that the optimal on/off patterns of the switches can be identified to give the best network reconfiguration involving balancing of feeder loads while respecting all the constraints.展开更多
This paper proposes an optimal configuration of the distributed hybrid renewable generations based on the stand-alone micro-grid system, considering the diesel as the main control source. Due to the natural sources an...This paper proposes an optimal configuration of the distributed hybrid renewable generations based on the stand-alone micro-grid system, considering the diesel as the main control source. Due to the natural sources and load of user changes randomly and the non-tinearity of the power output by renewable generations, an intelligent optimization method based on the improvement of the genetic algorithm and the control strategy are discussed. The instance analysis is compared with the optimization result of the hybrid system based on HOMER (hybrid optimization of multiple energy resources) and GA (genetic algorithm) method on Matlab software. The simulation result of the optimal configuration showed the new hybrid renewable system and would improve the power supply situation which decreased the cost of energy greatly compared with the conventional form of power supply system which was operated only by diesel. The conclusion of the comparing result between HOMER and GA method shows the advantages of the strategy for the diesel as main control sources.展开更多
A lot of individual electricity sources of small power common (called distributed generation) occurred in Polish power sector during the last period. Gradual increases of distributed generation will cover current an...A lot of individual electricity sources of small power common (called distributed generation) occurred in Polish power sector during the last period. Gradual increases of distributed generation will cover current and future demand of consumers as well as allow to keep essential reserves in distribution and transmission grids. Emphasizing on this problem can upgrade economic efficiency and grid significance of distributed generation for investors and distribution utilities in Poland.展开更多
Distributed energy resources have been proven to be an effective and promising solution to enhance power system resilience and improve household-level reliability.In this paper,we propose a method to evaluate the reli...Distributed energy resources have been proven to be an effective and promising solution to enhance power system resilience and improve household-level reliability.In this paper,we propose a method to evaluate the reliability value of a photovoltaic(PV)energy system with a battery storage system(BSS)by considering the probability of grid outages causing household blackouts.Considering this reliability value,which is the economic profit and capital cost of PV+BSS,a simple formula is derived to calculate the optimal planning strategy.This strategy can provide household-level customers with a simple and straightforward expression for invested PV+BSS capacity.Case studies on 600 households located in eight zones of the US for the period of 2006 to 2015 demonstrate that adding the reliability value to economic profit allows households to invest in a larger PV+BSS and avoid loss of load caused by blackouts.Owing to the differences in blackout hours,households from the 8 zones express distinct willingness to install PV+BSS.The greater the probability of blackout,the greater revenue that household can get from the PV+BSS.The simulation example shows that the planning strategy obtained by proposed model has good economy in the actual operation and able to reduce the economic risk of power failure of the household users.This model can provide household with an easy and straightforward investment strategy of PV+BSS capacity.展开更多
With development of distributed generation(DG),configuration of optimization equipment is crucial for absorbing excess electricity and stabilizing fluctuations.This study proposes a two-layer configuration strategy co...With development of distributed generation(DG),configuration of optimization equipment is crucial for absorbing excess electricity and stabilizing fluctuations.This study proposes a two-layer configuration strategy coordinates active cyber control and the physical energy storage(ES)system.First,an upper economic model is developed.Based on chance-constrained programming,an operation model accounts for inherent uncertainty are then developed.Under constraint of voltage risk level,a lower operation model is developed.Finally,a solution based on differential evolution is provided.An IEEE 33 bus system simulation was used to validate efficacy of model.The effects of risk level,equipment price,and chance-constrained probability were analyzed,providing a foundation for power consumption and expansion of cyber-physical systems.展开更多
With the current integration of distributed energy resources into the grid,the structure of distribution networks is becoming more complex.This complexity significantly expands the solution space in the optimization p...With the current integration of distributed energy resources into the grid,the structure of distribution networks is becoming more complex.This complexity significantly expands the solution space in the optimization process for network reconstruction using intelligent algorithms.Consequently,traditional intelligent algorithms frequently encounter insufficient search accuracy and become trapped in local optima.To tackle this issue,a more advanced particle swarm optimization algorithm is proposed.To address the varying emphases at different stages of the optimization process,a dynamic strategy is implemented to regulate the social and self-learning factors.The Metropolis criterion is introduced into the simulated annealing algorithm to occasionally accept suboptimal solutions,thereby mitigating premature convergence in the population optimization process.The inertia weight is adjusted using the logistic mapping technique to maintain a balance between the algorithm’s global and local search abilities.The incorporation of the Pareto principle involves the consideration of network losses and voltage deviations as objective functions.A fuzzy membership function is employed for selecting the results.Simulation analysis is carried out on the restructuring of the distribution network,using the IEEE-33 node system and the IEEE-69 node system as examples,in conjunction with the integration of distributed energy resources.The findings demonstrate that,in comparison to other intelligent optimization algorithms,the proposed enhanced algorithm demonstrates a shorter convergence time and effectively reduces active power losses within the network.Furthermore,it enhances the amplitude of node voltages,thereby improving the stability of distribution network operations and power supply quality.Additionally,the algorithm exhibits a high level of generality and applicability.展开更多
基金The National Natural Science Foundation of China(No.51377021)the Science and Technology Project of State Grid Corporation of China(No.SGTJDK00DWJS1600014)
文摘To integrate different renewable energy resources effectively in a microgrid, a configuration optimization model of a multi-energy distributed generation(DG) system and its auxiliary equipment is proposed. The model mainly consists of two parts, the determination of initial configuration schemes according to user preference and the selection of the optimal scheme. The comprehensive evaluation index(CEI), which is acquired through the analytic hierarchy process(AHP) weight calculation method, is adopted as the evaluation criterion to rank the initial schemes. The optimal scheme is obtained according to the ranking results. The proposed model takes the diversity of different equipment parameters and investment cost into consideration and can give relatively suitable and economical suggestions for system configuration.Additionally, unlike Homer Pro, the proposed model considers the complementation of different renewable energy resources, and thus the rationality of the multi-energy DG system is improved compared with the single evaluation criterion method which only considers the total cost.
文摘This paper presents a comprehensive study that includes the sizing and power flow by series and parallel inverters in a distributed generation system(DGs)that integrates the system of hybrid wind photovoltaic with a unified power quality conditioner(UPQC).In addition to supplying active power to the utility grid,the system of hybrid wind photovoltaic functions as a UPQC,compensating reactive power and suppressing the harmonic load currents.Additionally,the load is supplied with harmonic-free,balanced and regulated output voltages.Since PVWind-UPQC is established on a dual compensation scheme,the series inverter works like a sinusoidal current source,while the parallel inverter works like a sinusoidal voltage source.Consequently,a smooth alteration from interconnected operating modes to island operating modes and vice versa can be achieved without load voltage transients.Since PV-Wind-UPQC inverters handle the energy generated through the hybrid wind photovoltaic system and the energy demanded through the load,the converters should be sized cautiously.A detailed study of the flow of power via the PV-Wind-UPQC is imperative to gain a complete understanding of the system operation and the proper design of the converters.Thus,curves that allow the sizing of the power converters according to the power flow via the converters are presented and discussed.Simulation results are presented to assess both steady state and dynamic performances of the grid connected hybrid system of PV-Wind-UPQC.This investigation is verified by simulating and analyzing the results with Matlab/Simulink.
文摘This paper presents a control strategy of a hybrid fuel cell/battery distributed generation (HDG) system in distribution systems. The overall structure of the HDG system is given, dynamic models for the solid oxide fuel cell (SOFC) power plant, battery bank and its power electronic interfacing are briefly described, and controller design methodologies for the power conditioning units and fuel cell to control the power flow from the hybrid power plant to the utility grid are presented. To distribute the power between the fuel cell power plant and the battery energy storage, a neuro-fuzzy controller has been developed. Also, for controlling the active and reactive power independently in distribution systems, the current control strategy based on two fuzzy logic controllers has been presented. A Matlab/Simulink simulation model is developed for the HDG system by combining the individual component models and their controllers. Simulation results show the overall system performance including load-following and power management of the HDG system.
基金Sponsored by the Indiana 21st Century Research and Technology Fund
文摘To develop efficient power control strategies for a distributed generation system in order to improve the overall system efficiency, we propose a cooperative algorithm to analyze and design the controller, in which elements of conventional mathematical optimization algorithms are combined with adaptive dynamic elements drawn from intelligent control theory. In our design, the sequential quadratic programming algorithm was first utilized to obtain an optimal solution for power distribution among multiple units. Fuzzy system was then developed to implement the optimal strategies on the basis of optimal solution. In addition, parameters of the fuzzy system were adapted via a genetic algorithm. Tbe simulation results illustrate that the methodology described is useful for a range of control system designs.
基金Sponsored by the Indiana 21stCentury Research and Technology Fund
文摘This paper presents a novel design procedure for optimizing the power distribution strategy in distributed generation system. A coordinating controller, responsible to distribute the total load power request among multiple DG units, is suggested based on the conception of hierarchical control structure in the dynamic system. The optimal control problem was formulated as a nonlinear optimization problem subject to set of constraints. The resulting problem was solved using the Kuhn-Tucker method. Computer simulation results demonstrate that the proposed method can provide better efficiency in terms of reducing total costs compared to existing methods. In addition, the proposed optimal load distribution strategy can be easily implemented in real-time thanks to the simplicity of closed-form solutions.
基金supported by the University of Sharjah (No. 20020403142 and No. 21020403178)。
文摘This paper presents the development of improved synergetic current control for the injected current of an inverter in the grid-connected microgrid and the distributed generation system(DGS). This paper introduces new formulas of the macro-variable functions for integral synergetic control(SC)and integral fast terminal SC, which both have an integral term to guarantee zero steady-state error. The proposed integral SC and integral fast terminal SC achieve a seamless performance such as the fast convergence, minimal overshoot, zero steady-state error, and chattering-free operation. To demonstrate the meritorious performance of the proposed scheme for injected current control, it is compared with the performance of a proportional-integral(PI) controller and advanced exponential sliding mode control(SMC). Finally, the practicality of the proposed scheme is justified by experimental results obtained through rapid control prototyping(RCP) using the dSPACESCALEXIO platform.
基金the Scientific and Technological Project of SGCC Headquarters entitled“Smart Distribution Network and Ubiquitous Power Internet of Things Integrated Development Collaborative Planning Technology Research”(5400-201956447A-0-0-00).
文摘The penetration rate of distributed generation is gradually increasing in the distribution system concerned.This is creating new problems and challenges in the planning and operation of the system.The intermittency and variability of power outputs from numerous distributed renewable generators could significantly jeopardize the secure operation of the distribution system.Therefore,it is necessary to assess the hosting capability for intermittent distributed generation by a distribution system considering operational constraints.This is the subject of this study.An assessment model considering the uncertainty of generation outputs from distributed generators is presented for this purpose.It involves different types of regulation or control functions using on-load tap-changers(OLTCs),reactive power compensation devices,energy storage systems,and the reactive power support of the distributed generators employed.A robust optimization model is then attained It is solved by Bertsimas robust counterpart through GUROBI solver.Finally,the feasibility and efficiency of the proposed method are demonstrated by a modified IEEE 33-bus distribution system.In addition,the effects of the aforementioned regulation or control functions on the enhancement of the hosting capability for intermittent distributed generation are examined.
基金supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University(IMSIU)(grant number:IMSIU-DDRSP2503)。
文摘Optimal sizing and allocation of distributed generators(DGs)have become essential computational challenges in improving the performance,efficiency,and reliability of electrical distribution networks.Despite extensive research,existing approaches often face algorithmic limitations such as slow convergence,premature stagnation in local minima,or suboptimal accuracy in determining optimal DG placement and capacity.This study presents a comprehensive scientometric and systematic review of global research focused on computer-based modelling and algorithmic optimization for renewable DG sizing and placement.It integrates both quantitative and qualitative analyses of the scholarly landscape,mapping influential research domains,co-authorship structures,the articles’citation networks,keyword clusters,and international collaboration patterns.Moreover,the study classifies and evaluates the most prominent objective functions,key computational models and optimization algorithms,DG technologies,and strategic approaches employed in the field.The findings reveal that advanced algorithmic frameworks substantially enhance network stability,minimize real power losses,and improve voltage profiles under various operational constraints.This review serves as a foundational resource for researchers and practitioners,highlighting emerging algorithmic trends,modelling innovations,and data-driven methodologies that can guide future development of intelligent,optimization-based DG integration strategies in smart distribution systems.
文摘Reconfiguration,as well as optimal utilization of distributed generation sources and capacitor banks,are highly effective methods for reducing losses and improving the voltage profile,or in other words,the power quality in the power distribution system.Researchers have considered the use of distributed generation resources in recent years.There are numerous advantages to utilizing these resources,the most significant of which are the reduction of network losses and enhancement of voltage stability.Non-dominated Sorting Genetic Algorithm II(NSGA-II),Multi-Objective Particle Swarm Optimization(MOPSO),and Intersect Mutation Differential Evolution(IMDE)algorithms are used in this paper to perform optimal reconfiguration,simultaneous location,and capacity determination of distributed generation resources and capacitor banks.Three scenarios were used to replicate the studies.The reconfiguration of the switches,as well as the location and determination of the capacitor bank’s optimal capacity,were investigated in this scenario.However,in the third scenario,reconfiguration,and determining the location and capacity of the Distributed Generation(DG)resources and capacitor banks have been carried out simultaneously.Finally,the simulation results of these three algorithms are compared.The results indicate that the proposed NSGAII algorithm outperformed the other two multi-objective algorithms and was capable of maintaining smaller objective functions in all scenarios.Specifically,the energy losses were reduced from 211 to 51.35 kW(a 75.66%reduction),119.13 kW(a 43.54%reduction),and 23.13 kW(an 89.04%reduction),while the voltage stability index(VSI)decreased from 6.96 to 2.105,1.239,and 1.257,respectively,demonstrating significant improvement in the voltage profile.
基金supported by the Science and Technology Program of China Southern Power Grid(031800KC23120003).
文摘In contemporary medium-voltage distribution networks heavily penetrated by distributed energy resources(DERs),the harmonic components injected by power-electronic interfacing converters,together with the inherently intermittent output of renewable generation,distort the zero-sequence current and continuously reshape its frequency spectrum.As a result,single-line-to-ground(SLG)faults exhibit a pronounced,strongly non-stationary behaviour that varies with operating point,load mix and DER dispatch.Under such circumstances the performance of traditional rule-based algorithms—or methods that rely solely on steady-state frequency-domain indicators—degrades sharply,and they no longer satisfy the accuracy and universality required by practical protection systems.To overcome these shortcomings,the present study develops an SLG-fault identification scheme that transforms the zero-sequence currentwaveforminto two-dimensional image representations and processes themwith a convolutional neural network(CNN).First,the causes of sample-distribution imbalance are analysed in detail by considering different neutralgrounding configurations,fault-inception mechanisms and the statistical probability of fault occurrence on each phase.Building on these insights,a discriminator network incorporating a Convolutional Block Attention Module(CBAM)is designed to autonomously extract multi-layer spatial-spectral features,while Gradient-weighted Class Activation Mapping(Grad-CAM)is employed to visualise the contribution of every salient image region,thereby enhancing interpretability.A comprehensive simulation platform is subsequently established for a DER-rich distribution system encompassing several representative topologies,feeder lengths and DER penetration levels.Large numbers of realistic SLG-fault scenarios are generated—including noise and measurement uncertainty—and are used to train,validate and test the proposed model.Extensive simulation campaigns,corroborated by field measurements from an actual utility network,demonstrate that the proposed approach attains an SLG-fault identification accuracy approaching 100 percent and maintains robust performance under severe noise conditions,confirming its suitability for real-world engineering applications.
基金Project(No. UET/ASR&TD-251/2006)supported by the Higher Education Commission of Pakistan
文摘The major aim of power quality(PQ) enhancing techniques is to maintain a specified voltage magnitude at a desired frequency for sensitive loads irrespective of faults on the power distribution network.The dynamic voltage restorer(DVR) is a device used to mitigate voltage sags to regulate load voltage.This paper presents a mathematical model for leading series voltage injection to mitigate sags thereby achieving the improvement of the utility power factor as well as power sharing between the DVR and utility.The power sharing will be as per requirement to compensate the sags considering the available distributed generation(DG).The approach of mitigating voltage sags using the concept of leading series voltage injection is suitable for those locations where phase shift in the voltage will not cause any problem.The MATLAB/SIMULINK SimPowerSystem toolbox has been used to obtain simulation results to verify the proposed mathematical model.
文摘A distributed generation system(DG)has several benefits over a traditional centralized power system.However,the protection area in the case of the distributed generator requires special attention as it encounters stability loss,failure re-closure,fluctuations in voltage,etc.And thereby,it demands immediate attention in identifying the location&type of a fault without delay especially when occurred in a small,distributed generation system,as it would adversely affect the overall system and its operation.In the past,several methods were proposed for classification and localisation of a fault in a distributed generation system.Many of those methods were accurate in identifying location,but the accuracy in identifying the type of fault was not up to the acceptable mark.The proposed work here uses a shallow artificial neural network(sANN)model for identifying a particular type of fault that could happen in a specific distribution network when used in conjunction with distributed generators.Firstly,a distribution network consisting of two similar distributed generators(DG1 and DG2),one grid,and a 100 Km distribution line is modeled.Thereafter,different voltages and currents corresponding to various faults(line to line,line to ground)at different locations are tabulated,resulting in a matrix of 500×18 inputs.Secondly,the sANN is formulated for identifying the types of faults in the system in which the above-obtained data is used to train,validate,and test the neural network.The overall result shows an unprecedented almost zero percent error in identifying the type of the faults.
基金supported by The Training Plan of Young Backbone Teachers in Colleges and Universities of Henan Province(2018GGJS175:Research on Intelligent Power Management System).
文摘In the present paper,the distribution feeder reconfiguration in the presence of distributed generation resources(DGR)and energy storage systems(ESS)is solved in the dynamic form.Since studies on the reconfiguration problem have ignored the grid security and reliability,the non-distributed energy index along with the energy loss and voltage stability indices has been assumed as the objective functions of the given problem.To achieve the mentioned benefits,there are several practical plans in the distribution network.One of these applications is the network rearrangement plan,which is the simplest and least expensive way to add equipment to the network.Besides,by adding the DGRs to the distribution grid,the radial mode of the grid and the one-sided passage of power are eliminated,and the ordinary and simple grid is replaced with a complex grid.In this paper,an improved particle clustering algorithm is used to solve the distribution network rearrangement problem with the presence of distributed generation sources.The PQ model and the PV model are both considered,and for this purpose,a model based on the compensation technique is used to model the PV busbars.The proposed developed model has particularly improved the local and global search of this algorithm.The reconfiguration problem is discussed and investigated considering different scenarios in a standard 33-bus grid as a well-known power system in different scenarios in the presence and absence of the DGRs.Then,the obtained results are compared.
文摘This paper presents a method for optimal sizing of a Micro grid connected to a hybrid source to ensure the continuity and quality of energy in a locality with a stochastically changing population. The hybrid system is composed of a solar photovoltaic system, a wind turbine, and an energy storage system. The reliability of the system is evaluated based on the voltage level regulation on IEEE 33-bus and IEEE 69-bus standards. Power factor correction is performed, despite some reliability and robustness constraints. This work focuses on energy management in a hybrid system considering climatic disturbances on the one hand, and on the other hand, this work evaluates the energy quality and the cost of energy. A combination of genetic algorithms of particle swarm optimization (CGAPSO) shows high convergence speed, which illustrates the robustness of the proposed system. The study of this system shows its feasibility and compliance with standards. The results obtained show a significant reduction in the total cost of production of this proposed system.
文摘This paper presents an efficient algorithm for optimization of radial distribution systems by a network reconfiguration to balance feeder loads and eliminate overload conditions. The system load-balancing index is used to determine the loading conditions of the system and maximum system loading capacity. The index value has to be minimum in the optimal network reconfiguration of load balancing. The tabu search algorithm is employed to search for the optimal network reconfiguration. The basic idea behind the search is a move from a current solution to its neighborhood by effectively utilizing a memory to provide an efficient search for optimality. It presents low computational effort and is able to find good quality configurations. Simulation results for a radial 69-bus system. The study results show that the optimal on/off patterns of the switches can be identified to give the best network reconfiguration involving balancing of feeder loads while respecting all the constraints.
文摘This paper proposes an optimal configuration of the distributed hybrid renewable generations based on the stand-alone micro-grid system, considering the diesel as the main control source. Due to the natural sources and load of user changes randomly and the non-tinearity of the power output by renewable generations, an intelligent optimization method based on the improvement of the genetic algorithm and the control strategy are discussed. The instance analysis is compared with the optimization result of the hybrid system based on HOMER (hybrid optimization of multiple energy resources) and GA (genetic algorithm) method on Matlab software. The simulation result of the optimal configuration showed the new hybrid renewable system and would improve the power supply situation which decreased the cost of energy greatly compared with the conventional form of power supply system which was operated only by diesel. The conclusion of the comparing result between HOMER and GA method shows the advantages of the strategy for the diesel as main control sources.
文摘A lot of individual electricity sources of small power common (called distributed generation) occurred in Polish power sector during the last period. Gradual increases of distributed generation will cover current and future demand of consumers as well as allow to keep essential reserves in distribution and transmission grids. Emphasizing on this problem can upgrade economic efficiency and grid significance of distributed generation for investors and distribution utilities in Poland.
基金supported by National Natural Science Foundation of China(Project 51907064)in part by China State Key Lab.of Power System(SKLD19KM09)in part by State Grid Corporation of China(1400202024222A-0-0-00)
文摘Distributed energy resources have been proven to be an effective and promising solution to enhance power system resilience and improve household-level reliability.In this paper,we propose a method to evaluate the reliability value of a photovoltaic(PV)energy system with a battery storage system(BSS)by considering the probability of grid outages causing household blackouts.Considering this reliability value,which is the economic profit and capital cost of PV+BSS,a simple formula is derived to calculate the optimal planning strategy.This strategy can provide household-level customers with a simple and straightforward expression for invested PV+BSS capacity.Case studies on 600 households located in eight zones of the US for the period of 2006 to 2015 demonstrate that adding the reliability value to economic profit allows households to invest in a larger PV+BSS and avoid loss of load caused by blackouts.Owing to the differences in blackout hours,households from the 8 zones express distinct willingness to install PV+BSS.The greater the probability of blackout,the greater revenue that household can get from the PV+BSS.The simulation example shows that the planning strategy obtained by proposed model has good economy in the actual operation and able to reduce the economic risk of power failure of the household users.This model can provide household with an easy and straightforward investment strategy of PV+BSS capacity.
基金supported by the National Key R&D Plan(2017YFB0903100)State Grid Electric Power Co.,Ltd.science and technology project(2021JBGS-03).
文摘With development of distributed generation(DG),configuration of optimization equipment is crucial for absorbing excess electricity and stabilizing fluctuations.This study proposes a two-layer configuration strategy coordinates active cyber control and the physical energy storage(ES)system.First,an upper economic model is developed.Based on chance-constrained programming,an operation model accounts for inherent uncertainty are then developed.Under constraint of voltage risk level,a lower operation model is developed.Finally,a solution based on differential evolution is provided.An IEEE 33 bus system simulation was used to validate efficacy of model.The effects of risk level,equipment price,and chance-constrained probability were analyzed,providing a foundation for power consumption and expansion of cyber-physical systems.
基金This research is supported by the Science and Technology Program of Gansu Province(No.23JRRA880).
文摘With the current integration of distributed energy resources into the grid,the structure of distribution networks is becoming more complex.This complexity significantly expands the solution space in the optimization process for network reconstruction using intelligent algorithms.Consequently,traditional intelligent algorithms frequently encounter insufficient search accuracy and become trapped in local optima.To tackle this issue,a more advanced particle swarm optimization algorithm is proposed.To address the varying emphases at different stages of the optimization process,a dynamic strategy is implemented to regulate the social and self-learning factors.The Metropolis criterion is introduced into the simulated annealing algorithm to occasionally accept suboptimal solutions,thereby mitigating premature convergence in the population optimization process.The inertia weight is adjusted using the logistic mapping technique to maintain a balance between the algorithm’s global and local search abilities.The incorporation of the Pareto principle involves the consideration of network losses and voltage deviations as objective functions.A fuzzy membership function is employed for selecting the results.Simulation analysis is carried out on the restructuring of the distribution network,using the IEEE-33 node system and the IEEE-69 node system as examples,in conjunction with the integration of distributed energy resources.The findings demonstrate that,in comparison to other intelligent optimization algorithms,the proposed enhanced algorithm demonstrates a shorter convergence time and effectively reduces active power losses within the network.Furthermore,it enhances the amplitude of node voltages,thereby improving the stability of distribution network operations and power supply quality.Additionally,the algorithm exhibits a high level of generality and applicability.