Game theory-based models and design tools have gained substantial prominence for controlling and optimizing behavior within distributed engineering systems due to the inherent distribution of decisions among individua...Game theory-based models and design tools have gained substantial prominence for controlling and optimizing behavior within distributed engineering systems due to the inherent distribution of decisions among individuals.In non-cooperative settings,aggregative games serve as a mathematical framework model for the interdependent optimal decision-making problem among a group of non-cooperative players.In such scenarios,each player's decision is influenced by an aggregation of all players'decisions.Nash equilibrium(NE)seeking in aggregative games has emerged as a vibrant topic driven by applications that harness the aggregation property.This paper presents a comprehensive overview of the current research on aggregative games with a focus on communication topology.A systematic classification is conducted on distributed algorithm research based on communication topologies such as undirected networks,directed networks,and time-varying networks.Furthermore,it sorts out the challenges and compares the algorithms'convergence performance.It also delves into real-world applications of distributed optimization techniques grounded in aggregative games.Finally,it proposes several challenges that can guide future research directions.展开更多
The word“spatial”fundamentally relates to human existence,evolution,and activity in terrestrial and even celestial spaces.After reviewing the spatial features of many areas,the paper describes basics of high level m...The word“spatial”fundamentally relates to human existence,evolution,and activity in terrestrial and even celestial spaces.After reviewing the spatial features of many areas,the paper describes basics of high level model and technology called Spatial Grasp for dealing with large distributed systems,which can provide spatial vision,awareness,management,control,and even consciousness.The technology description includes its key Spatial Grasp Language(SGL),self-evolution of recursive SGL scenarios,and implementation of SGL interpreter converting distributed networked systems into powerful spatial engines.Examples of typical spatial scenarios in SGL include finding shortest path tree and shortest path between network nodes,collecting proper information throughout the whole world,elimination of multiple targets by intelligent teams of chasers,and withstanding cyber attacks in distributed networked systems.Also this paper compares Spatial Grasp model with traditional algorithms,confirming universality of the former for any spatial systems,while the latter just tools for concrete applications.展开更多
Wireless Sensor Networks(WSNs) have many applications, such as climate monitoring systems, fire detection, smart homes, and smart cities. It is expected that WSNs will be integrated into the Internet of Things(IoT...Wireless Sensor Networks(WSNs) have many applications, such as climate monitoring systems, fire detection, smart homes, and smart cities. It is expected that WSNs will be integrated into the Internet of Things(IoT)and participate in various tasks. WSNs play an important role monitoring and reporting environment information and collecting surrounding context. In this paper we consider a WSN deployed for an application such as environment monitoring, and a mobile sink which acts as the gateway between the Internet and the WSN. Data gathering is a challenging problem in WSNs and in the IoT because the information has to be available quickly and effectively without delays and redundancies. In this paper we propose several distributed algorithms for composite event detection and reporting to a mobile sink. Once data is collected by the sink, it can be shared using the IoT infrastructure. We analyze the performance of our algorithms using WSNet simulator, which is specially designed for event-based WSNs. We measure various metrics such as average residual energy, percentage of composite events processed successfully at the sink, and the average number of hops to reach the sink.展开更多
In the era of big data,the growing number of real-time data streams often contains a lot of sensitive privacy information.Releasing or sharing this data directly without processing will lead to serious privacy informa...In the era of big data,the growing number of real-time data streams often contains a lot of sensitive privacy information.Releasing or sharing this data directly without processing will lead to serious privacy information leakage.This poses a great challenge to conventional privacy protection mechanisms(CPPM).The existing data partitioning methods ignore the number of data replications and information exchanges,resulting in complex distance calculations and inefficient indexing for high-dimensional data.Therefore,CPPM often fails to meet the stringent requirements of efficiency and reliability,especially in dynamic spatiotemporal environments.Addressing this concern,we proposed the Principal Component Enhanced Vantage-point tree(PEV-Tree),which is an enhanced data structure based on the idea of dimension reduction,and constructed a Distributed Spatio-Temporal Privacy Preservation Mechanism(DST-PPM)on it.In this work,principal component analysis and the vantage tree are used to establish the PEV-Tree.In addition,we designed three distributed anonymization algorithms for data streams.These algorithms are named CK-AA,CL-DA,and CT-CA,fulfill the anonymization rules of K-Anonymity,L-Diversity,and T-Closeness,respectively,which have different computational complexities and reliabilities.The higher the complexity,the lower the risk of privacy leakage.DST-PPM can reduce the dimension of high-dimensional information while preserving data characteristics and dividing the data space into vantage points based on distance.It effectively enhances the data processing workflow and increases algorithmefficiency.To verify the validity of the method in this paper,we conducted empirical tests of CK-AA,CL-DA,and CT-CA on conventional datasets and the PEV-Tree,respectively.Based on the big data background of the Internet of Vehicles,we conducted experiments using artificial simulated on-board network data.The results demonstrated that the operational efficiency of the CK-AA,CL-DA,and CT-CA is enhanced by 15.12%,24.55%,and 52.74%,respectively,when deployed on the PEV-Tree.Simultaneously,during homogeneity attacks,the probabilities of information leakage were reduced by 2.31%,1.76%,and 0.19%,respectively.Furthermore,these algorithms showcased superior utility(scalability)when executed across PEV-Trees of varying scales in comparison to their performance on conventional data structures.It indicates that DST-PPM offers marked advantages over CPPM in terms of efficiency,reliability,and scalability.展开更多
The work proposes a distributed Kalman filtering(KF)algorithm to track a time-varying unknown signal process for a stochastic regression model over network systems in a cooperative way.We provide the stability analysi...The work proposes a distributed Kalman filtering(KF)algorithm to track a time-varying unknown signal process for a stochastic regression model over network systems in a cooperative way.We provide the stability analysis of the proposed distributed KF algorithm without independent and stationary signal assumptions,which implies that the theoretical results are able to be applied to stochastic feedback systems.Note that the main difficulty of stability analysis lies in analyzing the properties of the product of non-independent and non-stationary random matrices involved in the error equation.We employ analysis techniques such as stochastic Lyapunov function,stability theory of stochastic systems,and algebraic graph theory to deal with the above issue.The stochastic spatio-temporal cooperative information condition shows the cooperative property of multiple sensors that even though any local sensor cannot track the time-varying unknown signal,the distributed KF algorithm can be utilized to finish the filtering task in a cooperative way.At last,we illustrate the property of the proposed distributed KF algorithm by a simulation example.展开更多
A distributed coordination algorithm is proposed to enhance the engagement of the multi-missile network in consideration of obstacle avoidance. To achieve a cooperative interception, the guidance law is developed in a...A distributed coordination algorithm is proposed to enhance the engagement of the multi-missile network in consideration of obstacle avoidance. To achieve a cooperative interception, the guidance law is developed in a simple form that consists of three individual components for tar- get capture, time coordination and obstacle avoidance. The distributed coordination algorithm enables a group of interceptor missiles to reach the target simultaneously, even if some member in the multi-missile network can only collect the information from nearest neighbors. The simula- tion results show that the guidance strategy provides a feasible tool to implement obstacle avoid- ance for the multi-missile network with satisfactory accuracy of target capture. The effects of the gain parameters are also discussed to evaluate the proposed approach.展开更多
The paper presents a new three-dimensional (3D) cooperative guidance approach by the receding horizon control (RHC) technique. The objective is to coordinate the impact time of a group of interceptor missiles against ...The paper presents a new three-dimensional (3D) cooperative guidance approach by the receding horizon control (RHC) technique. The objective is to coordinate the impact time of a group of interceptor missiles against the stationary target. The framework of a distributed RHC scheme is developed, in which each interceptor missile is assigned its own finite-horizon optimal control problem (FHOCP) and only shares the information with its neighbors. The solution of the local FHOCP is obtained by the constrained particle swarm optimization (PSO) method that is integrated into the distributed RHC framework with enhanced equality and inequality constraints. The numerical simulations show that the proposed guidance approach is feasible to implement the cooperative engagement with satisfied accuracy of target capture. Finally, the computation efficiency of the distributed RHC scheme is discussed in consideration of the PSO parameters, control update period and prediction horizon. (C) 2016 Chinese Society of Aeronautics and Astronautics. Production and hosting by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license.展开更多
In this paper,we consider distributed Nash equilibrium(NE)seeking in potential games over a multi-agent network,where each agent can not observe the actions of all its rivals.Based on the best response dynamics,we des...In this paper,we consider distributed Nash equilibrium(NE)seeking in potential games over a multi-agent network,where each agent can not observe the actions of all its rivals.Based on the best response dynamics,we design a distributed NE seeking algorithm by incorporating the non-smooth finite-time average tracking dynamics,where each agent only needs to know its own action and exchange information with its neighbours through a communication graph.We give a sufficient condition for the Lipschitz continuity of the best response mapping for potential games,and then prove the convergence of the proposed algorithm based on the Lyapunov theory.Numerical simulations are given to verify the resultandillustrate the effectiveness of the algorithm.展开更多
In this paper, the optimal variational generalized Nash equilibrium(v-GNE) seeking problem in merely monotone games with linearly coupled cost functions is investigated, in which the feasible strategy domain of each a...In this paper, the optimal variational generalized Nash equilibrium(v-GNE) seeking problem in merely monotone games with linearly coupled cost functions is investigated, in which the feasible strategy domain of each agent is coupled through an affine constraint. A distributed algorithm based on the hybrid steepest descent method is first proposed to seek the optimal v-GNE. Then, an accelerated algorithm with relaxation is proposed and analyzed, which has the potential to further improve the convergence speed to the optimal v-GNE. Some sufficient conditions in both algorithms are obtained to ensure the global convergence towards the optimal v-GNE. To illustrate the performance of the algorithms, numerical simulation is conducted based on a networked Nash-Cournot game with bounded market capacities.展开更多
Geographic location of nodes is very useful in a sensor network. Previous localization algorithms assume that there exist some anchor nodes in this kind of network, and then other nodes are estimated to create their c...Geographic location of nodes is very useful in a sensor network. Previous localization algorithms assume that there exist some anchor nodes in this kind of network, and then other nodes are estimated to create their coordinates. Once there are not anchors to be deployed, those localization algorithms will be invalidated. Many papers in this field focus on anchor-based solutions. The use of anchors introduces many limitations, since anchors require external equipments such as global position system, cause additional power consumption. A novel positioning algorithm is proposed to use a virtual coordinate system based on a new concept--virtual anchor. It is executed in a distributed fashion according to the connectivity of a node and the measured distances to its neighbors. Both the adjacent member information and the ranging distance result are combined to generate the estimated position of a network, one of which is independently adopted for localization previously. At the position refinement stage the intermediate estimation of a node begins to be evaluated on its reliability for position mutation; thus the positioning optimization process of the whole network is avoided falling into a local optimal solution. Simulation results prove that the algorithm can resolve the distributed localization problem for anchor-free sensor networks, and is superior to previous methods in terms of its positioning capability under a variety of circumstances.展开更多
A fully distributed microgrid system model is presented in this paper.In the user side,two types of load and plug-in electric vehicles are considered to schedule energy for more benefits.The charging and discharging s...A fully distributed microgrid system model is presented in this paper.In the user side,two types of load and plug-in electric vehicles are considered to schedule energy for more benefits.The charging and discharging states of the electric vehicles are represented by the zero-one variables with more flexibility.To solve the nonconvex optimization problem of the users,a novel neurodynamic algorithm which combines the neural network algorithm with the differential evolution algorithm is designed and its convergence speed is faster.A distributed algorithm with a new approach to deal with the inequality constraints is used to solve the convex optimization problem of the generators which can protect their privacy.Simulation results and comparative experiments show that the model and algorithms are effective.展开更多
A distributed coordinated consensus problem for multiple networked Euler-Lagrange systems is studied.The communication between agents is subject to time delays,unknown parameters and nonlinear inputs,but only with the...A distributed coordinated consensus problem for multiple networked Euler-Lagrange systems is studied.The communication between agents is subject to time delays,unknown parameters and nonlinear inputs,but only with their states available for measurement.When the communication topology of the system is connected,an adaptive control algorithm with selfdelays and uncertainties is suggested to guarantee global full-state synchro-nization that the difference between the agent's positions and ve-locities asymptotically converges to zero.Moreover,the distributed sliding-mode law is given for chaotic systems with nonlinear inputs to compensate for the effects of nonlinearity.Finally,simulation results show the effectiveness of the proposed control algorithm.展开更多
This paper summaries our recent work on combining estimation of distribution algorithms (EDA) and other techniques for solving hard search and optimization problems: a) guided mutation, an offspring generator in w...This paper summaries our recent work on combining estimation of distribution algorithms (EDA) and other techniques for solving hard search and optimization problems: a) guided mutation, an offspring generator in which the ideas from EDAs and genetic algorithms are combined together, we have shown that an evolutionary algorithm with guided mutation outperforms the best GA for the maximum clique problem, b) evolutionary algorithms refining a heuristic, we advocate a strategy for solving a hard optimization problem with complicated data structure, and c) combination of two different local search techniques and EDA for numerical global optimization problems, its basic idea is that not all the new generated points are needed to be improved by an expensive local search.展开更多
Task allocation is a key aspect of Unmanned Aerial Vehicle(UAV)swarm collaborative operations.With an continuous increase of UAVs’scale and the complexity and uncertainty of tasks,existing methods have poor performan...Task allocation is a key aspect of Unmanned Aerial Vehicle(UAV)swarm collaborative operations.With an continuous increase of UAVs’scale and the complexity and uncertainty of tasks,existing methods have poor performance in computing efficiency,robustness,and realtime allocation,and there is a lack of theoretical analysis on the convergence and optimality of the solution.This paper presents a novel intelligent framework for distributed decision-making based on the evolutionary game theory to address task allocation for a UAV swarm system in uncertain scenarios.A task allocation model is designed with the local utility of an individual and the global utility of the system.Then,the paper analytically derives a potential function in the networked evolutionary potential game and proves that the optimal solution of the task allocation problem is a pure strategy Nash equilibrium of a finite strategy game.Additionally,a PayOff-based Time-Variant Log-linear Learning Algorithm(POTVLLA)is proposed,which includes a novel learning strategy based on payoffs for an individual and a time-dependent Boltzmann parameter.The former aims to reduce the system’s computational burden and enhance the individual’s effectiveness,while the latter can ensure that the POTVLLA converges to the optimal Nash equilibrium with a probability of one.Numerical simulation results show that the approach is optimal,robust,scalable,and fast adaptable to environmental changes,even in some realistic situations where some UAVs or tasks are likely to be lost and increased,further validating the effectiveness and superiority of the proposed framework and algorithm.展开更多
This paper presents a novel approach to economic dispatch in smart grids equipped with diverse energy devices.This method integrates features including photovoltaic(PV)systems,energy storage coupling,varied energy rol...This paper presents a novel approach to economic dispatch in smart grids equipped with diverse energy devices.This method integrates features including photovoltaic(PV)systems,energy storage coupling,varied energy roles,and energy supply and demand dynamics.The systemmodel is developed by considering energy devices as versatile units capable of fulfilling various functionalities and playing multiple roles simultaneously.To strike a balance between optimality and feasibility,renewable energy resources are modeled with considerations for forecasting errors,Gaussian distribution,and penalty factors.Furthermore,this study introduces a distributed event-triggered surplus algorithm designed to address the economic dispatch problem by minimizing production costs.Rooted in surplus theory and finite time projection,the algorithm effectively rectifies network imbalances caused by directed graphs and addresses local inequality constraints.The algorithm greatly reduces the communication burden through event triggering mechanism.Finally,both theoretical proofs and numerical simulations verify the convergence and event-triggered nature of the algorithm.展开更多
Collaborative coverage path planning(CCPP) refers to obtaining the shortest paths passing over all places except obstacles in a certain area or space. A multi-unmanned aerial vehicle(UAV) collaborative CCPP algorithm ...Collaborative coverage path planning(CCPP) refers to obtaining the shortest paths passing over all places except obstacles in a certain area or space. A multi-unmanned aerial vehicle(UAV) collaborative CCPP algorithm is proposed for the urban rescue search or military search in outdoor environment.Due to flexible control of small UAVs, it can be considered that all UAVs fly at the same altitude, that is, they perform search tasks on a two-dimensional plane. Based on the agents’ motion characteristics and environmental information, a mathematical model of CCPP problem is established. The minimum time for UAVs to complete the CCPP is the objective function, and complete coverage constraint, no-fly constraint, collision avoidance constraint, and communication constraint are considered. Four motion strategies and two communication strategies are designed. Then a distributed CCPP algorithm is designed based on hybrid strategies. Simulation results compared with patternbased genetic algorithm(PBGA) and random search method show that the proposed method has stronger real-time performance and better scalability and can complete the complete CCPP task more efficiently and stably.展开更多
In this paper, the distributed and recursive blind channel identification algorithms are proposed for single-input multi-output (SIMO) systems of sensor networks (both time-invariant and time-varying networks). At...In this paper, the distributed and recursive blind channel identification algorithms are proposed for single-input multi-output (SIMO) systems of sensor networks (both time-invariant and time-varying networks). At any time, each agent updates its estimate using the local observation and the information derived from its neighboring agents. The algorithms are based on the truncated stochastic approximation and their convergence is proved. A simulation example is presented and the computation results are shown to be consistent with theoretical analysis.展开更多
Cache-enabled small cell networks have been regarded as a promising approach for network operators to cope with the explosive data traffic growth in future 5 G networks. However, the user association and resource allo...Cache-enabled small cell networks have been regarded as a promising approach for network operators to cope with the explosive data traffic growth in future 5 G networks. However, the user association and resource allocation mechanism has not been thoroughly studied under given content placement situation. In this paper, we formulate the joint optimization problem of user association and resource allocation as a mixed integer nonlinear programming(MINLP) problem aiming at deriving a balance between the total utility of data rates and the total data rates retrieved from caches. To solve this problem, we propose a distributed relaxing-rounding method. Simulation results demonstrate that the distributed relaxing-rounding method outperforms traditional max-SINR method and range-expansion method in terms of both total utility of data rates and total data rates retrieved from caches in practical scenarios. In addition, effects of storage and backhaul capacities on the performance are also studied.展开更多
In this paper, a distributed algorithm is proposed to solve a kind of multi-objective optimization problem based on the alternating direction method of multipliers. Compared with the centralized algorithms, this algor...In this paper, a distributed algorithm is proposed to solve a kind of multi-objective optimization problem based on the alternating direction method of multipliers. Compared with the centralized algorithms, this algorithm does not need a central node. Therefore, it has the characteristics of low communication burden and high privacy. In addition, numerical experiments are provided to validate the effectiveness of the proposed algorithm.展开更多
In this paper,we consider a networked game with coupled constraints and focus on variational Nash equilibrium seeking.For distributed algorithm design,we eliminate the coupled constraints by employing local Lagrangian...In this paper,we consider a networked game with coupled constraints and focus on variational Nash equilibrium seeking.For distributed algorithm design,we eliminate the coupled constraints by employing local Lagrangian functions and construct exact penalty terms to attain multipliers'optimal consensus,which yields a set of equilibrium conditions without any coupled constraint and consensus constraint.Moreover,these conditions are only based on strategy and multiplier variables,without auxiliary variables.Then,we present a distributed order-reduced dynamics that updates the strategy and multiplier variables with guaranteed convergence.Compared with many other distributed algorithms,our algorithm contains no auxiliary variable,and therefore,it can save computation and communication.展开更多
基金supported in part by the Fundamental Research Funds for the Central Universities(SWU-XDJH202312)the National Natural Science Foundation of China(62173278)the Chongqing Science Fund for Distinguished Young Scholars(2024NSCQJQX0103).
文摘Game theory-based models and design tools have gained substantial prominence for controlling and optimizing behavior within distributed engineering systems due to the inherent distribution of decisions among individuals.In non-cooperative settings,aggregative games serve as a mathematical framework model for the interdependent optimal decision-making problem among a group of non-cooperative players.In such scenarios,each player's decision is influenced by an aggregation of all players'decisions.Nash equilibrium(NE)seeking in aggregative games has emerged as a vibrant topic driven by applications that harness the aggregation property.This paper presents a comprehensive overview of the current research on aggregative games with a focus on communication topology.A systematic classification is conducted on distributed algorithm research based on communication topologies such as undirected networks,directed networks,and time-varying networks.Furthermore,it sorts out the challenges and compares the algorithms'convergence performance.It also delves into real-world applications of distributed optimization techniques grounded in aggregative games.Finally,it proposes several challenges that can guide future research directions.
文摘The word“spatial”fundamentally relates to human existence,evolution,and activity in terrestrial and even celestial spaces.After reviewing the spatial features of many areas,the paper describes basics of high level model and technology called Spatial Grasp for dealing with large distributed systems,which can provide spatial vision,awareness,management,control,and even consciousness.The technology description includes its key Spatial Grasp Language(SGL),self-evolution of recursive SGL scenarios,and implementation of SGL interpreter converting distributed networked systems into powerful spatial engines.Examples of typical spatial scenarios in SGL include finding shortest path tree and shortest path between network nodes,collecting proper information throughout the whole world,elimination of multiple targets by intelligent teams of chasers,and withstanding cyber attacks in distributed networked systems.Also this paper compares Spatial Grasp model with traditional algorithms,confirming universality of the former for any spatial systems,while the latter just tools for concrete applications.
文摘Wireless Sensor Networks(WSNs) have many applications, such as climate monitoring systems, fire detection, smart homes, and smart cities. It is expected that WSNs will be integrated into the Internet of Things(IoT)and participate in various tasks. WSNs play an important role monitoring and reporting environment information and collecting surrounding context. In this paper we consider a WSN deployed for an application such as environment monitoring, and a mobile sink which acts as the gateway between the Internet and the WSN. Data gathering is a challenging problem in WSNs and in the IoT because the information has to be available quickly and effectively without delays and redundancies. In this paper we propose several distributed algorithms for composite event detection and reporting to a mobile sink. Once data is collected by the sink, it can be shared using the IoT infrastructure. We analyze the performance of our algorithms using WSNet simulator, which is specially designed for event-based WSNs. We measure various metrics such as average residual energy, percentage of composite events processed successfully at the sink, and the average number of hops to reach the sink.
基金supported by the Natural Science Foundation of Sichuan Province(No.2024NSFSC1450)the Fundamental Research Funds for the Central Universities(No.SCU2024D012)the Science and Engineering Connotation Development Project of Sichuan University(No.2020SCUNG129).
文摘In the era of big data,the growing number of real-time data streams often contains a lot of sensitive privacy information.Releasing or sharing this data directly without processing will lead to serious privacy information leakage.This poses a great challenge to conventional privacy protection mechanisms(CPPM).The existing data partitioning methods ignore the number of data replications and information exchanges,resulting in complex distance calculations and inefficient indexing for high-dimensional data.Therefore,CPPM often fails to meet the stringent requirements of efficiency and reliability,especially in dynamic spatiotemporal environments.Addressing this concern,we proposed the Principal Component Enhanced Vantage-point tree(PEV-Tree),which is an enhanced data structure based on the idea of dimension reduction,and constructed a Distributed Spatio-Temporal Privacy Preservation Mechanism(DST-PPM)on it.In this work,principal component analysis and the vantage tree are used to establish the PEV-Tree.In addition,we designed three distributed anonymization algorithms for data streams.These algorithms are named CK-AA,CL-DA,and CT-CA,fulfill the anonymization rules of K-Anonymity,L-Diversity,and T-Closeness,respectively,which have different computational complexities and reliabilities.The higher the complexity,the lower the risk of privacy leakage.DST-PPM can reduce the dimension of high-dimensional information while preserving data characteristics and dividing the data space into vantage points based on distance.It effectively enhances the data processing workflow and increases algorithmefficiency.To verify the validity of the method in this paper,we conducted empirical tests of CK-AA,CL-DA,and CT-CA on conventional datasets and the PEV-Tree,respectively.Based on the big data background of the Internet of Vehicles,we conducted experiments using artificial simulated on-board network data.The results demonstrated that the operational efficiency of the CK-AA,CL-DA,and CT-CA is enhanced by 15.12%,24.55%,and 52.74%,respectively,when deployed on the PEV-Tree.Simultaneously,during homogeneity attacks,the probabilities of information leakage were reduced by 2.31%,1.76%,and 0.19%,respectively.Furthermore,these algorithms showcased superior utility(scalability)when executed across PEV-Trees of varying scales in comparison to their performance on conventional data structures.It indicates that DST-PPM offers marked advantages over CPPM in terms of efficiency,reliability,and scalability.
基金supported in part by Sichuan Science and Technology Program under Grant No.2025ZNSFSC151in part by the Strategic Priority Research Program of Chinese Academy of Sciences under Grant No.XDA27030201+1 种基金the Natural Science Foundation of China under Grant No.U21B6001in part by the Natural Science Foundation of Tianjin under Grant No.24JCQNJC01930.
文摘The work proposes a distributed Kalman filtering(KF)algorithm to track a time-varying unknown signal process for a stochastic regression model over network systems in a cooperative way.We provide the stability analysis of the proposed distributed KF algorithm without independent and stationary signal assumptions,which implies that the theoretical results are able to be applied to stochastic feedback systems.Note that the main difficulty of stability analysis lies in analyzing the properties of the product of non-independent and non-stationary random matrices involved in the error equation.We employ analysis techniques such as stochastic Lyapunov function,stability theory of stochastic systems,and algebraic graph theory to deal with the above issue.The stochastic spatio-temporal cooperative information condition shows the cooperative property of multiple sensors that even though any local sensor cannot track the time-varying unknown signal,the distributed KF algorithm can be utilized to finish the filtering task in a cooperative way.At last,we illustrate the property of the proposed distributed KF algorithm by a simulation example.
基金co-supported by the National Natural Science Foundation of China(Nos.61273349 and 61175109)the Aeronautical Science Foundation of China(Nos.2014ZA18004 and 2013ZA18001)
文摘A distributed coordination algorithm is proposed to enhance the engagement of the multi-missile network in consideration of obstacle avoidance. To achieve a cooperative interception, the guidance law is developed in a simple form that consists of three individual components for tar- get capture, time coordination and obstacle avoidance. The distributed coordination algorithm enables a group of interceptor missiles to reach the target simultaneously, even if some member in the multi-missile network can only collect the information from nearest neighbors. The simula- tion results show that the guidance strategy provides a feasible tool to implement obstacle avoid- ance for the multi-missile network with satisfactory accuracy of target capture. The effects of the gain parameters are also discussed to evaluate the proposed approach.
基金co-supported by the National Natural Science Foundation of China(Nos. 61273349 and 61573043)
文摘The paper presents a new three-dimensional (3D) cooperative guidance approach by the receding horizon control (RHC) technique. The objective is to coordinate the impact time of a group of interceptor missiles against the stationary target. The framework of a distributed RHC scheme is developed, in which each interceptor missile is assigned its own finite-horizon optimal control problem (FHOCP) and only shares the information with its neighbors. The solution of the local FHOCP is obtained by the constrained particle swarm optimization (PSO) method that is integrated into the distributed RHC framework with enhanced equality and inequality constraints. The numerical simulations show that the proposed guidance approach is feasible to implement the cooperative engagement with satisfied accuracy of target capture. Finally, the computation efficiency of the distributed RHC scheme is discussed in consideration of the PSO parameters, control update period and prediction horizon. (C) 2016 Chinese Society of Aeronautics and Astronautics. Production and hosting by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license.
基金This work was supported by the Shanghai Sailing Program(No.20YF1453000)the Fundamental Research Funds for the Central Universities(No.22120200048).
文摘In this paper,we consider distributed Nash equilibrium(NE)seeking in potential games over a multi-agent network,where each agent can not observe the actions of all its rivals.Based on the best response dynamics,we design a distributed NE seeking algorithm by incorporating the non-smooth finite-time average tracking dynamics,where each agent only needs to know its own action and exchange information with its neighbours through a communication graph.We give a sufficient condition for the Lipschitz continuity of the best response mapping for potential games,and then prove the convergence of the proposed algorithm based on the Lyapunov theory.Numerical simulations are given to verify the resultandillustrate the effectiveness of the algorithm.
基金supported by the National Natural Science Foundation of China(Basic Science Center Program)(61988101)the Joint Fund of Ministry of Education for Equipment Pre-research (8091B022234)+3 种基金Shanghai International Science and Technology Cooperation Program (21550712400)Shanghai Pilot Program for Basic Research (22TQ1400100-3)the Fundamental Research Funds for the Central UniversitiesShanghai Artifcial Intelligence Laboratory。
文摘In this paper, the optimal variational generalized Nash equilibrium(v-GNE) seeking problem in merely monotone games with linearly coupled cost functions is investigated, in which the feasible strategy domain of each agent is coupled through an affine constraint. A distributed algorithm based on the hybrid steepest descent method is first proposed to seek the optimal v-GNE. Then, an accelerated algorithm with relaxation is proposed and analyzed, which has the potential to further improve the convergence speed to the optimal v-GNE. Some sufficient conditions in both algorithms are obtained to ensure the global convergence towards the optimal v-GNE. To illustrate the performance of the algorithms, numerical simulation is conducted based on a networked Nash-Cournot game with bounded market capacities.
基金the National Natural Science Foundation of China (60673054, 60773129)theExcellent Youth Science and Technology Foundation of Anhui Province of China.
文摘Geographic location of nodes is very useful in a sensor network. Previous localization algorithms assume that there exist some anchor nodes in this kind of network, and then other nodes are estimated to create their coordinates. Once there are not anchors to be deployed, those localization algorithms will be invalidated. Many papers in this field focus on anchor-based solutions. The use of anchors introduces many limitations, since anchors require external equipments such as global position system, cause additional power consumption. A novel positioning algorithm is proposed to use a virtual coordinate system based on a new concept--virtual anchor. It is executed in a distributed fashion according to the connectivity of a node and the measured distances to its neighbors. Both the adjacent member information and the ranging distance result are combined to generate the estimated position of a network, one of which is independently adopted for localization previously. At the position refinement stage the intermediate estimation of a node begins to be evaluated on its reliability for position mutation; thus the positioning optimization process of the whole network is avoided falling into a local optimal solution. Simulation results prove that the algorithm can resolve the distributed localization problem for anchor-free sensor networks, and is superior to previous methods in terms of its positioning capability under a variety of circumstances.
基金the Natural Science Foundation of China(61773320)the Central Universities(XDJK2020TY003)the Natural Science Foundation Project of Chongqing Science and Technology Commission(cstc2018jcyjAX0583)。
文摘A fully distributed microgrid system model is presented in this paper.In the user side,two types of load and plug-in electric vehicles are considered to schedule energy for more benefits.The charging and discharging states of the electric vehicles are represented by the zero-one variables with more flexibility.To solve the nonconvex optimization problem of the users,a novel neurodynamic algorithm which combines the neural network algorithm with the differential evolution algorithm is designed and its convergence speed is faster.A distributed algorithm with a new approach to deal with the inequality constraints is used to solve the convex optimization problem of the generators which can protect their privacy.Simulation results and comparative experiments show that the model and algorithms are effective.
基金supported by the National Natural Sciences Foundation of China(60974146)
文摘A distributed coordinated consensus problem for multiple networked Euler-Lagrange systems is studied.The communication between agents is subject to time delays,unknown parameters and nonlinear inputs,but only with their states available for measurement.When the communication topology of the system is connected,an adaptive control algorithm with selfdelays and uncertainties is suggested to guarantee global full-state synchro-nization that the difference between the agent's positions and ve-locities asymptotically converges to zero.Moreover,the distributed sliding-mode law is given for chaotic systems with nonlinear inputs to compensate for the effects of nonlinearity.Finally,simulation results show the effectiveness of the proposed control algorithm.
文摘This paper summaries our recent work on combining estimation of distribution algorithms (EDA) and other techniques for solving hard search and optimization problems: a) guided mutation, an offspring generator in which the ideas from EDAs and genetic algorithms are combined together, we have shown that an evolutionary algorithm with guided mutation outperforms the best GA for the maximum clique problem, b) evolutionary algorithms refining a heuristic, we advocate a strategy for solving a hard optimization problem with complicated data structure, and c) combination of two different local search techniques and EDA for numerical global optimization problems, its basic idea is that not all the new generated points are needed to be improved by an expensive local search.
基金co-supported by the National Natural Science Foundation of China(Nos.71971115 and 62173305)the Postgraduate Research and Practice Innovation Program of Jiangsu Province,China(No.KYCX22_0366).
文摘Task allocation is a key aspect of Unmanned Aerial Vehicle(UAV)swarm collaborative operations.With an continuous increase of UAVs’scale and the complexity and uncertainty of tasks,existing methods have poor performance in computing efficiency,robustness,and realtime allocation,and there is a lack of theoretical analysis on the convergence and optimality of the solution.This paper presents a novel intelligent framework for distributed decision-making based on the evolutionary game theory to address task allocation for a UAV swarm system in uncertain scenarios.A task allocation model is designed with the local utility of an individual and the global utility of the system.Then,the paper analytically derives a potential function in the networked evolutionary potential game and proves that the optimal solution of the task allocation problem is a pure strategy Nash equilibrium of a finite strategy game.Additionally,a PayOff-based Time-Variant Log-linear Learning Algorithm(POTVLLA)is proposed,which includes a novel learning strategy based on payoffs for an individual and a time-dependent Boltzmann parameter.The former aims to reduce the system’s computational burden and enhance the individual’s effectiveness,while the latter can ensure that the POTVLLA converges to the optimal Nash equilibrium with a probability of one.Numerical simulation results show that the approach is optimal,robust,scalable,and fast adaptable to environmental changes,even in some realistic situations where some UAVs or tasks are likely to be lost and increased,further validating the effectiveness and superiority of the proposed framework and algorithm.
基金The Science and Technology Project of the State Grid Corporation of China(Research and Demonstration of Loss Reduction Technology Based on Reactive Power Potential Exploration and Excitation of Distributed Photovoltaic-Energy Storage Converters:5400-202333241A-1-1-ZN).
文摘This paper presents a novel approach to economic dispatch in smart grids equipped with diverse energy devices.This method integrates features including photovoltaic(PV)systems,energy storage coupling,varied energy roles,and energy supply and demand dynamics.The systemmodel is developed by considering energy devices as versatile units capable of fulfilling various functionalities and playing multiple roles simultaneously.To strike a balance between optimality and feasibility,renewable energy resources are modeled with considerations for forecasting errors,Gaussian distribution,and penalty factors.Furthermore,this study introduces a distributed event-triggered surplus algorithm designed to address the economic dispatch problem by minimizing production costs.Rooted in surplus theory and finite time projection,the algorithm effectively rectifies network imbalances caused by directed graphs and addresses local inequality constraints.The algorithm greatly reduces the communication burden through event triggering mechanism.Finally,both theoretical proofs and numerical simulations verify the convergence and event-triggered nature of the algorithm.
基金supported by the National Natural Science Foundation of China (61903036, 61822304)Shanghai Municipal Science and Technology Major Project (2021SHZDZX0100)。
文摘Collaborative coverage path planning(CCPP) refers to obtaining the shortest paths passing over all places except obstacles in a certain area or space. A multi-unmanned aerial vehicle(UAV) collaborative CCPP algorithm is proposed for the urban rescue search or military search in outdoor environment.Due to flexible control of small UAVs, it can be considered that all UAVs fly at the same altitude, that is, they perform search tasks on a two-dimensional plane. Based on the agents’ motion characteristics and environmental information, a mathematical model of CCPP problem is established. The minimum time for UAVs to complete the CCPP is the objective function, and complete coverage constraint, no-fly constraint, collision avoidance constraint, and communication constraint are considered. Four motion strategies and two communication strategies are designed. Then a distributed CCPP algorithm is designed based on hybrid strategies. Simulation results compared with patternbased genetic algorithm(PBGA) and random search method show that the proposed method has stronger real-time performance and better scalability and can complete the complete CCPP task more efficiently and stably.
文摘In this paper, the distributed and recursive blind channel identification algorithms are proposed for single-input multi-output (SIMO) systems of sensor networks (both time-invariant and time-varying networks). At any time, each agent updates its estimate using the local observation and the information derived from its neighboring agents. The algorithms are based on the truncated stochastic approximation and their convergence is proved. A simulation example is presented and the computation results are shown to be consistent with theoretical analysis.
基金supported by National Natural Science Foundation of China under Grants No. 61371087 and 61531013The Research Fund of Ministry of Education-China Mobile (MCM20150102)
文摘Cache-enabled small cell networks have been regarded as a promising approach for network operators to cope with the explosive data traffic growth in future 5 G networks. However, the user association and resource allocation mechanism has not been thoroughly studied under given content placement situation. In this paper, we formulate the joint optimization problem of user association and resource allocation as a mixed integer nonlinear programming(MINLP) problem aiming at deriving a balance between the total utility of data rates and the total data rates retrieved from caches. To solve this problem, we propose a distributed relaxing-rounding method. Simulation results demonstrate that the distributed relaxing-rounding method outperforms traditional max-SINR method and range-expansion method in terms of both total utility of data rates and total data rates retrieved from caches in practical scenarios. In addition, effects of storage and backhaul capacities on the performance are also studied.
文摘In this paper, a distributed algorithm is proposed to solve a kind of multi-objective optimization problem based on the alternating direction method of multipliers. Compared with the centralized algorithms, this algorithm does not need a central node. Therefore, it has the characteristics of low communication burden and high privacy. In addition, numerical experiments are provided to validate the effectiveness of the proposed algorithm.
基金supported in part by the National Key Research and Development Program of China under grant 2022YFA1004700in part by the Natural Science Foundation of China under grant 72171171in part by Shanghai Municipal Science and Technology Major Project under grant 2021SHZDZX0100.
文摘In this paper,we consider a networked game with coupled constraints and focus on variational Nash equilibrium seeking.For distributed algorithm design,we eliminate the coupled constraints by employing local Lagrangian functions and construct exact penalty terms to attain multipliers'optimal consensus,which yields a set of equilibrium conditions without any coupled constraint and consensus constraint.Moreover,these conditions are only based on strategy and multiplier variables,without auxiliary variables.Then,we present a distributed order-reduced dynamics that updates the strategy and multiplier variables with guaranteed convergence.Compared with many other distributed algorithms,our algorithm contains no auxiliary variable,and therefore,it can save computation and communication.