Fault tolerant ability is an important aspect for overall evaluation of distributed system(DS). This paper discusses three measures for the evaluation: node/edge connectivity, number of spanning trees and synthetic co...Fault tolerant ability is an important aspect for overall evaluation of distributed system(DS). This paper discusses three measures for the evaluation: node/edge connectivity, number of spanning trees and synthetic connectivity. A numerical example for illustration and analysis is given, and the synthetic connectivity measure presented by this paper is proved to be rational and satisfactory.展开更多
Spatially distributed systems (SDSs) are usually infinite-dimensional spatio-temporal systems with unknown nonlinearities. Therefore, to model such systems is difficult. In real applications, a low-dimensional model...Spatially distributed systems (SDSs) are usually infinite-dimensional spatio-temporal systems with unknown nonlinearities. Therefore, to model such systems is difficult. In real applications, a low-dimensional model is required. In this paper, a time/space separation based 3D fuzzy modeling approach is proposed for unknown nonlinear SDSs using input-output data measurement. The main characteristics of this approach is that time/space separation and time/space reconstruction are fused into a novel 3D fuzzy system. The modeling methodology includes two stages. The first stage is 3D fuzzy structure modeling which is based on Mamdani fuzzy rules. The consequent sets of 3D fuzzy rules consist of spatial basis functions estimated by Karhunen-Love decomposition. The antecedent sets of 3D fuzzy rules are used to construct temporal coefficients. Going through 3D fuzzy rule inference, each rule realizes time/space synthesis. The second stage is parameter identification of 3D fuzzy system using particle swarm optimization algorithm. After an operation of defuzzification, the output of the 3D fuzzy system can reconstruct the spatio-temporal dynamics of the system. The model is suitable for the prediction and control design of the SDS since it is of low-dimension and simple nonlinear structure. The simulation and experiment are presented to show the effectiveness of the proposed modeling approach.展开更多
Dynamic voltage scaling (DVS), supported by many DVS-enabled processors, is an efficient technique for energy-efficient embedded systems. Many researchers work on DVS and have presented various DVS algorithms, some wi...Dynamic voltage scaling (DVS), supported by many DVS-enabled processors, is an efficient technique for energy-efficient embedded systems. Many researchers work on DVS and have presented various DVS algorithms, some with quite good results. However, the previous algorithms either have a large time complexity or obtain results sensitive to the count of the voltage modes. Fine-grained voltage modes lead to optimal results, but coarse-grained voltage modes cause less optimal one. A new algorithm is presented, which is based on ant colony optimization, called ant colony optimization voltage and task scheduling (ACO-VTS) with a low time complexity implemented by parallelizing and its linear time approximation algorithm. Both of them generate quite good results, saving up to 30% more energy than that of the previous ones under coarse-grained modes, and their results don’t depend on the number of modes available.展开更多
The aim of this paper is to investigate a regional constrained optimal control problem for a class of semi[inear distributed systems, which are linear in the control but nonlinear in the state. For a quadratic cost fu...The aim of this paper is to investigate a regional constrained optimal control problem for a class of semi[inear distributed systems, which are linear in the control but nonlinear in the state. For a quadratic cost functional and a closed convex set of admissible controls, the existence of an optimal control is proven, and then this is characterized for three cases of constraints. A useful algorithm is developed, and the approach is illustrated through simulations for a heat equation.展开更多
Distributed System Course is a professional computer course of Harbin Institute of Technology.With the guidance of the education strategy under the background of New Engineering,we adhere to the concept of cultivating...Distributed System Course is a professional computer course of Harbin Institute of Technology.With the guidance of the education strategy under the background of New Engineering,we adhere to the concept of cultivating diverse and innovative outstanding engineering and technology talents.This course conducts research on the teaching content,teaching mode,and evaluation system.It combines the traditional teaching mode with the online teaching mode,as well as problem-driven theories with practice,and adopts a diversified evaluation system.The research of the course has fully mobilized students’learning enthusiasm,improved teaching quality,and achieved significant teaching results.展开更多
Numerous edge-chasing deadlock detection algonthms were developed lor the cycle detection in distributed systems, but their detections had the n steps speed limitation and n ( n- 1) overhead limitation to detect a c...Numerous edge-chasing deadlock detection algonthms were developed lor the cycle detection in distributed systems, but their detections had the n steps speed limitation and n ( n- 1) overhead limitation to detect a cycle of size n under the one-resource request model. Since fast deadlock detection is critical, this paper proposed a new algorithm to speed up the detection process. In our algorithm, when the running of a transaction node is blocked, the being requested resource nodes reply it with the waiting or being waited message simultaneously, so the blocked node knows both its predecessors and successors, which helps it detecting a cycle of size 2 directly and locally. For the cycle of size n ( n 〉 2), a special probe is produced which has the predecessors information of its originator, so the being detected nodes know their indirect predecessors and direct successors, and can detect the cycle within n - 2 steps. The proposed algorithm is formally proved to be correct by the invariant verification method. Performance evaluation shows that the message overhead of our detection is ( n^2 - n - 2)/2, hence both the detection speed and message cost of the proposed algorithm are better than that of the existing al gorithms.展开更多
This paper investigates large-scale distributed system design. It looks at features, main design considerations and provides the Netflix API, Cassandra and Oracle as examples of such systems. Moreover, the paper inves...This paper investigates large-scale distributed system design. It looks at features, main design considerations and provides the Netflix API, Cassandra and Oracle as examples of such systems. Moreover, the paper investigates the challenges of designing, developing, deploying, and maintaining such systems, in regard to the features presented. Finally, the paper discusses aspects of available solutions and current practices to challenges that large-scale distributed systems face.展开更多
In developing distributed systems, conformance testing is required to determine whether an implementation under test (IUT) conforms to its specification. With distributed test architectures involving multiple remote...In developing distributed systems, conformance testing is required to determine whether an implementation under test (IUT) conforms to its specification. With distributed test architectures involving multiple remote testers, testing approaches may become more complicated because of issues known as controllability and observability problems. Based on a finite state machine (FSM) representation of the system's specification, this paper proposes a new method to generate a test sequence utilizing multiple UIO sequences. The method is essentially guided by the way of minimizing the use of external coordination messages and input/output operations. Experiments are given to evaluate the proposed method.展开更多
The use of technology has increased vastly and today computer systems are interconnected via different communication medium. The use of distributed systems in our day to day activities has solely improved with data di...The use of technology has increased vastly and today computer systems are interconnected via different communication medium. The use of distributed systems in our day to day activities has solely improved with data distributions. This is because distributed systems enable nodes to organise and allow their resources to be used among the connected systems or devices that make people to be integrated with geographically distributed computing facilities. The distributed systems may lead to lack of service availability due to multiple system failures on multiple failure points. This article highlights the different fault tolerance mechanism in distributed systems used to prevent multiple system failures on multiple failure points by considering replication, high redundancy and high availability of the distributed services.展开更多
In this paper,direct adaptive-state feedback control schemes are developed to solve the problem of asymptotic tracking and disturbance rejection for a class of distributed large-scale systems with faulty and perturbed...In this paper,direct adaptive-state feedback control schemes are developed to solve the problem of asymptotic tracking and disturbance rejection for a class of distributed large-scale systems with faulty and perturbed interconnection links.In terms of the special distributed architectures,the adaptation laws are proposed to update controller parameters on-line when all interconnected fault factors,the upper bounds of perturbations in interconnection links,and external disturbances on subsystems axe unknown.Then,a class of distributed state feedback controllers is constructed to automatically compensate the fault and perturbation effects,and reject the disturbances simultaneously based on the information from adaptive schemes.The proposed adaptive robust tracking controllers can guarantee that the resulting adaptive closed-loop distributed system is stable and each subsystem can asymptotic-output track the corresponding reference signal in the presence of faults and perturbations in interconnection links,and external disturbances.The proposed design technique is finally evaluated in the light of a simulation example.展开更多
Consensus control of multi-agent systems is an innovative paradigm for the development of intelligent distributed systems.This has fascinated numerous scientific groups for their promising applications as they have th...Consensus control of multi-agent systems is an innovative paradigm for the development of intelligent distributed systems.This has fascinated numerous scientific groups for their promising applications as they have the freedom to achieve their local and global goals and make their own decisions.Network communication topologies based on graph and matrix theory are widely used in a various real-time applications ranging from software agents to robotics.Therefore,while sustaining the significance of both directed and undirected graphs,this research emphases on the demonstration of a distributed average consensus algorithm.It uses the harmonic mean in the domain of multi-agent systems with directed and undirected graphs under static topologies based on a control input scheme.The proposed agreement protocol focuses on achieving a constant consensus on directional and undirected graphs using the exchange of information between neighbors to update their status values and to be able to calculate the total number of agents that contribute to the communication network at the same time.The proposed method is implemented for the identical networks that are considered under the directional and non-directional communication links.Two different scenarios are simulated and it is concluded that the undirected approach has an advantage over directed graph communication in terms of processing time and the total number of iterations required to achieve convergence.The same network parameters are introduced for both orientations of the communication graphs.In addition,the results of the simulation and the calculation of various matrices are provided at the end to validate the effectiveness of the proposed algorithm to achieve consensus.展开更多
In parallel and distributed computing, development of an efficient static task scheduling algorithm for directed acyclic graph (DAG) applications is an important problem. The static task scheduling problem is NP-compl...In parallel and distributed computing, development of an efficient static task scheduling algorithm for directed acyclic graph (DAG) applications is an important problem. The static task scheduling problem is NP-complete in its general form. The complexity of the problem increases when task scheduling is to be done in a heterogeneous environment, consisting of processors with varying processing capabilities and network links with varying bandwidths. List scheduling algorithms are generally preferred since they generate good quality schedules with less complexity. But these list algorithms leave a lot of room for improvement, especially when these algorithms are used in specialized heterogeneous environments This paper presents an hybrid genetic task scheduling algorithm for the tasks run on the network of heterogeneous systems and represented by Directed Acyclic Graphs (DAGs). First, the algorithm assigns a coupling factor to each task to present the tasks should be scheduled onto the same processor by avoiding the large communication time. Second, the algorithm generate some high quality initial solution by scheduling the tasks which are strongly coupled with each other onto the same processor, and improve the quality of the solution by using coupling initial solutions, random solution, near optimal solutions obtained by the list scheduling algorithm in the crossover and mutation operator. The performance of the algorithm is illustrated by comparing with the existing effectively scheduling algorithms.展开更多
This paper presents a study on protection coordination of over current relays (OCRs) in a distributed system by considering its different operating modes. Two different case studies which are considered in present wor...This paper presents a study on protection coordination of over current relays (OCRs) in a distributed system by considering its different operating modes. Two different case studies which are considered in present work for protection coordination include: (i) DG interfaced distribution system in grid connected mode and (ii) DG interfaced distribution system in islanded mode of operation. The proposed approach is tested on the Canadian urban benchmark distribution system consisting of 9 buses. On the occurrence of fault, level of fault current changes which in turn changes the operating time of various OCRs. Therefore, it is important to calculate and suggest method of the relay setting in order to minimize the operating time of relays and also to avoid its mal-operation. In this paper, the protection scheme is optimally designed by taking into account the above mentioned conditions. The operating time of relays can be decreased and, at the same time, coordination can be maintained by considering the optimum values of time dial setting (TDS). Genetic Algorithm (GA) has been used for determining the optimum values of TDS and hence operating time.展开更多
In this paper we report on a work in progress assessing the faults observed and reported in a distributed, safety-critical, largely embedded system with both electrical and mechanical components. We illustrate why sta...In this paper we report on a work in progress assessing the faults observed and reported in a distributed, safety-critical, largely embedded system with both electrical and mechanical components. We illustrate why standard software testing techniques are not sufficient and indicate some of the technical and non-technical problems encountered in examining the faults and the initial results obtained. While the application domain is elevator operation, the techniques described here are general enough to apply to many other domains. Much of the data analyzed here would be considered imprecise in the software industry if it were used in software testing or to help increase fault tolerance. The paper includes a discussion of the use of multiple views of data, assessment of missing data, and analysis of informal information to produce its conclusions about fault avoidance and fault tolerance.展开更多
This paper introduces an architecture of distributed systems that facilitates the implementation of a substantial range of dependable system properties, i.e., properties that span an entire system, or a set of compone...This paper introduces an architecture of distributed systems that facilitates the implementation of a substantial range of dependable system properties, i.e., properties that span an entire system, or a set of components dispersed throughout it. This architecture, called GDS, for governed distributed system, governs the system by controlling the flow of messages between its actors, independently of the internals of the interacting actors. This governance is done via an enforced collection of interaction laws organized into a modular and conflict free hierarchical ensemble. This ensemble of laws is sensitive to the history of interaction;and it is enforced in a decentralized manner, and is thus scalable. The dependable system properties that can be implemented under GDS can have the following beneficial consequences, among others: a) the ability to establish regularities over the system, rendering it more coherent, and easier to reason about;b) the ability to provide a degree of trust among the disparate actor of the system;and c) the ability to ensure compliance with interaction protocols that are essential for distributed computing. Consequently, the GDS architecture can have a significant impact on the following important system qualities: security, fault tolerance, auditability, and manageability.展开更多
Harvesting energy for execution from the environment (e.g., solar, wind energy) has recently emerged as a feasible solution for low-cost and low-power distributed systems. When real-time responsiveness of a given appl...Harvesting energy for execution from the environment (e.g., solar, wind energy) has recently emerged as a feasible solution for low-cost and low-power distributed systems. When real-time responsiveness of a given application has to be guaranteed, the recharge rate of obtaining energy inevitably affects the task scheduling. This paper extends our previous works in?[1] [2] to explore the real-time task assignment problem on an energy-harvesting distributed system. The solution using Ant Colony Optimization (ACO) and several significant improvements are presented. Simulations compare the performance of the approaches, which demonstrate the solutions effectiveness and efficiency.展开更多
Waveform generation and digitization play essential roles in numerous physics experiments.In traditional distributed systems for large-scale experiments,each frontend node contains an FPGA for data preprocessing,which...Waveform generation and digitization play essential roles in numerous physics experiments.In traditional distributed systems for large-scale experiments,each frontend node contains an FPGA for data preprocessing,which interfaces with various data converters and exchanges data with a backend central processor.However,the streaming readout architecture has become a new paradigm for several experiments benefiting from advancements in data transmission and computing technologies.This paper proposes a scalable distributed waveform generation and digitization system that utilizes fiber optical connections for data transmission between frontend nodes and a central processor.By utilizing transparent transmission on top of the data link layer,the clock and data ports of the converters in the frontend nodes are directly mapped to the FPGA firmware at the backend.This streaming readout architecture reduces the complexity of frontend development and maintains the data conversion in proximity to the detector.Each frontend node uses a local clock for waveform digitization.To translate the timing information of events in each channel into the system clock domain within the backend central processing FPGA,a novel method is proposed and evaluated using a demonstrator system.展开更多
Enterprise alliances and government agencies typically deploy distributed systems across subsidiaries and subordinate departments,where each system node collaborates via a network to present a unified interface to use...Enterprise alliances and government agencies typically deploy distributed systems across subsidiaries and subordinate departments,where each system node collaborates via a network to present a unified interface to users.Addressing the challenges of log data dispersion,heterogeneity,and lack of credibility in distributed systems,this paper proposes a log anomaly detection framework based on a graph-chain architecture.The framework leverages the sequence analysis capabilities of a distilled Transformer model to detect anomalies in system logs at each node.Finally,by integrating blockchain smart contracts,it ensures tamper resistance and traceability.Experimental results demonstrate that the proposed framework achieves an anomaly detection accuracy of 99.6%,surpassing traditional methods.展开更多
Dear Editor,The letter deals with the distributed state and fault estimation of the whole physical layer for cyber-physical systems(CPSs) when the cyber layer suffers from DoS attacks. With the advancement of embedded...Dear Editor,The letter deals with the distributed state and fault estimation of the whole physical layer for cyber-physical systems(CPSs) when the cyber layer suffers from DoS attacks. With the advancement of embedded computing, communication and related hardware technologies, CPSs have attracted extensive attention and have been widely used in power system, traffic network, refrigeration system and other fields.展开更多
Dear Editor,This letter focuses on the distributed cooperative regulation problem for a class of networked re-entrant manufacturing systems(RMSs).The networked system is structured with a three-tier architecture:the p...Dear Editor,This letter focuses on the distributed cooperative regulation problem for a class of networked re-entrant manufacturing systems(RMSs).The networked system is structured with a three-tier architecture:the production line,the manufacturing layer and the workshop layer.The dynamics of re-entrant production lines are governed by hyperbolic partial differential equations(PDEs)based on the law of mass conservation.展开更多
文摘Fault tolerant ability is an important aspect for overall evaluation of distributed system(DS). This paper discusses three measures for the evaluation: node/edge connectivity, number of spanning trees and synthetic connectivity. A numerical example for illustration and analysis is given, and the synthetic connectivity measure presented by this paper is proved to be rational and satisfactory.
基金supported by National Science Foundation of China(Nos.61273182,31570998,51375293 and 61374112)
文摘Spatially distributed systems (SDSs) are usually infinite-dimensional spatio-temporal systems with unknown nonlinearities. Therefore, to model such systems is difficult. In real applications, a low-dimensional model is required. In this paper, a time/space separation based 3D fuzzy modeling approach is proposed for unknown nonlinear SDSs using input-output data measurement. The main characteristics of this approach is that time/space separation and time/space reconstruction are fused into a novel 3D fuzzy system. The modeling methodology includes two stages. The first stage is 3D fuzzy structure modeling which is based on Mamdani fuzzy rules. The consequent sets of 3D fuzzy rules consist of spatial basis functions estimated by Karhunen-Love decomposition. The antecedent sets of 3D fuzzy rules are used to construct temporal coefficients. Going through 3D fuzzy rule inference, each rule realizes time/space synthesis. The second stage is parameter identification of 3D fuzzy system using particle swarm optimization algorithm. After an operation of defuzzification, the output of the 3D fuzzy system can reconstruct the spatio-temporal dynamics of the system. The model is suitable for the prediction and control design of the SDS since it is of low-dimension and simple nonlinear structure. The simulation and experiment are presented to show the effectiveness of the proposed modeling approach.
基金the National"973"Basic Research Programof China (2004CB318202)
文摘Dynamic voltage scaling (DVS), supported by many DVS-enabled processors, is an efficient technique for energy-efficient embedded systems. Many researchers work on DVS and have presented various DVS algorithms, some with quite good results. However, the previous algorithms either have a large time complexity or obtain results sensitive to the count of the voltage modes. Fine-grained voltage modes lead to optimal results, but coarse-grained voltage modes cause less optimal one. A new algorithm is presented, which is based on ant colony optimization, called ant colony optimization voltage and task scheduling (ACO-VTS) with a low time complexity implemented by parallelizing and its linear time approximation algorithm. Both of them generate quite good results, saving up to 30% more energy than that of the previous ones under coarse-grained modes, and their results don’t depend on the number of modes available.
文摘The aim of this paper is to investigate a regional constrained optimal control problem for a class of semi[inear distributed systems, which are linear in the control but nonlinear in the state. For a quadratic cost functional and a closed convex set of admissible controls, the existence of an optimal control is proven, and then this is characterized for three cases of constraints. A useful algorithm is developed, and the approach is illustrated through simulations for a heat equation.
文摘Distributed System Course is a professional computer course of Harbin Institute of Technology.With the guidance of the education strategy under the background of New Engineering,we adhere to the concept of cultivating diverse and innovative outstanding engineering and technology talents.This course conducts research on the teaching content,teaching mode,and evaluation system.It combines the traditional teaching mode with the online teaching mode,as well as problem-driven theories with practice,and adopts a diversified evaluation system.The research of the course has fully mobilized students’learning enthusiasm,improved teaching quality,and achieved significant teaching results.
文摘Numerous edge-chasing deadlock detection algonthms were developed lor the cycle detection in distributed systems, but their detections had the n steps speed limitation and n ( n- 1) overhead limitation to detect a cycle of size n under the one-resource request model. Since fast deadlock detection is critical, this paper proposed a new algorithm to speed up the detection process. In our algorithm, when the running of a transaction node is blocked, the being requested resource nodes reply it with the waiting or being waited message simultaneously, so the blocked node knows both its predecessors and successors, which helps it detecting a cycle of size 2 directly and locally. For the cycle of size n ( n 〉 2), a special probe is produced which has the predecessors information of its originator, so the being detected nodes know their indirect predecessors and direct successors, and can detect the cycle within n - 2 steps. The proposed algorithm is formally proved to be correct by the invariant verification method. Performance evaluation shows that the message overhead of our detection is ( n^2 - n - 2)/2, hence both the detection speed and message cost of the proposed algorithm are better than that of the existing al gorithms.
文摘This paper investigates large-scale distributed system design. It looks at features, main design considerations and provides the Netflix API, Cassandra and Oracle as examples of such systems. Moreover, the paper investigates the challenges of designing, developing, deploying, and maintaining such systems, in regard to the features presented. Finally, the paper discusses aspects of available solutions and current practices to challenges that large-scale distributed systems face.
基金Project supported by the National Natural Science Foundation of China (Grant No.60673115), and the Open Foundation of State Key Laboratory of Software Engineering (Grant No.SKLSE05-13)
文摘In developing distributed systems, conformance testing is required to determine whether an implementation under test (IUT) conforms to its specification. With distributed test architectures involving multiple remote testers, testing approaches may become more complicated because of issues known as controllability and observability problems. Based on a finite state machine (FSM) representation of the system's specification, this paper proposes a new method to generate a test sequence utilizing multiple UIO sequences. The method is essentially guided by the way of minimizing the use of external coordination messages and input/output operations. Experiments are given to evaluate the proposed method.
文摘The use of technology has increased vastly and today computer systems are interconnected via different communication medium. The use of distributed systems in our day to day activities has solely improved with data distributions. This is because distributed systems enable nodes to organise and allow their resources to be used among the connected systems or devices that make people to be integrated with geographically distributed computing facilities. The distributed systems may lead to lack of service availability due to multiple system failures on multiple failure points. This article highlights the different fault tolerance mechanism in distributed systems used to prevent multiple system failures on multiple failure points by considering replication, high redundancy and high availability of the distributed services.
基金Supported by National Basic Research Program of China(973 Program)(2009CB320604)the Key Program of National Natural Science Foundation of China(60534010)+4 种基金National Natural Science Foundation of China(60674021),Program for New Century Excellent Talents in Universities(NCET-04-0283)the Funds for Cre-ative Research Groups of China(60821063)Program for Changjiang Scholars and Innovative Research Team in University(IRT0421)the Funds of Doctoral Program of Ministry of Education,China(20060145019)the 111 Project(B08015)
文摘In this paper,direct adaptive-state feedback control schemes are developed to solve the problem of asymptotic tracking and disturbance rejection for a class of distributed large-scale systems with faulty and perturbed interconnection links.In terms of the special distributed architectures,the adaptation laws are proposed to update controller parameters on-line when all interconnected fault factors,the upper bounds of perturbations in interconnection links,and external disturbances on subsystems axe unknown.Then,a class of distributed state feedback controllers is constructed to automatically compensate the fault and perturbation effects,and reject the disturbances simultaneously based on the information from adaptive schemes.The proposed adaptive robust tracking controllers can guarantee that the resulting adaptive closed-loop distributed system is stable and each subsystem can asymptotic-output track the corresponding reference signal in the presence of faults and perturbations in interconnection links,and external disturbances.The proposed design technique is finally evaluated in the light of a simulation example.
文摘Consensus control of multi-agent systems is an innovative paradigm for the development of intelligent distributed systems.This has fascinated numerous scientific groups for their promising applications as they have the freedom to achieve their local and global goals and make their own decisions.Network communication topologies based on graph and matrix theory are widely used in a various real-time applications ranging from software agents to robotics.Therefore,while sustaining the significance of both directed and undirected graphs,this research emphases on the demonstration of a distributed average consensus algorithm.It uses the harmonic mean in the domain of multi-agent systems with directed and undirected graphs under static topologies based on a control input scheme.The proposed agreement protocol focuses on achieving a constant consensus on directional and undirected graphs using the exchange of information between neighbors to update their status values and to be able to calculate the total number of agents that contribute to the communication network at the same time.The proposed method is implemented for the identical networks that are considered under the directional and non-directional communication links.Two different scenarios are simulated and it is concluded that the undirected approach has an advantage over directed graph communication in terms of processing time and the total number of iterations required to achieve convergence.The same network parameters are introduced for both orientations of the communication graphs.In addition,the results of the simulation and the calculation of various matrices are provided at the end to validate the effectiveness of the proposed algorithm to achieve consensus.
文摘In parallel and distributed computing, development of an efficient static task scheduling algorithm for directed acyclic graph (DAG) applications is an important problem. The static task scheduling problem is NP-complete in its general form. The complexity of the problem increases when task scheduling is to be done in a heterogeneous environment, consisting of processors with varying processing capabilities and network links with varying bandwidths. List scheduling algorithms are generally preferred since they generate good quality schedules with less complexity. But these list algorithms leave a lot of room for improvement, especially when these algorithms are used in specialized heterogeneous environments This paper presents an hybrid genetic task scheduling algorithm for the tasks run on the network of heterogeneous systems and represented by Directed Acyclic Graphs (DAGs). First, the algorithm assigns a coupling factor to each task to present the tasks should be scheduled onto the same processor by avoiding the large communication time. Second, the algorithm generate some high quality initial solution by scheduling the tasks which are strongly coupled with each other onto the same processor, and improve the quality of the solution by using coupling initial solutions, random solution, near optimal solutions obtained by the list scheduling algorithm in the crossover and mutation operator. The performance of the algorithm is illustrated by comparing with the existing effectively scheduling algorithms.
文摘This paper presents a study on protection coordination of over current relays (OCRs) in a distributed system by considering its different operating modes. Two different case studies which are considered in present work for protection coordination include: (i) DG interfaced distribution system in grid connected mode and (ii) DG interfaced distribution system in islanded mode of operation. The proposed approach is tested on the Canadian urban benchmark distribution system consisting of 9 buses. On the occurrence of fault, level of fault current changes which in turn changes the operating time of various OCRs. Therefore, it is important to calculate and suggest method of the relay setting in order to minimize the operating time of relays and also to avoid its mal-operation. In this paper, the protection scheme is optimally designed by taking into account the above mentioned conditions. The operating time of relays can be decreased and, at the same time, coordination can be maintained by considering the optimum values of time dial setting (TDS). Genetic Algorithm (GA) has been used for determining the optimum values of TDS and hence operating time.
文摘In this paper we report on a work in progress assessing the faults observed and reported in a distributed, safety-critical, largely embedded system with both electrical and mechanical components. We illustrate why standard software testing techniques are not sufficient and indicate some of the technical and non-technical problems encountered in examining the faults and the initial results obtained. While the application domain is elevator operation, the techniques described here are general enough to apply to many other domains. Much of the data analyzed here would be considered imprecise in the software industry if it were used in software testing or to help increase fault tolerance. The paper includes a discussion of the use of multiple views of data, assessment of missing data, and analysis of informal information to produce its conclusions about fault avoidance and fault tolerance.
文摘This paper introduces an architecture of distributed systems that facilitates the implementation of a substantial range of dependable system properties, i.e., properties that span an entire system, or a set of components dispersed throughout it. This architecture, called GDS, for governed distributed system, governs the system by controlling the flow of messages between its actors, independently of the internals of the interacting actors. This governance is done via an enforced collection of interaction laws organized into a modular and conflict free hierarchical ensemble. This ensemble of laws is sensitive to the history of interaction;and it is enforced in a decentralized manner, and is thus scalable. The dependable system properties that can be implemented under GDS can have the following beneficial consequences, among others: a) the ability to establish regularities over the system, rendering it more coherent, and easier to reason about;b) the ability to provide a degree of trust among the disparate actor of the system;and c) the ability to ensure compliance with interaction protocols that are essential for distributed computing. Consequently, the GDS architecture can have a significant impact on the following important system qualities: security, fault tolerance, auditability, and manageability.
文摘Harvesting energy for execution from the environment (e.g., solar, wind energy) has recently emerged as a feasible solution for low-cost and low-power distributed systems. When real-time responsiveness of a given application has to be guaranteed, the recharge rate of obtaining energy inevitably affects the task scheduling. This paper extends our previous works in?[1] [2] to explore the real-time task assignment problem on an energy-harvesting distributed system. The solution using Ant Colony Optimization (ACO) and several significant improvements are presented. Simulations compare the performance of the approaches, which demonstrate the solutions effectiveness and efficiency.
基金supported by the National Key Research and Development Program of China(No.2022YFA1604703)the National Natural Science Foundation of China(No.12375189)the National Key Research and Development Program of China(No.2021YFA1601300)。
文摘Waveform generation and digitization play essential roles in numerous physics experiments.In traditional distributed systems for large-scale experiments,each frontend node contains an FPGA for data preprocessing,which interfaces with various data converters and exchanges data with a backend central processor.However,the streaming readout architecture has become a new paradigm for several experiments benefiting from advancements in data transmission and computing technologies.This paper proposes a scalable distributed waveform generation and digitization system that utilizes fiber optical connections for data transmission between frontend nodes and a central processor.By utilizing transparent transmission on top of the data link layer,the clock and data ports of the converters in the frontend nodes are directly mapped to the FPGA firmware at the backend.This streaming readout architecture reduces the complexity of frontend development and maintains the data conversion in proximity to the detector.Each frontend node uses a local clock for waveform digitization.To translate the timing information of events in each channel into the system clock domain within the backend central processing FPGA,a novel method is proposed and evaluated using a demonstrator system.
文摘Enterprise alliances and government agencies typically deploy distributed systems across subsidiaries and subordinate departments,where each system node collaborates via a network to present a unified interface to users.Addressing the challenges of log data dispersion,heterogeneity,and lack of credibility in distributed systems,this paper proposes a log anomaly detection framework based on a graph-chain architecture.The framework leverages the sequence analysis capabilities of a distilled Transformer model to detect anomalies in system logs at each node.Finally,by integrating blockchain smart contracts,it ensures tamper resistance and traceability.Experimental results demonstrate that the proposed framework achieves an anomaly detection accuracy of 99.6%,surpassing traditional methods.
基金supported by the National Natural Science Foundation of China(62303273,62373226)the National Research Foundation,Singapore through the Medium Sized Center for Advanced Robotics Technology Innovation(WP2.7)
文摘Dear Editor,The letter deals with the distributed state and fault estimation of the whole physical layer for cyber-physical systems(CPSs) when the cyber layer suffers from DoS attacks. With the advancement of embedded computing, communication and related hardware technologies, CPSs have attracted extensive attention and have been widely used in power system, traffic network, refrigeration system and other fields.
文摘Dear Editor,This letter focuses on the distributed cooperative regulation problem for a class of networked re-entrant manufacturing systems(RMSs).The networked system is structured with a three-tier architecture:the production line,the manufacturing layer and the workshop layer.The dynamics of re-entrant production lines are governed by hyperbolic partial differential equations(PDEs)based on the law of mass conservation.