This work investigated the original microstructure of cold-worked alumina-forming austenitic steel,along with its precipitation and dissolution corrosion behaviors in lead-bismuth eutectic with 10-8 wt.%oxygen at 600...This work investigated the original microstructure of cold-worked alumina-forming austenitic steel,along with its precipitation and dissolution corrosion behaviors in lead-bismuth eutectic with 10-8 wt.%oxygen at 600℃,using solution-annealed steel for comparison.Anomalously,cold-worked steel presented milder corrosion compared to solution-annealed steel,with average corrosion depths of 314.3 and 401.0μm after 1700 h exposure.Cold working-induced de-twinning transformed the annealing twin boundaries into normal high-angle grain boundaries(NGBs),increasing NGBs proportion from 36%to 89%.The increased NGBs provided more nucleation sites for intergranular barriers composed of alternate NiAl and M23C6 precipitates,thus better obstructing the dissolution attack.展开更多
Complex physical and chemical reactions during CO_(2)sequestration alter the microscopic pore structure of geological formations,impacting sequestration stability.To investigate CO_(2)sequestration dynamics,comprehens...Complex physical and chemical reactions during CO_(2)sequestration alter the microscopic pore structure of geological formations,impacting sequestration stability.To investigate CO_(2)sequestration dynamics,comprehensive physical simulation experiments were conducted under varied pressures,coupled with assessments of changes in mineral composition,ion concentrations,pore morphology,permeability,and sequestration capacity before and after experimentation.Simultaneously,a method using NMR T2spectra changes to measure pore volume shift and estimate CO_(2)sequestration is introduced.It quantifies CO_(2)needed for mineralization of soluble minerals.However,when CO_(2)dissolves in crude oil,the precipitation of asphaltene compounds impairs both seepage and storage capacities.Notably,the impact of dissolution and precipitation is closely associated with storage pressure,with a particularly pronounced influence on smaller pores.As pressure levels rise,the magnitude of pore alterations progressively increases.At a pressure threshold of 25 MPa,the rate of change in small pores due to dissolution reaches a maximum of 39.14%,while precipitation results in a change rate of-58.05%for small pores.The observed formation of dissolution pores and micro-cracks during dissolution,coupled with asphaltene precipitation,provides crucial insights for establishing CO_(2)sequestration parameters and optimizing strategies in low permeability reservoirs.展开更多
Hydrothermal ore zoning is a transport-reaction problem in which infiltration is the principal Prcness of transport and dissolution/Precipitation is the Principal process of chemical reactions.Neglecting diffusion an...Hydrothermal ore zoning is a transport-reaction problem in which infiltration is the principal Prcness of transport and dissolution/Precipitation is the Principal process of chemical reactions.Neglecting diffusion and ion exchange/adsorption would not affect the basic attributes of hydrothermal ore zoning. Hydrothermal ore zoning belongs essentially to infiltration metasomatic zoning, it results from the formation and propagation of dissolution/precipitation waves through Permeable media. The authors apply the theory of coupled infiltration and dissolution/precipitation reactions in Physicochemical hydrodynamics to studying the structural characteristics of dissolution/precipitation waves, and apply furthermore the coherence principle in dynamic theory of multicomponent coupled systems to revealing the dynamic mechanisms of their formation. The results of investigation verify and develop . C. 's theory of infiltration metasomatic zoning,on the one hand, raising it from the qualitative, equilibrium thermodynamic basis to the quantitative dynamic level;on the other hand, and more importantly, applying theories of Physicochemical hydrodynamics and dynamics of multicomponent coupled systems to bringing to light the dynamic mechanisms of formation of the structure of hydrothermal ore zoning, and advancing a theory of hydrothermal ore zoning, putting forward new ideas on the nature of the problem of hydrothermal ore zoning, the essence of hydrothermal ore zoning and the structural characteristics and mechanisms of formation of hydrothermal ore zoning.展开更多
Global land monsoon precipitation(GLMP)is highly sensitive to changes in interhemispheric thermal contrast(ITC).Amplified interhemispheric asymmetries of GLMP due to enhanced ITC driven by high-level anthropogenic emi...Global land monsoon precipitation(GLMP)is highly sensitive to changes in interhemispheric thermal contrast(ITC).Amplified interhemispheric asymmetries of GLMP due to enhanced ITC driven by high-level anthropogenic emissions are expected to simultaneously increase the probability of regional floods and droughts,threatening ecosystems within global terrestrial monsoon regions and the freshwater supply for billions of residents in these areas.In this study,the responses of GLMP to the evolution of ITC toward the carbon neutrality goal are assessed using multimodel outputs from a new model intercomparison project(CovidMIP).The results show that the Northern Hemisphere-Southern Hemisphere(NH-SH)asymmetry of GLMP in boreal summer weakens during the 2040s,as a persistent reduction in well-mixed greenhouse gas(WMGHG)emissions leads to a downward trend in the ITC after 2040.At the same time,the reduction in WMGHG emissions dampens the Eastern Hemisphere-Western Hemisphere(EH-WH)asymmetry of GLMP by inducing La Niña-like cooling and enhancing moisture transport to Inner America.The resulting increases in land monsoon precipitation(LMP)may alleviate drought under the global warming scenario by about 19%-25%and 7%-9%in the WH and SH monsoon regions,respectively.However,a persistent reduction in aerosol emissions in Asia will dominate the increases in LMP in this region until the mid-21st century,and these increases may be approximately 23%-60%of the growth under the global warming scenario.Our results highlight the different rates of response of aerosol and WMGHG concentrations to the carbon neutrality goal,leading to various changes in LMP at global and regional scales.展开更多
In order to clarify the dynamic process of feldspar dissolution-precipitation and explore the formation mechanism of secondary porosity,six batch reactor experiments were conducted at 200℃and pH=7 measured at room te...In order to clarify the dynamic process of feldspar dissolution-precipitation and explore the formation mechanism of secondary porosity,six batch reactor experiments were conducted at 200℃and pH=7 measured at room temperature.Temporal evolution of fluid chemistry was analyzed with an inductively coupled plasma optical emission spectrometer(ICP-OES).Solid reaction products were retrieved from six batch experiments terminated after 36,180,276,415,766 and 1008 h.Scanning electron microscopy(SEM)revealed dissolution features and significant secondary mineral adhered on the feldspar surface.The process of feldspar dissolution-precipitation proceeded slowly and full equilibrium was not achieved after 1008 h.Saturation indices suggested that the albite and K-feldspar dissolution occurred throughout the experiments.The average dissolution rates for albite and K-feldspar were 2.28×10^-10 and 8.51×10^-11 mol m^-2 s^-1,respectively.Based on the experimental data,the reaction process of alkaline feldspar was simulated and the secondary porosity had increased 0.3%after the experiment.展开更多
The kinetics of ε-Cu particles dissolution in the matrix during welding of a copper-precipitation strengthening steel was determined by a combination of GleebleTM physical simulation, TEM examination and hardness mea...The kinetics of ε-Cu particles dissolution in the matrix during welding of a copper-precipitation strengthening steel was determined by a combination of GleebleTM physical simulation, TEM examination and hardness meas urement. The ε-Cu particles underwent a coarsening and part dissolution and then complete dissolution reaction as the peak temperature increased from 750 to 1 000℃, which resulted in the decrease in the number density of ε-Cu particles and hardness in the heat affected zone (HAZ). The results can be used to understand the evolution of this transformation and a softening behavior of the HAZ during welding of this type of steel.展开更多
In the Earth's upper crust, where aqueous fluids can circulate freely, most mineral transformations are controlled by the coupling between the dissolution of a mineral that releases chemical species into the fluid...In the Earth's upper crust, where aqueous fluids can circulate freely, most mineral transformations are controlled by the coupling between the dissolution of a mineral that releases chemical species into the fluid and precipitation of new minerals that contain some of the released species in their crystal structure, the coupled process being driven by a reduction of the total free-energy of the system. Such coupled dissolution-precipitation processes occur at the fluid-mineral interface where the chemical gradients are highest and heterogeneous nucleation can be promoted, therefore controlling the growth kinetics of the new minerals. Time-lapse nanoscale imaging using Atomic Force Microscopy(AFM) can monitor the whole coupled process under in situ conditions and allow identifying the time scales involved and the controlling parameters. We have performed a series of experiments on carbonate minerals(calcite, siderite, dolomite and magnesite) where dissolution of the carbonate and precipitation of a new mineral was imaged and followed through time. In the presence of various species in the reacting fluid(e. g. antimony, selenium, arsenic, phosphate), the calcium released during calcite dissolution binds with these species to form new minerals that sequester these hazardous species in the form of a stable solid phase. For siderite, the coupling involves the release of Fe^(2+) ions that subsequently become oxidized and then precipitate in the form of FeIIIoxyhydroxides. For dolomite and magnesite,dissolution in the presence of pure water(undersaturated with any possible phase) results in the immediate precipitation of hydrated Mg-carbonate phases. In all these systems, dissolution and precipitation are coupled and occur directly in a boundary layer at the carbonate surface. Scaling arguments demonstrate that the thickness of this boundary layer is controlled by the rate of carbonate dissolution,the equilibrium concentration of the precipitates and the kinetics of diffusion of species in a boundary layer. From these parameters a characteristic time scale and a characteristic length scale of the boundary layer can be derived. This boundary layer grows with time and never reaches a steady state thickness as long as dissolution of the carbonate is faster than precipitation of the new mineral. At ambient temperature, the surface reactions of these dissolving carbonates occur on time-scales of the order of seconds to minutes, indicating the rapid surface rearrangement of carbonates in the presence of aqueous fluids. As a consequence, many carbonate-fluid reactions in low temperature environments are controlled by local thermodynamic equilibria rather than by the global equilibrium in the whole system.展开更多
Further development of our differential scanning calorimetry(DSC)method for the analysis of solid-solid phase transformations now also allows for its application in the kinetic analysis of age hardening in Mg alloys.A...Further development of our differential scanning calorimetry(DSC)method for the analysis of solid-solid phase transformations now also allows for its application in the kinetic analysis of age hardening in Mg alloys.As a result,the state-of-the-art for DSC on Mg alloys has been improved with respect to the accessible temperature range,zero-level accuracy and dynamic range.DSC analysis was performed on the example of Mg wrought alloy WE43.Heating DSC experiments on the initial condition T4 and even direct continuous cooling DSC analysis on the kinetics of quench induced precipitation during cooling from solution treatment were possible,covering a dynamic range of 0.01-3 K/s.The DSC findings are discussed with respect to literature knowledge and scanning electron microscopy analysis of the defined heat treatment states.展开更多
The commercial ZK 60 magnesium alloy with extruded state experienced aging heat treatment(T 6)was dynamically loaded at strain rate of 3000 s−1 by means of the split Hopkinson pressure bar(SHPB)in this paper.Transmiss...The commercial ZK 60 magnesium alloy with extruded state experienced aging heat treatment(T 6)was dynamically loaded at strain rate of 3000 s−1 by means of the split Hopkinson pressure bar(SHPB)in this paper.Transmission electron microscopy(TEM)observations showed that the precipitatedβ′_(1) phases partially dissolved(spheroidized)with blurred interfaces within 160μs at 3000 s^(−1).The average length and diameter of the rod-shapedβ′_(1) phase particles were 48.5 and 9.8 nm after the T 6 heat treatment;while the average diameter of the sphericalβ′_(1) phases changed to 8.8 nm after loading.The deformedβ′_(1) phase generated larger lattice distortion energy than Mg matrix under high strain rate loading.Therefore,the difference of free energy(the driving force of dissolution)between theβ′_(1) phase and the matrix increased,making the instantaneous dissolution of theβ′_(1) phase thermodynamically feasible.The dissolution(spheroidization)of theβ′_(1) phase particles was kinetically promoted because the diffusion rate of the solute Zn atoms was accelerated by combined actions of adiabatic temperature rise,high density of dislocations(vacancies)and high deviatoric stresses during high strain rate loading.The increase in hardness of ZK 60-T 6 alloy could be attributed to solid solution strengthening,dislocation strengthening and second phase particle strengthening.展开更多
We investigate the variation induced in long-period stacking ordered(LPSO)structures,dynamic recrystallization(DRX),and mechanical performance of hot-extruded Mg89Y4Zn2Li5 alloys fabricated at different extrusion spee...We investigate the variation induced in long-period stacking ordered(LPSO)structures,dynamic recrystallization(DRX),and mechanical performance of hot-extruded Mg89Y4Zn2Li5 alloys fabricated at different extrusion speeds(Ve=0.4,0.8,1.0,1.2 mm/s)and die angles(α=30°,60°,90°)under 400℃,the dissolution and reprecipitation of 14H LPSO structure accompanied by DRX process are then clarified in detail.Upon all extrusion conditions,the block 18R LPSO structures elongate in the extrusion direction,while the lamellar 14H LPSO structures dissolve under the deformation strain.In addition,due to discontinuous and continuous DRX mechanisms,all hot-extruded alloys have a full DRX microstructure consisting of equiaxed recrystallized grains,but the DRX grain size reduces when both extrusion speed and die angle decrease.Note that,in the interior of DRX grains,thin LPSO lamellae mixing 14H,18R and 24R structures nucleate and dynamically precipitate due to the dissolution of the original lamellar 14H LPSO structures.Furthermore,the hot-extruded Mg_(89)Y_(4)Zn_(2)Li_(5)alloy becomes stronger as decreasing of the extrusion speed and die angle,whereas the ductility remains nearly constant.Finally,the hotextruded Mg_(89)Y_(4)Zn_(2)Li_(5)alloy achieves an excellent strength-ductility balance at a relatively low extrusion speed(0.4 mm/s)and small die angle(30°)mainly due to the elongated 18R LPSO structure,fine and full DRX microstructure,thin mixed LPSO precipitates in the DRX grains,twins and dislocations.展开更多
The study of the discontinuous precipitation reaction and the lamellar precipitate dissolution in the alloy Cu-In system provoked a considerable benefit and has been the subject of many theoretical and experimental in...The study of the discontinuous precipitation reaction and the lamellar precipitate dissolution in the alloy Cu-In system provoked a considerable benefit and has been the subject of many theoretical and experimental investigations. The aim of this work is to make the evidence on the one hand the effect of the plastic deformation on the mechanism of the discontinuous precipitation reaction such as nucleation, growth and lamellar coarsening and in other hand the effect of temperature on the characteristics and front behavior movement of the opposite reaction (discontinuous dissolution). Different techniques of analysis have been used in this respect such as the optical microscopy, the differential thermal analysis and the microhardness Vickers. The obtained results confirm various works achieved in this field.展开更多
The discontinuous precipitation and dissolution in the alloy Al-Zn system has been the subject of many theoretical and experimental investigations that have contributed to the understanding of the different mechanisms...The discontinuous precipitation and dissolution in the alloy Al-Zn system has been the subject of many theoretical and experimental investigations that have contributed to the understanding of the different mechanisms which control them. However, many questions remain unanswered because of the complexity of the constituted phases which are affected by the speed of the quenched, deformation, the temperature of homogenization and ageing effect. The purpose of this work is to clarify the effect of temperature and deformation on the mechanisms of these two reactions during ageing of Al-15 at.% Zn and Al-30 at.% Zn alloy. The techniques of analysis used in this respect are the optical microscopy, the X-ray diffraction and the hardness Vickers.展开更多
Lead(Pb) coprecipitation with jarosite is common in natural and engineered environments,such as acid mine drainage(AMD) sites and hydrometallurgical industry. Despite the high relevance for environmental impact, few s...Lead(Pb) coprecipitation with jarosite is common in natural and engineered environments,such as acid mine drainage(AMD) sites and hydrometallurgical industry. Despite the high relevance for environmental impact, few studies have examined the exact interaction of Pb with jarosite and the dissolution behavior of each phase. In the present work, we demonstrate that Pb mainly interacts with jarosite in four modes, namely incorporation, occlusion,physically mixing, and chemically mixing. For comparison, the four modes of Pb-bearing natrojarosite were synthesized and characterized separately. Batch dissolution experiments were undertaken on these synthetic Pb-bearing natrojarosites under pH_(2) to simulate the AMD environments. The introduction of Pb decreases the final Fe releasing efficiency of jarosite-type compounds from 18.18% to 3.45%-5.01%, showing a remarkable inhibition of their dissolution. For Pb releasing behavior, PbSO_(4) dissolves in preference to Pb-substituted natrojarosite, i.e.,(Na, Pb)-jarosite, which primarily results in the sharp increase of Pb releasing concentration(> 40 mg/L). PbSO_(4) occlusion by jarosite-type compounds can significantly reduce the release of Pb. The results of this study could provide useful information regarding Fe and Pb cycling in acidic natural and engineered environments.展开更多
INTRODUCTION Dissolution and precipitation of carbonates plays an important role in nature, such as in the chemistry of seawater, the sedimentation of carbonate at the seafloor, the geochemical evolution of freshwater...INTRODUCTION Dissolution and precipitation of carbonates plays an important role in nature, such as in the chemistry of seawater, the sedimentation of carbonate at the seafloor, the geochemical evolution of freshwater aquifers and last but not least, most spectacular, the evolution of karst landscapes. To provide a deeper understanding to all these processes knowledge is required展开更多
As one of the possible technologies to improve the oral absorption of poorly water-soluble drugs, supersaturable formulation, which enables to dissolve the drug to the higher concentration than their equilibrium solub...As one of the possible technologies to improve the oral absorption of poorly water-soluble drugs, supersaturable formulation, which enables to dissolve the drug to the higher concentration than their equilibrium solubility, is now attracting the attention (1)This include salt-formation, soliddispersion, co-crystallization or the use of amorphous form.Since supersaturation is a thermodynamically metastable state,supersaturated solution has a high potential to precipitate. Some pharmaceutical excipients.展开更多
A combined model to predict austenite grains growth of titanium micro-alloyed as-cast steel during reheating process was established.The model invoIves the behaviors of austenite grains growth in continuous heating pr...A combined model to predict austenite grains growth of titanium micro-alloyed as-cast steel during reheating process was established.The model invoIves the behaviors of austenite grains growth in continuous heating process and isothermal soaking process,and the variation of boundary pinning efficiency caused by the dissolution and coarsening kinetics of sec on d-phase particles was also con sidered into the model.Furthermore,the experimental verificatio ns were performed to examine the prediction power of the model.The results revealed that the mean austenite grains size increased with the increase in reheating temperature and soaking time,and the coarsening temperature of austenite grains growth was 1423 K under the current titanium content.In addition,the reliability of the predicted results in continuous heating process was validated by continuous heating experimenls.Moreover,an optimal regression expression of austenite grains growth in isothermal soaking process was obtained based on the experimental results.The compared results indicated that the combined model in conjunction with precipitates dissolution and coarsening kinetics had good reliability and accuracy to predict the austenite grains growth of titanium micro-alloyed casting steel during reheating process.展开更多
The dominated contradiction in optimizing the performance of magnesium-air battery anode lies in the difficulty of achieving a good balance between activation and passivation during discharge process.To further reconci...The dominated contradiction in optimizing the performance of magnesium-air battery anode lies in the difficulty of achieving a good balance between activation and passivation during discharge process.To further reconcile this contradiction,two Mg-0.1Sc-0.1Y-0.1Ag anodes with different residual strain distribution through extrusion with/without annealing are fabricated.The results indicate that annealing can significantly lessen the“pseudo-anode”regions,thereby changing the dissolution mode of the matrix and achieving an effective dissolution during discharge.Additionally,p-type semiconductor characteristic of discharge productfilm could suppress the self-corrosion reaction without reducing the polarization of anode.The magnesium-air battery utilizing annealed Mg-0.1Sc-0.1Y-0.1Ag as anode achieves a synergistic improvement in specific capacity(1388.89 mA h g^(-1))and energy density(1960.42 mW h g^(-1)).This anode modification method accelerates the advancement of high efficiency and long lifespan magnesium-air batteries,offering renewable and cost-effective energy solutions for electronics and emergency equipment.展开更多
Burial dissolution is a critical diagenetic process influencing ultra-deep carbonate reservoir development and preservation.Artificial carbonate samples with different internal structures were prepared,and high-temper...Burial dissolution is a critical diagenetic process influencing ultra-deep carbonate reservoir development and preservation.Artificial carbonate samples with different internal structures were prepared,and high-temperature and highpressure dissolution kinetic simulations were conducted.The results demonstrate that the intensity of burial dissolution is controlled by temperature and pressure,while tectonic-fluid activity influences the development pattern of burial dissolution,ultimately determining the direction of its differential modification.Extensive burial dissolution is likely to occur primarily at relatively shallow depths,significantly influencing reservoir formation,preservation,modification,and adjustment.The development of faults facilitates the maintenance of the intensity of burial dissolution.The maximum intensity of burial dissolution occurs at the tips and overlap zones of faults and intersections of multiple faults.The larger the scale of the faults,the more conducive it is to the development of burial dissolution.Burial dissolution fosters the formation of fault networks characterized by enhanced reservoir capacity and permeability.Burial dissolution controlled by episodic tectonic-fluid activity is a plausible explanation for forming the Tarim Basin's ultra-deep fault-controlled“stringbead-like”reservoirs.展开更多
The dissolution behavior of complex inclusions in refining slag was studied using confocal laser scanning microscope.Based on the dissolution curve of complex inclusions,the main rate-limiting link of CaO-SiO_(2)-Al_(...The dissolution behavior of complex inclusions in refining slag was studied using confocal laser scanning microscope.Based on the dissolution curve of complex inclusions,the main rate-limiting link of CaO-SiO_(2)-Al_(2)O_(3)complex inclusions was the diffusion in the molten slag.The dissolution rate of CaO-SiO_(2)-Al_(2)O_(3)complex inclusions was affected by the composition and size of inclusion.The functional relationship between the dimensionless inclusion capacity(Zh)and the dimensionless dissolution rate(Ry)of CaO-SiO_(2)-Al_(2)O_(3)complex inclusions was calculated as Ry=2.10×10^(-6)Zh^(0.160),while it was Ry=2.10×10^(-6)Zh^(0.0087)for Al_(2)O_(3)-CaO complex inclusions.On this basis,the complete dissolution time and rate of the complex inclusions were calculated by using the function relation between the Zh and Ry numbers.展开更多
Accurate seasonal precipitation forecasts,especially for extreme events,are crucial to preventing meteorological hazards and their potential impacts on national development,social activity,and security.However,the int...Accurate seasonal precipitation forecasts,especially for extreme events,are crucial to preventing meteorological hazards and their potential impacts on national development,social activity,and security.However,the intensity of summer precipitation is often largely underestimated in many current dynamic models.This study uses a deep learning method called Cycle-Consistent Generative Adversarial Networks(CycleGAN)to improve the seasonal forecasts for June-JulyAugust precipitation in southeastern China by the Nanjing University of Information Science and Technology Climate Forecast System(NUIST-CFS 1.0).The results suggest that the CycleGAN-based model significantly improves the accuracy in predicting the spatiotemporal distribution of summer precipitation compared to the traditional quantile mapping(QM)method.Using the unpaired bias-correction model,we can also obtain advanced forecasts of the frequency,intensity,and duration of extreme precipitation events over the dynamic model predictions.This study expands the potential applications of deep learning models toward improving seasonal precipitation forecasts.展开更多
基金supported by the Nuclear Technology R&D Program.
文摘This work investigated the original microstructure of cold-worked alumina-forming austenitic steel,along with its precipitation and dissolution corrosion behaviors in lead-bismuth eutectic with 10-8 wt.%oxygen at 600℃,using solution-annealed steel for comparison.Anomalously,cold-worked steel presented milder corrosion compared to solution-annealed steel,with average corrosion depths of 314.3 and 401.0μm after 1700 h exposure.Cold working-induced de-twinning transformed the annealing twin boundaries into normal high-angle grain boundaries(NGBs),increasing NGBs proportion from 36%to 89%.The increased NGBs provided more nucleation sites for intergranular barriers composed of alternate NiAl and M23C6 precipitates,thus better obstructing the dissolution attack.
基金support of the National Natural Science Foundation of China(Grant Nos.52174030,52474042 and 52374041)the Postgraduate Innovation Fund Project of Xi'an Shiyou University(No.YCX2411001)the Natural Science Basic Research Program of Shaanxi(Program Nos.2024JCYBMS-256 and 2022JQ-528)。
文摘Complex physical and chemical reactions during CO_(2)sequestration alter the microscopic pore structure of geological formations,impacting sequestration stability.To investigate CO_(2)sequestration dynamics,comprehensive physical simulation experiments were conducted under varied pressures,coupled with assessments of changes in mineral composition,ion concentrations,pore morphology,permeability,and sequestration capacity before and after experimentation.Simultaneously,a method using NMR T2spectra changes to measure pore volume shift and estimate CO_(2)sequestration is introduced.It quantifies CO_(2)needed for mineralization of soluble minerals.However,when CO_(2)dissolves in crude oil,the precipitation of asphaltene compounds impairs both seepage and storage capacities.Notably,the impact of dissolution and precipitation is closely associated with storage pressure,with a particularly pronounced influence on smaller pores.As pressure levels rise,the magnitude of pore alterations progressively increases.At a pressure threshold of 25 MPa,the rate of change in small pores due to dissolution reaches a maximum of 39.14%,while precipitation results in a change rate of-58.05%for small pores.The observed formation of dissolution pores and micro-cracks during dissolution,coupled with asphaltene precipitation,provides crucial insights for establishing CO_(2)sequestration parameters and optimizing strategies in low permeability reservoirs.
文摘Hydrothermal ore zoning is a transport-reaction problem in which infiltration is the principal Prcness of transport and dissolution/Precipitation is the Principal process of chemical reactions.Neglecting diffusion and ion exchange/adsorption would not affect the basic attributes of hydrothermal ore zoning. Hydrothermal ore zoning belongs essentially to infiltration metasomatic zoning, it results from the formation and propagation of dissolution/precipitation waves through Permeable media. The authors apply the theory of coupled infiltration and dissolution/precipitation reactions in Physicochemical hydrodynamics to studying the structural characteristics of dissolution/precipitation waves, and apply furthermore the coherence principle in dynamic theory of multicomponent coupled systems to revealing the dynamic mechanisms of their formation. The results of investigation verify and develop . C. 's theory of infiltration metasomatic zoning,on the one hand, raising it from the qualitative, equilibrium thermodynamic basis to the quantitative dynamic level;on the other hand, and more importantly, applying theories of Physicochemical hydrodynamics and dynamics of multicomponent coupled systems to bringing to light the dynamic mechanisms of formation of the structure of hydrothermal ore zoning, and advancing a theory of hydrothermal ore zoning, putting forward new ideas on the nature of the problem of hydrothermal ore zoning, the essence of hydrothermal ore zoning and the structural characteristics and mechanisms of formation of hydrothermal ore zoning.
基金funded by the National Natural Science Foundation of China(Grant No.42275039)the Meteorological Joint Fund by NSF and CMA(Grant No.U2342224)+1 种基金the National Key R&D Program of China(Grant No.2022YFC3701202)the S&T Development Fund of CAMS(Grant No.2024KJ019)。
文摘Global land monsoon precipitation(GLMP)is highly sensitive to changes in interhemispheric thermal contrast(ITC).Amplified interhemispheric asymmetries of GLMP due to enhanced ITC driven by high-level anthropogenic emissions are expected to simultaneously increase the probability of regional floods and droughts,threatening ecosystems within global terrestrial monsoon regions and the freshwater supply for billions of residents in these areas.In this study,the responses of GLMP to the evolution of ITC toward the carbon neutrality goal are assessed using multimodel outputs from a new model intercomparison project(CovidMIP).The results show that the Northern Hemisphere-Southern Hemisphere(NH-SH)asymmetry of GLMP in boreal summer weakens during the 2040s,as a persistent reduction in well-mixed greenhouse gas(WMGHG)emissions leads to a downward trend in the ITC after 2040.At the same time,the reduction in WMGHG emissions dampens the Eastern Hemisphere-Western Hemisphere(EH-WH)asymmetry of GLMP by inducing La Niña-like cooling and enhancing moisture transport to Inner America.The resulting increases in land monsoon precipitation(LMP)may alleviate drought under the global warming scenario by about 19%-25%and 7%-9%in the WH and SH monsoon regions,respectively.However,a persistent reduction in aerosol emissions in Asia will dominate the increases in LMP in this region until the mid-21st century,and these increases may be approximately 23%-60%of the growth under the global warming scenario.Our results highlight the different rates of response of aerosol and WMGHG concentrations to the carbon neutrality goal,leading to various changes in LMP at global and regional scales.
基金supported by the National Science and Technology Major Project ‘‘Bohai Bay Basin deep oil and gas geology and reserves increasing direction’’ (No. 2016ZX05006007)the National Natural Fund (Youth) ‘‘Relationship between rich feldspar sandstone reservoirs in feldspar alteration and pyrolysis of hydrocarbons’’ (41602138)
文摘In order to clarify the dynamic process of feldspar dissolution-precipitation and explore the formation mechanism of secondary porosity,six batch reactor experiments were conducted at 200℃and pH=7 measured at room temperature.Temporal evolution of fluid chemistry was analyzed with an inductively coupled plasma optical emission spectrometer(ICP-OES).Solid reaction products were retrieved from six batch experiments terminated after 36,180,276,415,766 and 1008 h.Scanning electron microscopy(SEM)revealed dissolution features and significant secondary mineral adhered on the feldspar surface.The process of feldspar dissolution-precipitation proceeded slowly and full equilibrium was not achieved after 1008 h.Saturation indices suggested that the albite and K-feldspar dissolution occurred throughout the experiments.The average dissolution rates for albite and K-feldspar were 2.28×10^-10 and 8.51×10^-11 mol m^-2 s^-1,respectively.Based on the experimental data,the reaction process of alkaline feldspar was simulated and the secondary porosity had increased 0.3%after the experiment.
文摘The kinetics of ε-Cu particles dissolution in the matrix during welding of a copper-precipitation strengthening steel was determined by a combination of GleebleTM physical simulation, TEM examination and hardness meas urement. The ε-Cu particles underwent a coarsening and part dissolution and then complete dissolution reaction as the peak temperature increased from 750 to 1 000℃, which resulted in the decrease in the number density of ε-Cu particles and hardness in the heat affected zone (HAZ). The results can be used to understand the evolution of this transformation and a softening behavior of the HAZ during welding of this type of steel.
基金CVP acknowledges funding through the Marie Curie ITN GrantNo. PITN-GA-2012-317235 (CO2React)The present study received funding from the European Union’s Horizon 2020 Research and Innovation Programme under the ERC Advanced Grant Agreement No. 669972 (Disequilibrium Metamorphism) to AR.
文摘In the Earth's upper crust, where aqueous fluids can circulate freely, most mineral transformations are controlled by the coupling between the dissolution of a mineral that releases chemical species into the fluid and precipitation of new minerals that contain some of the released species in their crystal structure, the coupled process being driven by a reduction of the total free-energy of the system. Such coupled dissolution-precipitation processes occur at the fluid-mineral interface where the chemical gradients are highest and heterogeneous nucleation can be promoted, therefore controlling the growth kinetics of the new minerals. Time-lapse nanoscale imaging using Atomic Force Microscopy(AFM) can monitor the whole coupled process under in situ conditions and allow identifying the time scales involved and the controlling parameters. We have performed a series of experiments on carbonate minerals(calcite, siderite, dolomite and magnesite) where dissolution of the carbonate and precipitation of a new mineral was imaged and followed through time. In the presence of various species in the reacting fluid(e. g. antimony, selenium, arsenic, phosphate), the calcium released during calcite dissolution binds with these species to form new minerals that sequester these hazardous species in the form of a stable solid phase. For siderite, the coupling involves the release of Fe^(2+) ions that subsequently become oxidized and then precipitate in the form of FeIIIoxyhydroxides. For dolomite and magnesite,dissolution in the presence of pure water(undersaturated with any possible phase) results in the immediate precipitation of hydrated Mg-carbonate phases. In all these systems, dissolution and precipitation are coupled and occur directly in a boundary layer at the carbonate surface. Scaling arguments demonstrate that the thickness of this boundary layer is controlled by the rate of carbonate dissolution,the equilibrium concentration of the precipitates and the kinetics of diffusion of species in a boundary layer. From these parameters a characteristic time scale and a characteristic length scale of the boundary layer can be derived. This boundary layer grows with time and never reaches a steady state thickness as long as dissolution of the carbonate is faster than precipitation of the new mineral. At ambient temperature, the surface reactions of these dissolving carbonates occur on time-scales of the order of seconds to minutes, indicating the rapid surface rearrangement of carbonates in the presence of aqueous fluids. As a consequence, many carbonate-fluid reactions in low temperature environments are controlled by local thermodynamic equilibria rather than by the global equilibrium in the whole system.
基金Financial support by the Federal Ministry of Education and Research (BMBF) within RESPONSE “Partnership for Inno- vation in Implant Technology”(Grant Number 03ZZ0903I ) is gratefully acknowledged.
文摘Further development of our differential scanning calorimetry(DSC)method for the analysis of solid-solid phase transformations now also allows for its application in the kinetic analysis of age hardening in Mg alloys.As a result,the state-of-the-art for DSC on Mg alloys has been improved with respect to the accessible temperature range,zero-level accuracy and dynamic range.DSC analysis was performed on the example of Mg wrought alloy WE43.Heating DSC experiments on the initial condition T4 and even direct continuous cooling DSC analysis on the kinetics of quench induced precipitation during cooling from solution treatment were possible,covering a dynamic range of 0.01-3 K/s.The DSC findings are discussed with respect to literature knowledge and scanning electron microscopy analysis of the defined heat treatment states.
基金Projects(51871243,51574290)supported by the National Natural Science Foundation of ChinaProject(ASSIKFJJ202304001)supported by the Open Fund of the National Key Laboratory of Strength and Structural Integrity,China+3 种基金Project(HT-CSNS-DG-CD-0092/2021)supported by the Guangdong-Hong Kong-Macao Joint Laboratory for Neutron Scattering Science and Technology,ChinaProject(2022KF-08)supported by the Hubei Longzhong Laboratory,ChinaProject(22kfgk06)supported by the Shock and Vibration of Engineering Materials and Structures Key Laboratory of Sichuan Province,ChinaProject(PBSKL2022C01)supported by the State Key Laboratory of Precision Blasting and Hubei Key Laboratory of Blasting Engineering,China。
文摘The commercial ZK 60 magnesium alloy with extruded state experienced aging heat treatment(T 6)was dynamically loaded at strain rate of 3000 s−1 by means of the split Hopkinson pressure bar(SHPB)in this paper.Transmission electron microscopy(TEM)observations showed that the precipitatedβ′_(1) phases partially dissolved(spheroidized)with blurred interfaces within 160μs at 3000 s^(−1).The average length and diameter of the rod-shapedβ′_(1) phase particles were 48.5 and 9.8 nm after the T 6 heat treatment;while the average diameter of the sphericalβ′_(1) phases changed to 8.8 nm after loading.The deformedβ′_(1) phase generated larger lattice distortion energy than Mg matrix under high strain rate loading.Therefore,the difference of free energy(the driving force of dissolution)between theβ′_(1) phase and the matrix increased,making the instantaneous dissolution of theβ′_(1) phase thermodynamically feasible.The dissolution(spheroidization)of theβ′_(1) phase particles was kinetically promoted because the diffusion rate of the solute Zn atoms was accelerated by combined actions of adiabatic temperature rise,high density of dislocations(vacancies)and high deviatoric stresses during high strain rate loading.The increase in hardness of ZK 60-T 6 alloy could be attributed to solid solution strengthening,dislocation strengthening and second phase particle strengthening.
基金the assistance from the Provincial and Ministry Collaborative Innovation Center of Development and Application of High-Performance Aluminum/Magnesium Alloy Materialsthe financial supports from the Research Project Supported by Shanxi Scholarship Council of China(No.2021-125)Natural Science Foundation of Shanxi Province(No.20210302124631).
文摘We investigate the variation induced in long-period stacking ordered(LPSO)structures,dynamic recrystallization(DRX),and mechanical performance of hot-extruded Mg89Y4Zn2Li5 alloys fabricated at different extrusion speeds(Ve=0.4,0.8,1.0,1.2 mm/s)and die angles(α=30°,60°,90°)under 400℃,the dissolution and reprecipitation of 14H LPSO structure accompanied by DRX process are then clarified in detail.Upon all extrusion conditions,the block 18R LPSO structures elongate in the extrusion direction,while the lamellar 14H LPSO structures dissolve under the deformation strain.In addition,due to discontinuous and continuous DRX mechanisms,all hot-extruded alloys have a full DRX microstructure consisting of equiaxed recrystallized grains,but the DRX grain size reduces when both extrusion speed and die angle decrease.Note that,in the interior of DRX grains,thin LPSO lamellae mixing 14H,18R and 24R structures nucleate and dynamically precipitate due to the dissolution of the original lamellar 14H LPSO structures.Furthermore,the hot-extruded Mg_(89)Y_(4)Zn_(2)Li_(5)alloy becomes stronger as decreasing of the extrusion speed and die angle,whereas the ductility remains nearly constant.Finally,the hotextruded Mg_(89)Y_(4)Zn_(2)Li_(5)alloy achieves an excellent strength-ductility balance at a relatively low extrusion speed(0.4 mm/s)and small die angle(30°)mainly due to the elongated 18R LPSO structure,fine and full DRX microstructure,thin mixed LPSO precipitates in the DRX grains,twins and dislocations.
文摘The study of the discontinuous precipitation reaction and the lamellar precipitate dissolution in the alloy Cu-In system provoked a considerable benefit and has been the subject of many theoretical and experimental investigations. The aim of this work is to make the evidence on the one hand the effect of the plastic deformation on the mechanism of the discontinuous precipitation reaction such as nucleation, growth and lamellar coarsening and in other hand the effect of temperature on the characteristics and front behavior movement of the opposite reaction (discontinuous dissolution). Different techniques of analysis have been used in this respect such as the optical microscopy, the differential thermal analysis and the microhardness Vickers. The obtained results confirm various works achieved in this field.
文摘The discontinuous precipitation and dissolution in the alloy Al-Zn system has been the subject of many theoretical and experimental investigations that have contributed to the understanding of the different mechanisms which control them. However, many questions remain unanswered because of the complexity of the constituted phases which are affected by the speed of the quenched, deformation, the temperature of homogenization and ageing effect. The purpose of this work is to clarify the effect of temperature and deformation on the mechanisms of these two reactions during ageing of Al-15 at.% Zn and Al-30 at.% Zn alloy. The techniques of analysis used in this respect are the optical microscopy, the X-ray diffraction and the hardness Vickers.
基金supported by the National Natural Science Foundation of China for Distinguished Young Scholars (No. 51825403)the National Natural Science Foundation of China (No. 51904355)the National Key R&D Program of China (No. 2020YFC1909201)。
文摘Lead(Pb) coprecipitation with jarosite is common in natural and engineered environments,such as acid mine drainage(AMD) sites and hydrometallurgical industry. Despite the high relevance for environmental impact, few studies have examined the exact interaction of Pb with jarosite and the dissolution behavior of each phase. In the present work, we demonstrate that Pb mainly interacts with jarosite in four modes, namely incorporation, occlusion,physically mixing, and chemically mixing. For comparison, the four modes of Pb-bearing natrojarosite were synthesized and characterized separately. Batch dissolution experiments were undertaken on these synthetic Pb-bearing natrojarosites under pH_(2) to simulate the AMD environments. The introduction of Pb decreases the final Fe releasing efficiency of jarosite-type compounds from 18.18% to 3.45%-5.01%, showing a remarkable inhibition of their dissolution. For Pb releasing behavior, PbSO_(4) dissolves in preference to Pb-substituted natrojarosite, i.e.,(Na, Pb)-jarosite, which primarily results in the sharp increase of Pb releasing concentration(> 40 mg/L). PbSO_(4) occlusion by jarosite-type compounds can significantly reduce the release of Pb. The results of this study could provide useful information regarding Fe and Pb cycling in acidic natural and engineered environments.
文摘INTRODUCTION Dissolution and precipitation of carbonates plays an important role in nature, such as in the chemistry of seawater, the sedimentation of carbonate at the seafloor, the geochemical evolution of freshwater aquifers and last but not least, most spectacular, the evolution of karst landscapes. To provide a deeper understanding to all these processes knowledge is required
文摘As one of the possible technologies to improve the oral absorption of poorly water-soluble drugs, supersaturable formulation, which enables to dissolve the drug to the higher concentration than their equilibrium solubility, is now attracting the attention (1)This include salt-formation, soliddispersion, co-crystallization or the use of amorphous form.Since supersaturation is a thermodynamically metastable state,supersaturated solution has a high potential to precipitate. Some pharmaceutical excipients.
基金National Natural Science Foundation of China(Grant Nos.51504048,51874060,51874059 and 51611130062)The authors would like to acknowledge the members of Laboratory of Metallurgy and Materials,Chongqing University,for the support of this work.
文摘A combined model to predict austenite grains growth of titanium micro-alloyed as-cast steel during reheating process was established.The model invoIves the behaviors of austenite grains growth in continuous heating process and isothermal soaking process,and the variation of boundary pinning efficiency caused by the dissolution and coarsening kinetics of sec on d-phase particles was also con sidered into the model.Furthermore,the experimental verificatio ns were performed to examine the prediction power of the model.The results revealed that the mean austenite grains size increased with the increase in reheating temperature and soaking time,and the coarsening temperature of austenite grains growth was 1423 K under the current titanium content.In addition,the reliability of the predicted results in continuous heating process was validated by continuous heating experimenls.Moreover,an optimal regression expression of austenite grains growth in isothermal soaking process was obtained based on the experimental results.The compared results indicated that the combined model in conjunction with precipitates dissolution and coarsening kinetics had good reliability and accuracy to predict the austenite grains growth of titanium micro-alloyed casting steel during reheating process.
基金the National Natural Science:Foundation of China(52375370)the Open Project of Salt Lake Chemical Engineering Research Complex,Qinghai University(2023-DXSSKF-Z02)+2 种基金the Nat-ural Science Foundation of Shanxi(202103021224049)GDAS Projects of International cooperation platform of Sci-ence and Technology(2022GDASZH-2022010203-003)Guangdong province Science and Technology Plan Projects(2023B1212060045).
文摘The dominated contradiction in optimizing the performance of magnesium-air battery anode lies in the difficulty of achieving a good balance between activation and passivation during discharge process.To further reconcile this contradiction,two Mg-0.1Sc-0.1Y-0.1Ag anodes with different residual strain distribution through extrusion with/without annealing are fabricated.The results indicate that annealing can significantly lessen the“pseudo-anode”regions,thereby changing the dissolution mode of the matrix and achieving an effective dissolution during discharge.Additionally,p-type semiconductor characteristic of discharge productfilm could suppress the self-corrosion reaction without reducing the polarization of anode.The magnesium-air battery utilizing annealed Mg-0.1Sc-0.1Y-0.1Ag as anode achieves a synergistic improvement in specific capacity(1388.89 mA h g^(-1))and energy density(1960.42 mW h g^(-1)).This anode modification method accelerates the advancement of high efficiency and long lifespan magnesium-air batteries,offering renewable and cost-effective energy solutions for electronics and emergency equipment.
基金supported by the National Natural Science Foundation of China(Grant No.U21B2062)supported by the Key Laboratory for Carbonate Reservoirs of China National Petroleum Corporation。
文摘Burial dissolution is a critical diagenetic process influencing ultra-deep carbonate reservoir development and preservation.Artificial carbonate samples with different internal structures were prepared,and high-temperature and highpressure dissolution kinetic simulations were conducted.The results demonstrate that the intensity of burial dissolution is controlled by temperature and pressure,while tectonic-fluid activity influences the development pattern of burial dissolution,ultimately determining the direction of its differential modification.Extensive burial dissolution is likely to occur primarily at relatively shallow depths,significantly influencing reservoir formation,preservation,modification,and adjustment.The development of faults facilitates the maintenance of the intensity of burial dissolution.The maximum intensity of burial dissolution occurs at the tips and overlap zones of faults and intersections of multiple faults.The larger the scale of the faults,the more conducive it is to the development of burial dissolution.Burial dissolution fosters the formation of fault networks characterized by enhanced reservoir capacity and permeability.Burial dissolution controlled by episodic tectonic-fluid activity is a plausible explanation for forming the Tarim Basin's ultra-deep fault-controlled“stringbead-like”reservoirs.
基金support from the National Key R&D Program(No.2023YFB3709900)the National Natural Science Foundation of China(Grant No.U22A20171)+1 种基金the High Steel Center at the North China University of Technologythe University of Science and Technology Beijing,China.
文摘The dissolution behavior of complex inclusions in refining slag was studied using confocal laser scanning microscope.Based on the dissolution curve of complex inclusions,the main rate-limiting link of CaO-SiO_(2)-Al_(2)O_(3)complex inclusions was the diffusion in the molten slag.The dissolution rate of CaO-SiO_(2)-Al_(2)O_(3)complex inclusions was affected by the composition and size of inclusion.The functional relationship between the dimensionless inclusion capacity(Zh)and the dimensionless dissolution rate(Ry)of CaO-SiO_(2)-Al_(2)O_(3)complex inclusions was calculated as Ry=2.10×10^(-6)Zh^(0.160),while it was Ry=2.10×10^(-6)Zh^(0.0087)for Al_(2)O_(3)-CaO complex inclusions.On this basis,the complete dissolution time and rate of the complex inclusions were calculated by using the function relation between the Zh and Ry numbers.
基金supported by the National Key Research and Development Program of China(Grant No.2020YFA0608000)the National Natural Science Foundation of China(Grant No.42030605)+1 种基金CAAI-MindSpore Academic Fund Research Projects(CAAIXSJLJJ2023MindSpore11)the program of China Scholarships Council(No.CXXM2101180001)。
文摘Accurate seasonal precipitation forecasts,especially for extreme events,are crucial to preventing meteorological hazards and their potential impacts on national development,social activity,and security.However,the intensity of summer precipitation is often largely underestimated in many current dynamic models.This study uses a deep learning method called Cycle-Consistent Generative Adversarial Networks(CycleGAN)to improve the seasonal forecasts for June-JulyAugust precipitation in southeastern China by the Nanjing University of Information Science and Technology Climate Forecast System(NUIST-CFS 1.0).The results suggest that the CycleGAN-based model significantly improves the accuracy in predicting the spatiotemporal distribution of summer precipitation compared to the traditional quantile mapping(QM)method.Using the unpaired bias-correction model,we can also obtain advanced forecasts of the frequency,intensity,and duration of extreme precipitation events over the dynamic model predictions.This study expands the potential applications of deep learning models toward improving seasonal precipitation forecasts.