This work is devoted to numerical analysis of thermo-hydromechanical problem and cracking process in saturated porous media in the context of deep geological disposal of radioactive waste.The fundamental background of...This work is devoted to numerical analysis of thermo-hydromechanical problem and cracking process in saturated porous media in the context of deep geological disposal of radioactive waste.The fundamental background of thermo-poro-elastoplasticity theory is first summarized.The emphasis is put on the effect of pore fluid pressure on plastic deformation.A micromechanics-based elastoplastic model is then presented for a class of clayey rocks considered as host rock.Based on linear and nonlinear homogenization techniques,the proposed model is able to systematically account for the influences of porosity and mineral composition on macroscopic elastic properties and plastic yield strength.The initial anisotropy and time-dependent deformation are also taken into account.The induced cracking process is described by using a non-local damage model.A specific hybrid formulation is proposed,able to conveniently capture tensile,shear and mixed cracks.In particular,the influences of pore pressure and confining stress on the shear cracking mechanism are taken into account.The proposed model is applied to investigating thermo-hydromechanical responses and induced damage evolution in laboratory tests at the sample scale.In the last part,an in situ heating experiment is analyzed by using the proposed model.Numerical results are compared with experimental data and field measurements in terms of temperature variation,pore fluid pressure change and induced damaged zone.展开更多
Mine water pollution caused by improper discharge of industrial wastewater,waste liquid and waste residue into minedout areas is a new form of pollution occurred in China in recent years.This kind of pollution is buri...Mine water pollution caused by improper discharge of industrial wastewater,waste liquid and waste residue into minedout areas is a new form of pollution occurred in China in recent years.This kind of pollution is buried deeply,and it is difficult to control,dispose and repair.Deep contaminated mine water from abandoned mining areas may even enter the ocean,posing a great threat to marine ecosystems.In this study,using a water pollution incident occurred in a coal field at a depth of 80 m in Shandong Province,China,in 2015,as an example,the methods of engineering block disposal and groundwater remediation are reported,and the remediation effects are tested and evaluated by in-situ chemical detection and geophysical surveys.The test results showed that engineering blocking measures such as cut-off walls can obviously block the DNAPL diffusion process in mine water,but the blocking effect on organic pollutants dissolved in water was limited.It can slow down the diffusion process of organic gas.The presence of mining tunnels and mined-out areas in the contaminated zone enhances the diffusion speed of various pollutants,especially during the remediation process when pollutants rapidly spread throughout the entire contaminated area.Groundwater circulation extraction and oxidation methods have a significant degradation effect on pollutants like dichloromethane,but they may generate a large amount of secondary gaseous pollutants.These gaseous pollutants may migrate to the shallow subsurface through structures such as faults,leading to secondary subsurface contamination.When designing remediation plans,it is crucial to strike a balance between blocking and guiding in the context of both blocking and restoration projects for achieving effective remediation.展开更多
Colloids are prevalent in nuclear waste repositories,with bentonite colloids posing an uncontrollable risk factor for nuclide migration processes.In this study,static adsorption experiments were coupled with dynamic s...Colloids are prevalent in nuclear waste repositories,with bentonite colloids posing an uncontrollable risk factor for nuclide migration processes.In this study,static adsorption experiments were coupled with dynamic shower experiments to comprehensively investigate the influence of bentonite colloids on Sr^(2+)migration in granite,considering adsorption capacity.Bentonite colloids have a considerably greater adsorption capacity than both bentonite and granite,with a maximum adsorption of 30.303 mg/g.The adsorption behavior of bentonite colloids on Sr^(2+)is well described by the Langmuir isotherm and pseudo-second-order kinetic models,indicating that a single-layer chemical adsorption process is controlled by the site activation energy.The adsorbed Sr^(2+)is unevenly distributed on the colloids,and the adsorption mechanism may involve ion exchange with Ca.Bentonite colloids exhibit superior adsorption in neutral environments.The cations in groundwater inhibit Sr^(2+)adsorption,and the inhibition efficacy decreases in the order Fe^(3+)>Ca^(2+)>Mg^(2+)>K^(+).The presence of bentonite colloids in a granite column slightly influences the retention of Sr^(2+)in the column while markedly reducing the Sr^(2+)penetration time from 70 h to 18 h.However,the coexistence of Co^(2+),Ni^(2+),and Cs^(+)in a multinuclide system weakens the ability of the colloids to promote Sr^(2+)migration.In comigration of colloid and multinuclide systems,the adsorption of nuclides by bentonite colloids causes the nuclide migration speed to decrease in the order Sr^(2+)>Cs^(+)>Ni^(2+)>Co^(2+).This study provides insights into Sr^(2+)migration in cave repositories for low-and medium-level radioactive waste.展开更多
In recent years,there has been an intensifying focus within the soil contamination prevention and remediation sector,both domestically and internationally,on the off-site disposal of contaminated soils.The United Stat...In recent years,there has been an intensifying focus within the soil contamination prevention and remediation sector,both domestically and internationally,on the off-site disposal of contaminated soils.The United States and Japan,as pioneers in this field,have formulated and implemented a suite of policy standards and practical measures for the regional collaborative management of off-site soil disposal.This paper meticulously reviews and evaluates the existing research on the regional collaborative management of off-site soil disposal,analyzing the experiences and strategies of the United States and Japan from the perspectives of regulatory systems and practical implementation.In light of China’s specific circumstances,it proposes a series of strategic recommendations for the adaptation of these international experiences to the Chinese context.These include enhancement of Chinese legal standards for the regional collaborative management of contaminated land soil off-site disposal,improvement of risk control standards for soil pollution and specific regulations for off-site disposal,as well as delineation of objective criteria to define the scope of collaborative management.展开更多
Anticipating the imminent surge of retired lithium-ion batteries(R-LIBs)from electric vehicles,the need for safe,cost-effective and environmentally friendly disposal technologies has escalated.This paper seeks to offe...Anticipating the imminent surge of retired lithium-ion batteries(R-LIBs)from electric vehicles,the need for safe,cost-effective and environmentally friendly disposal technologies has escalated.This paper seeks to offer a comprehensive overview of the entire disposal framework for R-LIBs,encompassing a broad spectrum of activities,including screening,repurposing and recycling.Firstly,we delve deeply into a thorough examination of current screening technologies,shifting the focus from a mere enumeration of screening methods to the exploration of the strategies for enhancing screening efficiency.Secondly,we outline battery repurposing with associated key factors,summarizing stationary applications and sizing methods for R-LIBs in their second life.A particular light is shed on available reconditioning solutions,demonstrating their great potential in facilitating battery safety and lifetime in repurposing scenarios and identifying their techno-economic issues.In the realm of battery recycling,we present an extensive survey of pre-treatment options and subsequent material recovery technologies.Particularly,we introduce several global leading recyclers to illustrate their industrial processes and technical intricacies.Furthermore,relevant challenges and evolving trends are investigated in pursuit of a sustainable end-of-life management and disposal framework.We hope that this study can serve as a valuable resource for researchers,industry professionals and policymakers in this field,ultimately facilitating the adoption of proper disposal practices.展开更多
Safe emplacement of high-level nuclear waste(HLNW)arising from the utilization of nuclear power is a frequently en-countered and considerably challenging issue.The widely accepted and feasible approach for the permane...Safe emplacement of high-level nuclear waste(HLNW)arising from the utilization of nuclear power is a frequently en-countered and considerably challenging issue.The widely accepted and feasible approach for the permanent disposal of HLNW involves housing it in a corrosion-resistant container and subsequently burying it deep in a geologic repository.The focus lies on ensuring the dur-ability and integrity of the container in this process.This review introduces various techniques and strategies employed in controlling the corrosion of used fuel containers(UFCs)using copper(Cu)as corrosion barrier in the context of deep geological disposal.Overall,these corrosion prevention techniques and methods have been effectively implemented and employed to successfully mitigate the corrosion challenges encountered during the permanent disposal of Cu containers(e.g.,corrosion mechanisms and corrosion parameters)in deep geologic repositories.The primary objective of this review is to provide an extensive examination of the alteration in the corrosion envir-onment encountered by the UFCs when subjected to deep geologic repository conditions and focusing on addressing the potential corro-sion scenarios.展开更多
The disposal of contaminated water from Japan’s Fukushima nuclear power plant is a significant international nuclear safety issue with considerable cross-border implications.This matter requires compliance not only w...The disposal of contaminated water from Japan’s Fukushima nuclear power plant is a significant international nuclear safety issue with considerable cross-border implications.This matter requires compliance not only with the law of the sea but also with the principles of nuclear safety under international law.These principles serve as the overarching tenet of international and China’s domestic nuclear laws,applicable to nuclear facilities and activities.The principle of safety in nuclear activities is fully recognized in international and domestic laws,carrying broad legal binding force.Japan’s discharge of nuclear-contaminated water into the sea violates its obligations under the principle of safety in nuclear activities,including commitments to optimum protection,as low as reasonably practicable,and prevention.The Japanese government and the International Atomic Energy Agency(IAEA)have breached the obligation of optimum protection by restricting the scope of assessments,substituting core concepts,and shielding dissenting views.In the absence of clear radiation standards,they have acted unilaterally without fulfilling the obligation as low as reasonably practicable principle.The discharge of Fukushima nuclear-contaminated water poses an imminent and unpredictable risk to all countries worldwide,including Japanese residents.Japan and the IAEA should fulfill their obligations under international law regarding disposal,adhering to the principles of nuclear safety,including optimum protection,the obligation as low as reasonably practicable,and prevention through multilateral cooperation.Specifically,the obligation to provide optimum protection should be implemented by re-evaluating the most reliable disposal technologies and methods currently available and comprehensively assessing various options.The standard of the obligation as low as reasonably practicable requires that the minimization of negative impacts on human health,livelihoods,and the environment should not be subordinated to considerations of cutting costs and expenses.Multilateral cooperation should be promoted through the establishment of sound multilateral long-term monitoring mechanisms for the discharge of nuclear-contaminated water,notification and consultation obligations,and periodic assessments.These obligations under international law were fulfilled after the accidents at the Three Mile Island and Chernobyl nuclear power plants.The implications of the principles of nuclear safety align with the concept of building a community of shared future for nuclear safety advocated by China.In cases of violations of international law regarding the disposal of nuclear-contaminated water that jeopardize the concept of a community of a shared future for nuclear safety,China can also rely on its own strength to promote the implementation of due obligations through self-help.展开更多
A means to develop a comparative assessment of the risks of available wastewater effluent disposal options on a local scale needs to be developed to help local decision-makers make decisions on options such as direct ...A means to develop a comparative assessment of the risks of available wastewater effluent disposal options on a local scale needs to be developed to help local decision-makers make decisions on options such as direct or indirect potable reuse options. These options have garnered more interest as a result of water supply limitations in many urban areas. This risk assessment was developed from a risk assessment developed at the University of Miami in 2001 and Florida Atlantic University (FAU) in 2023. Direct potable reuse and injection wells were deemed to have the lowest risk in the most recent study by FAU. However, the injection well option may not be available everywhere. As a result, a more local means to assess exposure risk is needed. This paper outlines the process to evaluate the public health risks associated with available disposal alternatives which may be very limited in some areas. The development of exposure pathways can help local decision-makers define the challenges, and support later expert level analysis upon which public health decisions are based.展开更多
Background: Handling of medicines is a day-to-day activity by patients and many health care providers. However, multiple studies have brought to light inappropriate disposal methods for expired and unused medication (...Background: Handling of medicines is a day-to-day activity by patients and many health care providers. However, multiple studies have brought to light inappropriate disposal methods for expired and unused medication (EUM). Improper disposal of expired and unused medicines is hazardous both to humans and the environment. Objective: This sought to measure patients’ knowledge, attitude, and practices on disposal methods of EUM. Methods: A cross-sectional study was carried out among 384 patients at three outpatient pharmacies at the University Teaching Hospitals (UTHs). The structured questionnaire was used to collect data and STAT version 15.1 was used to analyse the data. Results: 384 respondents participated in this study and, at some point, had EUM. In this study, 356 (92.7%) of the participants reported that they had never heard of a drug take-back system. Most of the participants 285 (74.2%) and 239 (62.2%) kept and donated their unused medicine, respectively. Additionally, 244 (63.5%), 212 (55.2%), and 176 (44.8%) of the participants disposed of expired medicines in the bin or garbage, flushed them in toilets or sinks, or burned them, respectively. Occupation was significantly associated with unsafe disposal of unused medicine [P-value = 0.019]. Conclusion and Relevance: Knowledge of safe disposal methods for EUM was good amongst most participants. However, used unsafe disposal methods. The majority of the participants exhibited positive attitude concerning safe disposal methods. This study highlights the need for drug-take-back program creation in Zambia.展开更多
Introduction: Not all medicines that pass-through consumers’ hands are used, and some often expire in households. These health products can be sources of accidental risks and pollution when they are not properly disp...Introduction: Not all medicines that pass-through consumers’ hands are used, and some often expire in households. These health products can be sources of accidental risks and pollution when they are not properly disposed of. In Burkina Faso, there are as yet no guidelines for the disposal of unused medicines in households. The aim of this study was to estimate the extent of household possession of unused or expired medicines, and to describe attitudes and disposal practices. Methods: This was a descriptive cross-sectional study covering households in the Ouagadougou commune conducted from June to August 2021. Two-stage stratified sampling was used: selection of Enumeration Zones (EZs) and selection of households, with each EZ comprising several households. Data collection was based on direct interviews using a structured questionnaire. Data were processed using Epi Info software version 7.2.4.0. Results: In total, 417 household residents were surveyed out of the planned 423 households, corresponding to a completion rate of 98.58% compared with the initial sample. Among the respondents, 79.62% had unused and/or expired medicines in their household. A total of 2562 drug packaging units were counted, for a total weight of 121.90 kg. Nearly 75% were aware that improper disposal was a danger to the environment. Some respondents kept their unused medicines at home until they expired (43.41%), and disposed of them mainly by throwing them in the household garbage (75.58%). The majority (79%) were in favor of the government setting up a take-back program for these medicines. Conclusion: The introduction of a take-back program for unused or out-of-date medicines will ensure safer disposal of medicines, and better protection for households and the environment.展开更多
Safe waste disposal is necessary to limit the impact of waste on human health and the environment. This paper evaluates the status of solid waste (SW) disposal in the Wa Municipality, Ghana. The study adopted a descri...Safe waste disposal is necessary to limit the impact of waste on human health and the environment. This paper evaluates the status of solid waste (SW) disposal in the Wa Municipality, Ghana. The study adopted a descriptive research design and applied quantitative and qualitative research methods. 200 questionnaires were administered to two residential areas, each representing high-income, middle-income, and low-income residential dwellings. The study revealed that the majority of the respondents (33.5%) disposed of their SW in open spaces because any collection service did not cover them and those respondents who were covered by a collection service were not satisfied with the collection service due to irregular collection and inconvenient locations of communal collection containers. In addition, all collected SW in the Wa Municipality are openly dumped in illegal dumping sites across the municipality without any form of processing and treatment. The adoption of an integrated solid waste management system could improve SW disposal in the municipality.展开更多
With the rapid growth in the number of passenger cars(PCs)in China over the past decades,more than ten million tons of used tires have already become solid wastes and subsequently caused serious environmental issues.D...With the rapid growth in the number of passenger cars(PCs)in China over the past decades,more than ten million tons of used tires have already become solid wastes and subsequently caused serious environmental issues.Due to the presence of synthetic rubber in PC tires,waste PC tires cannot be disposed through rubber reclaiming technology.Thus,waste PC tires have become one of fastest growing solid wastes in China.First,the current disposal capacity of the pyrolysis method,regarded as a promising technology for the disposal of waste PC tires,is surveyed and compared with other disposal methods mentioned in previous papers.Second,this work establishes a model to predict the total number of waste PC tires in the next five years depending on the rate of PC growth and current waste tire disposal capacity.Moreover,pyrolysis is evaluated on 15 collected waste PC tires selected from the most representative tire brands in the Chinese market.The corresponding results imply that~68.5%of S was into oil and~44.3%N and large amount of heavy metals resided in solid carbon which severely limit further applications.Finally,a new pyrolysis technology is introduced that may represent a solution to the limits in the application of tire disposal methods and relief for the coming waste tire crisis.展开更多
At present,main sludge disposal manners of China contain landfill,composting,natural drying and incineration. A large number of sludge does not obtain standardized processing,which directly causes"secondary pollu...At present,main sludge disposal manners of China contain landfill,composting,natural drying and incineration. A large number of sludge does not obtain standardized processing,which directly causes"secondary pollution"and seriously threatens eco-environment. Therefore,how to rationally treat municipal sludge is one of problems that need urgent solution at present. In this paper,current mainstream pretreatment technique of municipal sludge and backend disposal technique are explored,and mainstream backend disposal technique is introduced. Moreover,key problems in municipal sludge disposal field are analyzed,which has certain reference significance for further understanding the current development of municipal sludge disposal field in China.展开更多
With the rapid development of nuclear power in China, the disposal of high-level radioactive waste(HLW) has become an important issue for nuclear safety and environmental protection. Deep geological disposal is inte...With the rapid development of nuclear power in China, the disposal of high-level radioactive waste(HLW) has become an important issue for nuclear safety and environmental protection. Deep geological disposal is internationally accepted as a feasible and safe way to dispose of HLW, and underground research laboratories(URLs) play an important and multi-faceted role in the development of HLW repositories. This paper introduces the overall planning and the latest progress for China's URL. On the basis of the proposed strategy to build an area-specific URL in combination with a comprehensive evaluation of the site selection results obtained during the last 33 years, the Xinchang site in the Beishan area,located in Gansu Province of northwestern China, has been selected as the final site for China's first URL built in granite. In the process of characterizing the Xinchang URL site, a series of investigations,including borehole drilling,geological mapping, geophysical surveying,hydraulic testing and in situ stress measurements, has been conducted. The investigation results indicate that the geological,hydrogeological, engineering geological and geochemical conditions of the Xinchang site are very suitable for URL construction. Meanwhile, to validate and develop construction technologies for the Beishan URL, the Beishan exploration tunnel(BET), which is a 50-m-deep facility in the Jiujing sub-area, has been constructed and several in situ tests, such as drill-and-blast tests, characterization of the excavation damaged zone(EDZ), and long-term deformation monitoring of surrounding rocks, have been performed in the BET. The methodologies and technologies established in the BET will serve for URL construction.According to the achievements of the characterization of the URL site, a preliminary design of the URL with a maximum depth of 560 m is proposed and necessary in situ tests in the URL are planned.展开更多
For geological disposal of high-level radioactive waste (HLW), the Chinese policy is that the spent nuclear fuel (SNF) should be reprocessed first, followed by vitrification and final disposal. The preliminary rep...For geological disposal of high-level radioactive waste (HLW), the Chinese policy is that the spent nuclear fuel (SNF) should be reprocessed first, followed by vitrification and final disposal. The preliminary repository concept is a shaft-tunnel model, located in saturated zones in granite, while the final waste form for disposal is vitrified high-level radioactive waste. In 2006, the government published a long-term research and development (R&D) plan for geological disposal of high-level radioactive waste. The program consists of three steps: (1) laboratory studies and site selection for a HLW repository (2006-2020); (2) underground in-situ tests (2021-2040); and (3) repository construction (2041-2050) followed by operation. With the support of China Atomic Energy Authority, comprehensive studies are underway and some progresses are made. The site characterization, including deep borehole drilling, has been performed at the most potential Beishan site in Gansu Province, Northwestern China. The data from geological and hydrogeological investigations, in-situ stress and permeability measurements of rock mass are presented in this paper. Engineered barrier studies are concentrated on the Gaomiaozi bentonite. A mock-up facility, which is used to study the thermo-hydro-mechano-chemical (THMC) properties of the bentonite, is under construction. Several projects on mechanical properties of Beishan granite are also underway. The key scientific challenges faced with HLW disposal are also discussed.展开更多
This paper, probing into the present situation of urban domestic garbage by analyzing its growing trend, compositional change and regional difference, reveals the problems existing in its disposal and management in Ch...This paper, probing into the present situation of urban domestic garbage by analyzing its growing trend, compositional change and regional difference, reveals the problems existing in its disposal and management in China. Meanwhile, a questionnaire was conducted in five big cities around China for surveying urban residents' attitudes towards garbage disposal and management policies and measures. Results showed the output of urban domestic garbage in Chinese cities is ever increasing, and the recoverable materials and energy in garbage composition are also increasing. The population growth, economic development, and increase of residents' expenditure level are the main factors influencing the growing output and changing composition of the garbage. Information acquired from the questionnaire showed that majority of the urban residents are in favor of the garbage reduction policies and managerial measures and are willing to collaborate with municipal government in battling against garbage. Based on the analysis and questionnaire, some policymaking oriented suggestions such as operating the garbage disposal from a social welfare service to a sector of profit gaining enterprises, transferring the garbage management from passive end control to active source control, promoting the classified garbage collection in cities around China, and charging garbage fees for its cleanup and disposal, have also been put forward in the paper.展开更多
Aluminum is an important basic raw material for national economic development.The alumina industry has been expanding rapidly due to the increasing demand for aluminum.Bauxite residue is a highly alkaline solid by-pro...Aluminum is an important basic raw material for national economic development.The alumina industry has been expanding rapidly due to the increasing demand for aluminum.Bauxite residue is a highly alkaline solid by-product generated when alumina is extracted from bauxite ore in alumina refineries[1,2].展开更多
In this paper, the discussion is concentrated on the properties of the polluted sediments and the combination of clean-up and disposal process for the upper layer heavily polluted sediments with good flowability. Base...In this paper, the discussion is concentrated on the properties of the polluted sediments and the combination of clean-up and disposal process for the upper layer heavily polluted sediments with good flowability. Based on the systematic analyses of various clean-up processes, a suitable engineering process has been evaluated and recommended. The process has been applied to the river reclamation in Yangpu District of Shanghai City, China. An improved centrifuge is used for dewatering the dredged sludge, which plays an important role in the combination of clean-up and disposal process. The assessment of the engineering process shows its environmental and technical economy feasibility, which is much better than that of traditional dredging-disposal processes.展开更多
Disposal of spent nuclear fuel and long lived radioactive waste in deep clay geological formations is one of the promising options worldwide. In this concept of the geological disposal system, the host clay formation ...Disposal of spent nuclear fuel and long lived radioactive waste in deep clay geological formations is one of the promising options worldwide. In this concept of the geological disposal system, the host clay formation is considered as a principal barrier on which the fulfillment of key safety functions rests. Between 2006 and 2010, the European Commission project TIMODAZ, which gathered 15 partners from 8 countries, has investigated the coupled thermo-hydro-mechanical (THM) effects on clay formations for geological disposal of radioactive waste, and specific attention was paid to investigating the thermal effect on the evolution of the damaged zone (DZ). Three types of potential host clay formations were investigated: the Boom Clay (Belgium), the Opalinus Clay (Switzerland) and the Callovo-Oxfordian argillite (France). Intensive experimental (laboratory and in situ in underground research laboratories) and numerical studies have been performed. Multi-scale approach was used in the course of the project. High degree of similarities between the failure modes, sealing process, stress paths, deformation, etc., observed in laboratories and in situ has been obtained, which increased the confidence in the applicability of laboratory test results and up-scaling perspective. The results of the laboratory and in situ tests obtained allowed the parameters for numerical models at various scales to be derived and provided the basis for the simplified performance assessment models that are used to assess the long-term safety of a repository. The good cooperation between the numerical modeler and experimenters has allowed an in-depth analysis of the experimental results and thus better understanding the underlying processes, and consequently increased the capabilities to model the THM effects in claystones. This paper presents the main achievements obtained by TIMODAZ project and shows how a European scientific community investigates a problem of concern in a collaborative way and how the obtained main results are applied to the performance assessment of a geological repository.展开更多
基金supported by the French National Agency for radioactive waste management(ANDRA).
文摘This work is devoted to numerical analysis of thermo-hydromechanical problem and cracking process in saturated porous media in the context of deep geological disposal of radioactive waste.The fundamental background of thermo-poro-elastoplasticity theory is first summarized.The emphasis is put on the effect of pore fluid pressure on plastic deformation.A micromechanics-based elastoplastic model is then presented for a class of clayey rocks considered as host rock.Based on linear and nonlinear homogenization techniques,the proposed model is able to systematically account for the influences of porosity and mineral composition on macroscopic elastic properties and plastic yield strength.The initial anisotropy and time-dependent deformation are also taken into account.The induced cracking process is described by using a non-local damage model.A specific hybrid formulation is proposed,able to conveniently capture tensile,shear and mixed cracks.In particular,the influences of pore pressure and confining stress on the shear cracking mechanism are taken into account.The proposed model is applied to investigating thermo-hydromechanical responses and induced damage evolution in laboratory tests at the sample scale.In the last part,an in situ heating experiment is analyzed by using the proposed model.Numerical results are compared with experimental data and field measurements in terms of temperature variation,pore fluid pressure change and induced damaged zone.
基金supported by the Polluted Site Remediation Project of Gao Village,Puji Street,Zhangqiu District,Jinan City,Shandong Provincefinancially supported by the National Natural Science Foundation of China(Nos.42072331,U1906209)the Taishan Scholar Foundation(No.tstp20230626)。
文摘Mine water pollution caused by improper discharge of industrial wastewater,waste liquid and waste residue into minedout areas is a new form of pollution occurred in China in recent years.This kind of pollution is buried deeply,and it is difficult to control,dispose and repair.Deep contaminated mine water from abandoned mining areas may even enter the ocean,posing a great threat to marine ecosystems.In this study,using a water pollution incident occurred in a coal field at a depth of 80 m in Shandong Province,China,in 2015,as an example,the methods of engineering block disposal and groundwater remediation are reported,and the remediation effects are tested and evaluated by in-situ chemical detection and geophysical surveys.The test results showed that engineering blocking measures such as cut-off walls can obviously block the DNAPL diffusion process in mine water,but the blocking effect on organic pollutants dissolved in water was limited.It can slow down the diffusion process of organic gas.The presence of mining tunnels and mined-out areas in the contaminated zone enhances the diffusion speed of various pollutants,especially during the remediation process when pollutants rapidly spread throughout the entire contaminated area.Groundwater circulation extraction and oxidation methods have a significant degradation effect on pollutants like dichloromethane,but they may generate a large amount of secondary gaseous pollutants.These gaseous pollutants may migrate to the shallow subsurface through structures such as faults,leading to secondary subsurface contamination.When designing remediation plans,it is crucial to strike a balance between blocking and guiding in the context of both blocking and restoration projects for achieving effective remediation.
基金supported by the General Project of the National Natural Science Foundation of China(No.42377413).
文摘Colloids are prevalent in nuclear waste repositories,with bentonite colloids posing an uncontrollable risk factor for nuclide migration processes.In this study,static adsorption experiments were coupled with dynamic shower experiments to comprehensively investigate the influence of bentonite colloids on Sr^(2+)migration in granite,considering adsorption capacity.Bentonite colloids have a considerably greater adsorption capacity than both bentonite and granite,with a maximum adsorption of 30.303 mg/g.The adsorption behavior of bentonite colloids on Sr^(2+)is well described by the Langmuir isotherm and pseudo-second-order kinetic models,indicating that a single-layer chemical adsorption process is controlled by the site activation energy.The adsorbed Sr^(2+)is unevenly distributed on the colloids,and the adsorption mechanism may involve ion exchange with Ca.Bentonite colloids exhibit superior adsorption in neutral environments.The cations in groundwater inhibit Sr^(2+)adsorption,and the inhibition efficacy decreases in the order Fe^(3+)>Ca^(2+)>Mg^(2+)>K^(+).The presence of bentonite colloids in a granite column slightly influences the retention of Sr^(2+)in the column while markedly reducing the Sr^(2+)penetration time from 70 h to 18 h.However,the coexistence of Co^(2+),Ni^(2+),and Cs^(+)in a multinuclide system weakens the ability of the colloids to promote Sr^(2+)migration.In comigration of colloid and multinuclide systems,the adsorption of nuclides by bentonite colloids causes the nuclide migration speed to decrease in the order Sr^(2+)>Cs^(+)>Ni^(2+)>Co^(2+).This study provides insights into Sr^(2+)migration in cave repositories for low-and medium-level radioactive waste.
基金supported by the National Social Science Foundation of China(Grant No.20&ZD091)the National Social Science Fund on the Spirit of the Sixth Plenary Session of the 19th Central Committee of the Communist Party of China(Grant No.22ZDA109)+1 种基金the 2024 Innovative Talents International Cooperation Training Program of the China Scholarship Council(Grant No.202406720002)the the 2024 Hunan Provincial Education Department Graduate Innovation Research Project(Grant No.CX20240485).
文摘In recent years,there has been an intensifying focus within the soil contamination prevention and remediation sector,both domestically and internationally,on the off-site disposal of contaminated soils.The United States and Japan,as pioneers in this field,have formulated and implemented a suite of policy standards and practical measures for the regional collaborative management of off-site soil disposal.This paper meticulously reviews and evaluates the existing research on the regional collaborative management of off-site soil disposal,analyzing the experiences and strategies of the United States and Japan from the perspectives of regulatory systems and practical implementation.In light of China’s specific circumstances,it proposes a series of strategic recommendations for the adaptation of these international experiences to the Chinese context.These include enhancement of Chinese legal standards for the regional collaborative management of contaminated land soil off-site disposal,improvement of risk control standards for soil pollution and specific regulations for off-site disposal,as well as delineation of objective criteria to define the scope of collaborative management.
基金supported by an Australian Government Research Training Program Scholarship offered to the first author of this study。
文摘Anticipating the imminent surge of retired lithium-ion batteries(R-LIBs)from electric vehicles,the need for safe,cost-effective and environmentally friendly disposal technologies has escalated.This paper seeks to offer a comprehensive overview of the entire disposal framework for R-LIBs,encompassing a broad spectrum of activities,including screening,repurposing and recycling.Firstly,we delve deeply into a thorough examination of current screening technologies,shifting the focus from a mere enumeration of screening methods to the exploration of the strategies for enhancing screening efficiency.Secondly,we outline battery repurposing with associated key factors,summarizing stationary applications and sizing methods for R-LIBs in their second life.A particular light is shed on available reconditioning solutions,demonstrating their great potential in facilitating battery safety and lifetime in repurposing scenarios and identifying their techno-economic issues.In the realm of battery recycling,we present an extensive survey of pre-treatment options and subsequent material recovery technologies.Particularly,we introduce several global leading recyclers to illustrate their industrial processes and technical intricacies.Furthermore,relevant challenges and evolving trends are investigated in pursuit of a sustainable end-of-life management and disposal framework.We hope that this study can serve as a valuable resource for researchers,industry professionals and policymakers in this field,ultimately facilitating the adoption of proper disposal practices.
基金study received financial support from the National Natural Science Foundation of China(No.U22B2065),EditChecks(https://editchecks.com.cn/)for providing linguistic assistance during the preparation of this manuscript.
文摘Safe emplacement of high-level nuclear waste(HLNW)arising from the utilization of nuclear power is a frequently en-countered and considerably challenging issue.The widely accepted and feasible approach for the permanent disposal of HLNW involves housing it in a corrosion-resistant container and subsequently burying it deep in a geologic repository.The focus lies on ensuring the dur-ability and integrity of the container in this process.This review introduces various techniques and strategies employed in controlling the corrosion of used fuel containers(UFCs)using copper(Cu)as corrosion barrier in the context of deep geological disposal.Overall,these corrosion prevention techniques and methods have been effectively implemented and employed to successfully mitigate the corrosion challenges encountered during the permanent disposal of Cu containers(e.g.,corrosion mechanisms and corrosion parameters)in deep geologic repositories.The primary objective of this review is to provide an extensive examination of the alteration in the corrosion envir-onment encountered by the UFCs when subjected to deep geologic repository conditions and focusing on addressing the potential corro-sion scenarios.
基金funded by the Research on National Greenhouse Gas Emission Reduction Obligations under the Carbon Peak and Carbon Neutral Commitment,General Program of Humanities and Social Sciences,Ministry of Education of China[Grant No.21YJA820010].
文摘The disposal of contaminated water from Japan’s Fukushima nuclear power plant is a significant international nuclear safety issue with considerable cross-border implications.This matter requires compliance not only with the law of the sea but also with the principles of nuclear safety under international law.These principles serve as the overarching tenet of international and China’s domestic nuclear laws,applicable to nuclear facilities and activities.The principle of safety in nuclear activities is fully recognized in international and domestic laws,carrying broad legal binding force.Japan’s discharge of nuclear-contaminated water into the sea violates its obligations under the principle of safety in nuclear activities,including commitments to optimum protection,as low as reasonably practicable,and prevention.The Japanese government and the International Atomic Energy Agency(IAEA)have breached the obligation of optimum protection by restricting the scope of assessments,substituting core concepts,and shielding dissenting views.In the absence of clear radiation standards,they have acted unilaterally without fulfilling the obligation as low as reasonably practicable principle.The discharge of Fukushima nuclear-contaminated water poses an imminent and unpredictable risk to all countries worldwide,including Japanese residents.Japan and the IAEA should fulfill their obligations under international law regarding disposal,adhering to the principles of nuclear safety,including optimum protection,the obligation as low as reasonably practicable,and prevention through multilateral cooperation.Specifically,the obligation to provide optimum protection should be implemented by re-evaluating the most reliable disposal technologies and methods currently available and comprehensively assessing various options.The standard of the obligation as low as reasonably practicable requires that the minimization of negative impacts on human health,livelihoods,and the environment should not be subordinated to considerations of cutting costs and expenses.Multilateral cooperation should be promoted through the establishment of sound multilateral long-term monitoring mechanisms for the discharge of nuclear-contaminated water,notification and consultation obligations,and periodic assessments.These obligations under international law were fulfilled after the accidents at the Three Mile Island and Chernobyl nuclear power plants.The implications of the principles of nuclear safety align with the concept of building a community of shared future for nuclear safety advocated by China.In cases of violations of international law regarding the disposal of nuclear-contaminated water that jeopardize the concept of a community of a shared future for nuclear safety,China can also rely on its own strength to promote the implementation of due obligations through self-help.
文摘A means to develop a comparative assessment of the risks of available wastewater effluent disposal options on a local scale needs to be developed to help local decision-makers make decisions on options such as direct or indirect potable reuse options. These options have garnered more interest as a result of water supply limitations in many urban areas. This risk assessment was developed from a risk assessment developed at the University of Miami in 2001 and Florida Atlantic University (FAU) in 2023. Direct potable reuse and injection wells were deemed to have the lowest risk in the most recent study by FAU. However, the injection well option may not be available everywhere. As a result, a more local means to assess exposure risk is needed. This paper outlines the process to evaluate the public health risks associated with available disposal alternatives which may be very limited in some areas. The development of exposure pathways can help local decision-makers define the challenges, and support later expert level analysis upon which public health decisions are based.
文摘Background: Handling of medicines is a day-to-day activity by patients and many health care providers. However, multiple studies have brought to light inappropriate disposal methods for expired and unused medication (EUM). Improper disposal of expired and unused medicines is hazardous both to humans and the environment. Objective: This sought to measure patients’ knowledge, attitude, and practices on disposal methods of EUM. Methods: A cross-sectional study was carried out among 384 patients at three outpatient pharmacies at the University Teaching Hospitals (UTHs). The structured questionnaire was used to collect data and STAT version 15.1 was used to analyse the data. Results: 384 respondents participated in this study and, at some point, had EUM. In this study, 356 (92.7%) of the participants reported that they had never heard of a drug take-back system. Most of the participants 285 (74.2%) and 239 (62.2%) kept and donated their unused medicine, respectively. Additionally, 244 (63.5%), 212 (55.2%), and 176 (44.8%) of the participants disposed of expired medicines in the bin or garbage, flushed them in toilets or sinks, or burned them, respectively. Occupation was significantly associated with unsafe disposal of unused medicine [P-value = 0.019]. Conclusion and Relevance: Knowledge of safe disposal methods for EUM was good amongst most participants. However, used unsafe disposal methods. The majority of the participants exhibited positive attitude concerning safe disposal methods. This study highlights the need for drug-take-back program creation in Zambia.
文摘Introduction: Not all medicines that pass-through consumers’ hands are used, and some often expire in households. These health products can be sources of accidental risks and pollution when they are not properly disposed of. In Burkina Faso, there are as yet no guidelines for the disposal of unused medicines in households. The aim of this study was to estimate the extent of household possession of unused or expired medicines, and to describe attitudes and disposal practices. Methods: This was a descriptive cross-sectional study covering households in the Ouagadougou commune conducted from June to August 2021. Two-stage stratified sampling was used: selection of Enumeration Zones (EZs) and selection of households, with each EZ comprising several households. Data collection was based on direct interviews using a structured questionnaire. Data were processed using Epi Info software version 7.2.4.0. Results: In total, 417 household residents were surveyed out of the planned 423 households, corresponding to a completion rate of 98.58% compared with the initial sample. Among the respondents, 79.62% had unused and/or expired medicines in their household. A total of 2562 drug packaging units were counted, for a total weight of 121.90 kg. Nearly 75% were aware that improper disposal was a danger to the environment. Some respondents kept their unused medicines at home until they expired (43.41%), and disposed of them mainly by throwing them in the household garbage (75.58%). The majority (79%) were in favor of the government setting up a take-back program for these medicines. Conclusion: The introduction of a take-back program for unused or out-of-date medicines will ensure safer disposal of medicines, and better protection for households and the environment.
文摘Safe waste disposal is necessary to limit the impact of waste on human health and the environment. This paper evaluates the status of solid waste (SW) disposal in the Wa Municipality, Ghana. The study adopted a descriptive research design and applied quantitative and qualitative research methods. 200 questionnaires were administered to two residential areas, each representing high-income, middle-income, and low-income residential dwellings. The study revealed that the majority of the respondents (33.5%) disposed of their SW in open spaces because any collection service did not cover them and those respondents who were covered by a collection service were not satisfied with the collection service due to irregular collection and inconvenient locations of communal collection containers. In addition, all collected SW in the Wa Municipality are openly dumped in illegal dumping sites across the municipality without any form of processing and treatment. The adoption of an integrated solid waste management system could improve SW disposal in the municipality.
基金support of the National Key R&D Program of China[Grant No.2018YFC1902601].
文摘With the rapid growth in the number of passenger cars(PCs)in China over the past decades,more than ten million tons of used tires have already become solid wastes and subsequently caused serious environmental issues.Due to the presence of synthetic rubber in PC tires,waste PC tires cannot be disposed through rubber reclaiming technology.Thus,waste PC tires have become one of fastest growing solid wastes in China.First,the current disposal capacity of the pyrolysis method,regarded as a promising technology for the disposal of waste PC tires,is surveyed and compared with other disposal methods mentioned in previous papers.Second,this work establishes a model to predict the total number of waste PC tires in the next five years depending on the rate of PC growth and current waste tire disposal capacity.Moreover,pyrolysis is evaluated on 15 collected waste PC tires selected from the most representative tire brands in the Chinese market.The corresponding results imply that~68.5%of S was into oil and~44.3%N and large amount of heavy metals resided in solid carbon which severely limit further applications.Finally,a new pyrolysis technology is introduced that may represent a solution to the limits in the application of tire disposal methods and relief for the coming waste tire crisis.
文摘At present,main sludge disposal manners of China contain landfill,composting,natural drying and incineration. A large number of sludge does not obtain standardized processing,which directly causes"secondary pollution"and seriously threatens eco-environment. Therefore,how to rationally treat municipal sludge is one of problems that need urgent solution at present. In this paper,current mainstream pretreatment technique of municipal sludge and backend disposal technique are explored,and mainstream backend disposal technique is introduced. Moreover,key problems in municipal sludge disposal field are analyzed,which has certain reference significance for further understanding the current development of municipal sludge disposal field in China.
基金support from the China Atomic Energy Authority (CAEA) for China's URL Development Program and the Geological Disposal ProgramThe International Atomic Energy Agency is specially thanked for its support for China's geological disposal program through its Technical Cooperation Projects
文摘With the rapid development of nuclear power in China, the disposal of high-level radioactive waste(HLW) has become an important issue for nuclear safety and environmental protection. Deep geological disposal is internationally accepted as a feasible and safe way to dispose of HLW, and underground research laboratories(URLs) play an important and multi-faceted role in the development of HLW repositories. This paper introduces the overall planning and the latest progress for China's URL. On the basis of the proposed strategy to build an area-specific URL in combination with a comprehensive evaluation of the site selection results obtained during the last 33 years, the Xinchang site in the Beishan area,located in Gansu Province of northwestern China, has been selected as the final site for China's first URL built in granite. In the process of characterizing the Xinchang URL site, a series of investigations,including borehole drilling,geological mapping, geophysical surveying,hydraulic testing and in situ stress measurements, has been conducted. The investigation results indicate that the geological,hydrogeological, engineering geological and geochemical conditions of the Xinchang site are very suitable for URL construction. Meanwhile, to validate and develop construction technologies for the Beishan URL, the Beishan exploration tunnel(BET), which is a 50-m-deep facility in the Jiujing sub-area, has been constructed and several in situ tests, such as drill-and-blast tests, characterization of the excavation damaged zone(EDZ), and long-term deformation monitoring of surrounding rocks, have been performed in the BET. The methodologies and technologies established in the BET will serve for URL construction.According to the achievements of the characterization of the URL site, a preliminary design of the URL with a maximum depth of 560 m is proposed and necessary in situ tests in the URL are planned.
基金Supported by the China Atomic Energy Authority’s Special Program for Radioactive Waste Management and the International Atomic Energy Agency’s Technical Cooperation Project (IAE-TC Project CPR/9/026, CPR/4/024, CPR/3/008)
文摘For geological disposal of high-level radioactive waste (HLW), the Chinese policy is that the spent nuclear fuel (SNF) should be reprocessed first, followed by vitrification and final disposal. The preliminary repository concept is a shaft-tunnel model, located in saturated zones in granite, while the final waste form for disposal is vitrified high-level radioactive waste. In 2006, the government published a long-term research and development (R&D) plan for geological disposal of high-level radioactive waste. The program consists of three steps: (1) laboratory studies and site selection for a HLW repository (2006-2020); (2) underground in-situ tests (2021-2040); and (3) repository construction (2041-2050) followed by operation. With the support of China Atomic Energy Authority, comprehensive studies are underway and some progresses are made. The site characterization, including deep borehole drilling, has been performed at the most potential Beishan site in Gansu Province, Northwestern China. The data from geological and hydrogeological investigations, in-situ stress and permeability measurements of rock mass are presented in this paper. Engineered barrier studies are concentrated on the Gaomiaozi bentonite. A mock-up facility, which is used to study the thermo-hydro-mechano-chemical (THMC) properties of the bentonite, is under construction. Several projects on mechanical properties of Beishan granite are also underway. The key scientific challenges faced with HLW disposal are also discussed.
文摘This paper, probing into the present situation of urban domestic garbage by analyzing its growing trend, compositional change and regional difference, reveals the problems existing in its disposal and management in China. Meanwhile, a questionnaire was conducted in five big cities around China for surveying urban residents' attitudes towards garbage disposal and management policies and measures. Results showed the output of urban domestic garbage in Chinese cities is ever increasing, and the recoverable materials and energy in garbage composition are also increasing. The population growth, economic development, and increase of residents' expenditure level are the main factors influencing the growing output and changing composition of the garbage. Information acquired from the questionnaire showed that majority of the urban residents are in favor of the garbage reduction policies and managerial measures and are willing to collaborate with municipal government in battling against garbage. Based on the analysis and questionnaire, some policymaking oriented suggestions such as operating the garbage disposal from a social welfare service to a sector of profit gaining enterprises, transferring the garbage management from passive end control to active source control, promoting the classified garbage collection in cities around China, and charging garbage fees for its cleanup and disposal, have also been put forward in the paper.
文摘Aluminum is an important basic raw material for national economic development.The alumina industry has been expanding rapidly due to the increasing demand for aluminum.Bauxite residue is a highly alkaline solid by-product generated when alumina is extracted from bauxite ore in alumina refineries[1,2].
文摘In this paper, the discussion is concentrated on the properties of the polluted sediments and the combination of clean-up and disposal process for the upper layer heavily polluted sediments with good flowability. Based on the systematic analyses of various clean-up processes, a suitable engineering process has been evaluated and recommended. The process has been applied to the river reclamation in Yangpu District of Shanghai City, China. An improved centrifuge is used for dewatering the dredged sludge, which plays an important role in the combination of clean-up and disposal process. The assessment of the engineering process shows its environmental and technical economy feasibility, which is much better than that of traditional dredging-disposal processes.
基金funded by the European Commission through the TIMODAZ project within the 6th framework programme (Contract Number: FI6W-CT-2007-036449)
文摘Disposal of spent nuclear fuel and long lived radioactive waste in deep clay geological formations is one of the promising options worldwide. In this concept of the geological disposal system, the host clay formation is considered as a principal barrier on which the fulfillment of key safety functions rests. Between 2006 and 2010, the European Commission project TIMODAZ, which gathered 15 partners from 8 countries, has investigated the coupled thermo-hydro-mechanical (THM) effects on clay formations for geological disposal of radioactive waste, and specific attention was paid to investigating the thermal effect on the evolution of the damaged zone (DZ). Three types of potential host clay formations were investigated: the Boom Clay (Belgium), the Opalinus Clay (Switzerland) and the Callovo-Oxfordian argillite (France). Intensive experimental (laboratory and in situ in underground research laboratories) and numerical studies have been performed. Multi-scale approach was used in the course of the project. High degree of similarities between the failure modes, sealing process, stress paths, deformation, etc., observed in laboratories and in situ has been obtained, which increased the confidence in the applicability of laboratory test results and up-scaling perspective. The results of the laboratory and in situ tests obtained allowed the parameters for numerical models at various scales to be derived and provided the basis for the simplified performance assessment models that are used to assess the long-term safety of a repository. The good cooperation between the numerical modeler and experimenters has allowed an in-depth analysis of the experimental results and thus better understanding the underlying processes, and consequently increased the capabilities to model the THM effects in claystones. This paper presents the main achievements obtained by TIMODAZ project and shows how a European scientific community investigates a problem of concern in a collaborative way and how the obtained main results are applied to the performance assessment of a geological repository.